

Lecture Notes in Computer Science 4017
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stamatis Vassiliadis Stephan Wong
Timo D. Hämäläinen (Eds.)

Embedded Computer
Systems: Architectures,
Modeling, and Simulation

6th International Workshop, SAMOS 2006
Samos, Greece, July 17-20, 2006
Proceedings

13

Volume Editors

Stamatis Vassiliadis
Stephan Wong
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: {s.vassiliadis, j.s.s.m.wong}@ewi.tudelft.nl

Timo D. Hämäläinen
Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland
E-mail: timo.d.hamalainen@tut.fi

Library of Congress Control Number: 2006928741

CR Subject Classification (1998): C, B

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-36410-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-36410-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11796435 06/3142 5 4 3 2 1 0

Preface

The SAMOS workshop is an international gathering of highly qualified resear-
chers from academia and industry, sharing ideas in a 3-day lively discussion on
the quiet and inspiring northern mountainside of the Mediterranean island of
Samos. The workshop meeting is one of two colocated events (the other event
being the IC-SAMOS). As a tradition, the workshop features presentations in
the morning, while after lunch all kinds of informal discussions and nut-cracking
gatherings take place. The workshop is unique in the sense that not only solved
research problems are presented and discussed but also (partly) unsolved prob-
lems and in-depth topical reviews can be unleashed in the scientific arena. Con-
sequently, the workshop provides the participants with an environment where
collaboration rather than competition is fostered.

SAMOS VI follows the series of workshops started in 2001 in a new expanded
program. This year there were also two parallel sessions for current and foreseen
topics. The SAMOS VI workshop and IC-SAMOS attracted a total of 130 pa-
pers and 12 invited papers on special topics. We are grateful to all authors who
submitted papers. The papers came from 27 countries and regions: Austria(3),
Bangladesh(1), Belgium(4), Brazil(4), Canada(4), China(6), Taiwan(1), Czech
Republic(6), Finland(17), France(3), Germany(14), Greece(8), Hong Kong(1),
India(6), Iran(3), Italy(4), Japan(1), Mexico(1), Republic of Korea(13), Repub-
lic of Singapore(1), Romania(1), Spain(11), Sweden(1), The Netherlands(15),
Tunisia(1), UK(3), and USA(9).

The papers went through a rigorous reviewing process and each paper re-
ceived at least three individual reviews, with an average of four reviews. Due
to time constraints in the workshop program and the high quality of the sub-
mitted papers, the selection process was very competitive and many qualified
papers could not be accepted. The program also included two keynote speeches
by Jinsung Choi from LG Electronics and by Panagiotis Tsarchopoulos from the
European Commission.

A workshop like this cannot be organized without the help of many other peo-
ple. Therefore, we thank the members of the Steering and Program Committees
and the external referees for their dedication and diligence in selecting the technical
presentations. The investment of their time and insight is very much appreciated.
We would like to express our sincere gratitude to Carlo Galuzzi for maintaining
the website and paper submission system and preparing the workshop proceed-
ings. We thank Lidwina Tromp for her support in organizing the workshop.

We hope that the attendees enjoyed the SAMOS VI workshop in all its as-
pects, including many informal discussions and gatherings.

June 2006 Stamatis Vassiliadis
Stephan Wong

Timo D. Hämäläinen

Organization

The SAMOS VI workshop took place during July 17 − 20, 2006 at the Research
and Teaching Institute of East Aegean (INEAG) in Agios Konstantinos on the
island of Samos, Greece.

Workshop Chairs

Stamatis Vassiliadis Delft University of Technology, The Netherlands
Stephan Wong Delft University of Technology, The Netherlands

Program Chair

Timo D. Hämäläinen Tampere University of Technology, Finland

Proceedings Chair

Carlo Galuzzi Delft University of Technology, The Netherlands

Publicity and Financial Chair

Stephan Wong Delft University of Technology, The Netherlands

Steering Committee

Shuvra Bhattacharyya University of Maryland, USA
Ed Deprettere Leiden University, The Netherlands
Andy Pimentel University of Amsterdam, The Netherlands
Patrice Quinton IRISA, France
Jarmo Takala Tampere University of Technology, Finland
Jürgen Teich University of Erlangen-Nuremberg, Germany
Stamatis Vassiliadis Delft University of Technology, The Netherlands

Program Committee

Piergiovanni Bazzana ATMEL, Italy
Koen Bertels Delft University of Technology, The Netherlands
Holger Blume RWTH Aachen University, Germany

VIII Organization

Geoffrey Brown Indiana University, USA
João M. P. Cardoso University of Algarve, Portugal
Luigi Carro Universidade Federal do Rio Grande do Sul,

Brazil
Vassilios V. Dimakopoulos University of Ioannia, Greece
Nikitas Dimopoulos University of Victoria, Canada
Pedro Diniz University of Southern California, USA
Nikil Dutt University of California Irvine, USA
Paraskevas Evripidou University of Cyprus, Cyprus
Fabrizio Ferrandi Politecnico di Milano, Italy
Gerhard Fettweis Technische Universität Dresden, Germany
Manfred Glesner Technische Universität Darmstadt, Germany
David Guevorkian Nokia Research Center, Finland
Timo D. Hämäläinen Tampere University of Technology, Finland
Fadi J. Kurdahi University of California Irvine, USA
Johan Lilius Ado Akademi University, Finland
Wayne Luk Imperial College London, UK
Walid Najjar University of California Riverside, USA
Sule Ozev Duke University, USA
Dionisios N. Pnevmatikatos Technical University of Crete, Greece
Bernard Pottier Université de Bretagne Occidentale, France
Tanguy Risset IRISA/INRIA, France
Suleyman Sair North Carolina State University, USA
Michael Schulte University of Wisconsin-Madison, USA
Olli Silven University of Oulu, Finland
Leonel Sousa TU Lisbon, Portugal
Dirk Stroobandt Ghent University, Belgium
Sriram Sundararajan Moxair, USA
Won Yong Sung Seoul National University, Korea
Serge Vernalde IMEC, Belgium
Jens Peter Wittenburg Thomson Corporate Research, Germany

Local Organizers

Lidwina Tromp Delft University of Technology, The Netherlands
Karin Vassiliadis Delft University of Technology, The Netherlands
Yiasmin Kioulafa Research and Training Institute of East Aegean,

Greece

Organization IX

Referees

Aho, E.
Al-Ars, Z.
Bazzana, P.
Bertels, K.
Betul Buyukkurt, A.
Blume, H.
Brown, A.
Brown, G.
Calderon, H.
Cardoso, J.
Carro, L.
Chang, Z.
Chaves, R.
Christiaens, M.
Cope, B.
de Andrés, D.
de Langen, P.
Deprettere, E.
Devos, H.
D’Haene, M.
Dias, T.
Dimakopoulos, V.
Dimopoulos, N.
Diniz, P.
Duarte, F.
Dutt, N.
Eeckhout, L.
Erbas, C.
Evripidou, P.
Faes, P.
Falk, J.
Ferrandi, F.
Fettweis, G.
Flich, J.
Gädke, K.
Galuzzi, C.
Gaydadjiev, G
Germano, J.
Glesner, M.
Glossner, J.
Gordon-Ross, A.
Guevorkian, D.
Guntoro, A.

Guo, Z.
Hamalainen, T.
Haubelt, C.
Heikkinen, J.
Heirman, W.
Hinkelmann, H.
Hounta, A. E.
Jääskeläinen, P.
Jachalsky, J.
Janes, D.
Jenkins, C.
Kachris, C.
Kangas, T.
Kaxiras, S.
Keinert, J.
Koch, D.
Kohvakka, M.
Kropp, H.
Kulmala, A.
Kuorilehto, M.
Kurdahi, F.
Kuzmanov, G.
Kyriacou, C.
Lafond, S.
Lahtinen, V.
Langerwerf, J. M.
Lappalainen, V.
Lilius, J.
Lopez, P.
Lotfi Mhamdi
Luk, W.
Majer, M.
Mak, T.
Mäkelä, R.
Manzoni, P.
Matus, E.
Meenderinck, C.
Mladen, B.
Momcilovic, S.
Morel, L.
Moscu Panainte, E.
Najjar, W.
Oliver, J.

Orsila, H.
Ozev, S.
Palermo, G.
Papaefstathiou, I.
Paya Vaya, G.
Petit, S.
Petoumenos, P.
Pieper, S.
Pimentel, A.
Pitkänen, T.
Plosila, J.
Pnevmatikatos, D.
Polstra, S.
Porres, I.
Pottier, B.
Pourebrahimi, B.
Quinton, P.
Risset, T.
Rodas, A.
Sahuquillo, J.
Sair, S.
Salminen, E.
Snchez, M.
Santambrogio, M. D.
Santonja, V.
Schlichter, T.
Sculte, M.
Sedcole, P.
Shahbahrami, A
Silla, F.
Silven, O.
Smailbegovic, F.
Soares Indrusiak, l.
Soffke, O.
Sourdis, I.
Sousa, L.
Stitt, G.
Stoyanova, T.
Streichert, T.
Streubhr, M.
Stroobandt, D.
Strydis, C.
Sundararajan, S.

X Organization

Sung, W.
Tarala, J.
Tavares, M. B. S.
Teich, J.
Thompson, M.
Trancoso, P.
Tsen, C.
Tumeo, A.

Uola, J.
Uusikartano, R.
Vainio, O.
Vanne, J.
Villareal, J.
Wang, L.-K.
Whattacharyya, S.
Wittenburg, J.

Xekalakis, P.
Yan, L.
Yankova, Y.
Young Hur, J.
Ziener, D.
Zipf, P.

Table of Contents

Keynotes

Reconfigurable Platform for Digital Convergence Terminals
Jinsung Choi . 1

European Research in Embedded Systems
Panagiotis Tsarchopoulos . 2

System Design and Modeling

Interface Overheads in Embedded Multimedia Software
Tero Rintaluoma, Olli Silven, Juuso Raekallio . 5

A UML Profile for Asynchronous Hardware Design
Kim Sandström, Ian Oliver . 15

Automated Distribution of UML 2.0 Designed Applications
to a Configurable Multiprocessor Platform

Mikko Setälä, Petri Kukkala, Tero Arpinen, Marko Hännikäinen,
Timo D. Hämäläinen . 27

Towards a Transformation Chain Modeling Language
Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan, Wouter Joosen,
Yolande Berbers . 39

Key Research Challenges for Successfully Applying MDD Within
Real-Time Embedded Software Development

Aram Hovsepyan, Stefan Van Baelen, Bert Vanhooff, Wouter Joosen,
Yolande Berbers . 49

Domain-Specific Modeling of Power Aware Distributed Real-Time
Embedded Systems

Gabor Madl, Nikil Dutt . 59

Mining Dynamic Document Spaces with Massively Parallel Embedded
Processors

Jan W.M. Jacobs, Rui Dai, Gerard J.M. Smit . 69

Efficient Automated Clock Gating Using CoDeL
Nainesh Agarwal, Nikitas J. Dimopoulos . 79

XII Table of Contents

An Optimization Methodology for Memory Allocation and Task
Scheduling in SoCs Via Linear Programming

Bastian Ristau, Gerhard Fettweis . 89

Wireless Sensor Networks

Designing Wireless Sensor Nodes
Marcos A.M. Vieira, Adriano B. da Cunha,
Diógenes C. da Silva Jr. 99

Design, Implementation, and Experiments on Outdoor Deployment
of Wireless Sensor Network for Environmental Monitoring

Jukka Suhonen, Mikko Kohvakka, Marko Hännikäinen,
Timo D. Hämäläinen . 109

LATONA: An Advanced Server Architecture for Ubiquitous Sensor
Network

Chi-Hoon Shin, Soo-Cheol Oh, Dae-Won Kim, Sun-Wook Kim,
Kyoung Park, Sung-Woon Kim . 122

An Approach for the Reduction of Power Consumption in Sensor Nodes
of Wireless Sensor Networks: Case Analysis of Mica2

Adriano B. da Cunha, Diógenes C. da Silva Jr. 132

Energy-Driven Partitioning of Signal Processing Algorithms in Sensor
Networks

Dong-Ik Ko, Chung-Ching Shen, Shuvra S. Bhattacharyya,
Neil Goldsman . 142

Preamble Sense Multiple Access (PSMA) for Impulse Radio Ultra
Wideband Sensor Networks

Jussi Haapola, Leonardo Goratti, Isameldin Suliman,
Alberto Rabbachin . 155

Security in Wireless Sensor Networks: Considerations
and Experiments

Panu Hämäläinen, Mauri Kuorilehto, Timo Alho,
Marko Hännikäinen, Timo D. Hämäläinen . 167

On Security of PAN Wireless Systems
Ondrej Hyncica, Peter Kacz, Petr Fiedler, Zdenek Bradac,
Pavel Kucera, Radimir Vrba . 178

Table of Contents XIII

Processor Design

Code Size Reduction by Compiler Tuning
Masayo Haneda, Peter M.W. Knijnenburg,
Harry A.G. Wijshoff . 186

Energy Optimization of a Multi-bank Main Memory
Hanene Ben Fradj, Sébastien Icart, Cécile Belleudy,
Michel Auguin . 196

Probabilistic Modelling and Evaluation of Soft Real-Time Embedded
Systems

Oana Florescu, Menno de Hoon, Jeroen Voeten,
Henk Corporaal . 206

Hybrid Functional and Instruction Level Power Modeling for Embedded
Processors

Holger Blume, Daniel Becker, Martin Botteck, Jörg Brakensiek,
Tobias G. Noll . 216

Low-Power, High-Performance TTA Processor for 1024-Point Fast
Fourier Transform

Teemu Pitkänen, Risto Mäkinen, Jari Heikkinen, Tero Partanen,
Jarmo Takala . 227

Software Pipelining Support for Transport Triggered Architecture
Processors

Perttu Salmela, Pekka Jääskeläinen, Tuomas Järvinen,
Jarmo Takala . 237

SAD Prefetching for MPEG4 Using Flux Caches
Georgi N. Gaydadjiev, Stamatis Vassiliadis . 248

Effects of Program Compression
Jari Heikkinen, Jarmo Takala . 259

Integrated Instruction Scheduling and Fine-Grain Register Allocation
for Embedded Processors

Dae-Hwan Kim, Hyuk-Jae Lee . 269

Compilation and Simulation Tool Chain for Memory Aware Energy
Optimizations

Manish Verma, Lars Wehmeyer, Robert Pyka, Peter Marwedel,
Luca Benini . 279

XIV Table of Contents

A Scalable, Multi-thread, Multi-issue Array Processor Architecture
for DSP Applications Based on Extended Tomasulo Scheme

Mladen Bereković, Tim Niggemeier . 289

Reducing Execution Unit Leakage Power in Embedded Processors
Houman Homayoun, Amirali Baniasadi . 299

Memory Architecture Evaluation for Video Encoding on Enhanced
Embedded Processors

Ali Iranpour, Krzysztof Kuchcinski . 309

Advantages of Java Processors in Cache Performance and Power for
Embedded Applications

Antonio Carlos S. Beck, Mateus B. Rutzig, Luigi Carro 321

Dependable Computing

CARROT – A Tool for Fast and Accurate Soft Error Rate Estimation
Dimitrios Bountas, Georgios I. Stamoulis . 331

A Scheduling Strategy for a Real-Time Dependable Organic Middleware
Uwe Brinkschulte, Alexander von Renteln, Mathias Pacher 339

Autonomous Construction Technology of Community for Achieving
High Assurance Service

Kotaro Hama, Yuji Horikoshi, Yosuke Sugiyama, Kinji Mori 349

Preventing Denial-of-Service Attacks in Shared CMP Caches
Georgios Keramidas, Pavlos Petoumenos, Stefanos Kaxiras,
Alexandros Antonopoulos, Dimitrios Serpanos . 359

Architectures and Implementations

A Method for Router Table Compression for Application Specific
Routing in Mesh Topology NoC Architectures

Maurizio Palesi, Shashi Kumar, Rickard Holsmark 373

Real-Time Embedded System for Rear-View Mirror Overtaking Car
Monitoring

Javier Dı́az, Eduardo Ros, Sonia Mota, Rodrigo Agis 385

Design of Asynchronous Embedded Processor with New Ternary Data
Encoding Scheme

Je-Hoon Lee, Eun-Ju Choi, Kyoung-Rok Cho . 395

Table of Contents XV

Hardware-Based IP Lookup Using n-Way Set Associative Memory
and LPM Comparator

SangKyun Yun . 406

A Flash File System to Support Fast Mounting for NAND Flash
Memory Based Embedded Systems

Song-Hwa Park, Tae-Hoon Lee, Ki-Dong Chung 415

Rescheduling for Optimized SHA-1 Calculation
Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa,
Stamatis Vassiliadis . 425

Software Implementation of WiMAX on the Sandbridge SandBlaster
Platform

Daniel Iancu, Hua Ye, Emanoil Surducan, Murugappan Senthilvelan,
John Glossner, Vasile Surducan, Vladimir Kotlyar, Andrei Iancu,
Gary Nacer, Jarmo Takala . 435

High-Radix Addition and Multiplication in the Electron Counting
Paradigm Using Single Electron Tunneling Technology

Cor Meenderinck, Sorin Cotofana . 447

Area, Delay, and Power Characteristics of Standard-Cell
Implementations of the AES S-Box

Stefan Tillich, Martin Feldhofer, Johann Großschädl 457

Embedded Sensor Systems

Integrated Microsystems in Industrial Applications
Paddy J. French . 467

A Solid-State 2-D Wind Sensor
Kofi A.A. Makinwa, Johan H. Huijsing, Arend Hagedoorn 477

Fault-Tolerant Bus System for Airbag Sensors and Actuators
Klaas-Jan de Langen . 485

Author Index . 491

Reconfigurable Platform for Digital
Convergence Terminals

Jinsung Choi

Senior Vice President and Head of Mobile Communication Technology
Research Lab LG Electronics

Abstract. It is apparent that future IT terminals including handsets
will be multi-mode convergence devices. Therefore it becomes more and
more important to be able to devise a low-power platform which is
flexible enough to implement multiple different basebands on top of it.
Moreover, real time reconfigurability is crucial considering the fact that
technologies keep evolving and over the air software/firmware upgrade
is being required. In this paper, a new type of reconfigurable platform
will be discussed and we see how it help end user device manufacturer
deliver better multi-mode terminals with better maintenance scheme.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

European Research in Embedded Systems�

Panagiotis Tsarchopoulos

Embedded Systems Unit, European Commission

Digital information technology has revolutionized the world within less than four
decades. It has taken the step from mainframe computers, mainly operated as
hosts in computing centres, to desktops and laptops, connected by networks and
found nearly on all office desks and tables today. Computers have become every
day tools deeply integrated into all kinds of activities of our life.

More remarkable, however, is the less visible revolution where digital technol-
ogy is increasingly embedded in all kinds of equipment and systems to provide
new functionalities and improved operation at low cost. Embedded computers
are now found in nearly all technical devices: in simple everyday home appli-
ances; in facilities and facility management such as heating, air conditioning,
elevators and escalators; in production units from robotics to production au-
tomation and control systems; in medicine where equipment for diagnostics and
medical support is enhanced by computers and in the increasing variety of intel-
ligent devices that are implanted into the human body. Remarkable is also the
rapid proliferation of embedded systems in transportation, be it cars, trucks,
ships, trains or airplanes.

Already 90% of all computing devices are in embedded and not desktop sys-
tems. The growth rate exceeds 10% per annum in all application sectors and
there are forecast to be over 40 billion embedded chips worldwide by 2020. In
terms of market value, for example, the Semiconductor Industry Association es-
timates that in 2006 the automotive sector alone will account for almost 8% of
the world semiconductor market (the world semiconductor market is forecasted
at approximately 200 billion in 2006). Even more striking is the growing share of
the value of the final product that is due to embedded systems: 20% of the value
of each car today is due to embedded electronics and this is expected to increase
to 36% in 2009. In the same year, 22% of the value of industrial automation
systems, 41% of consumer electronics and 33% of medical equipment will be due
to embedded electronics and software.

Embedded systems have evolved from the simple stand-alone and single-
processor computers of the eighties and early nineties, to the sophisticated
multi-processor systems with increasing communication capacities of today. This
evolution is driven by the constant need to bring to the users innovative products
and services with increasing functionality at ever diminishing price. It alsoresults
in significant technological, research and educational challenges. To face these
challenges, European industry alone is expected to invest more than 22 billion

� The views expressed are those of the author and do not necessarily represent the
official view of the European Commission on the subject.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 2–4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

European Research in Embedded Systems 3

euro in embedded systems research and development in 20091, a large increase
from the 12 billion it invested in 2003.

These challenges, combined with the importance of the field for key sectors of
European industry, from industrial automation and medical equipment to auto-
motive and avionics, led the European Commission to devote a specific part of
its IST Programme to embedded systems research. In the last three years that
this programme is in operation, it has invested =C140 million in collaborative
projects between industry, academia and research centres, largely in the areas of
systems design, safety-critical systems, embedded computing, middleware plat-
forms, wireless sensor networks and distributed and hybrid control systems. Em-
bedded systems are also one of the six pillars of ICT research in the European
Commission’s proposals for the 7th Framework Programme that is due to start
in 2007.

Another important development is the set up of the Technology Platform
ARTEMIS - Advanced Research & Technology for Embedded Intelligence and
Systems in 2004. ARTEMIS is an industry-led initiative to reinforce the po-
sition of the EU as a leading worldwide player in the design, integration and
supply of embedded systems. After it produced a 2004 manifesto called Building
ARTEMIS that was signed by 20 executives of EU companies, it set out to estab-
lish and implement a coherent and integrated European strategy for Embedded
Systems that covers all aspects - from research and development priorities to the
research infrastructures needed, the standardisation policy, the educational cur-
ricula etc. In March 2006, this strategy was published as the ARTEMIS Strategic
Research Agenda. While ARTEMIS seeks maximum commonality across applica-
tion sectors, it is recognised that different application domains impose differing
demands on the technology to be developed. ARTEMIS has therefore identified
a number of representative Application Contexts in which: sets of applications
can share common domain expertise, design characteristics and requirements so
that they can, in turn, share methods, tools, technologies and skills; the do-
mains have a large market value and are of sufficient strategic importance to
Europe to justify the investment in a shared research agenda. These Application
Contexts are:

• Industrial systems - large, complex and safety critical systems, that em-
braces Automotive, Aerospace, Manufacturing, and growth areas such as
biomedical.

• Nomadic Environments - enabling portable devices and on-body systems to
offer users access to information and services while on the move.

• Private Spaces, - such as homes, cars and offices, that offers systems and
solutions for improved enjoyment, comfort, well-being and safety.

• Public Infrastructure - major infrastructure such as airports, cities and high-
ways that embrace large scale deployment of systems and services.

1 FAST Study on Worldwide Trends and R&D Programmes in Embedded Systems in
view of maximising the impact of a Technology Platform in the area, 2005.

4 P. Tsarchopoulos

The ARTEMIS strategy is to establish common technology to support the
development of high value-added Embedded Systems across these application
contexts. The common technology will include:

• Reference designs that offer standard architectural approaches for a range of
applications to address the complexity challenge and build synergies between
market sectors.

• Middleware that enables seamless connectivity and wide-scale interoperabil-
ity to support novel functionality, new services and build the ambient intel-
ligent environment.

• Systems design methodologies and associated tools for rapid design and de-
velopment.

• Generic enabling technologies derived from foundational science.

The overall target of European research in this area is to create an environ-
ment that favours and supports innovation in embedded systems and to focus
the R&D resources on common and ambitious objectives. Rapid progress in that
direction over the last years provides a lot of confidence that this will indeed be
the case and that this collective effort will be successful.

Interface Overheads in Embedded Multimedia Software

Tero Rintaluoma1, Olli Silven2, and Juuso Raekallio1

1 Hantro Products Oy, Oulu, Finland
{Tero.Rintaluoma, Juuso.Raekallio}@hantro.com

2 Department of Electrical and Information Engineering, University of Oulu, Finland
Olli.Silven@ee.oulu.fi

Abstract. The multimedia capabilities in battery powered mobile communica-
tion devices should be provided at high energy efficiency. Consequently, the
hardware is usually implemented using low-power technology and the hardware
architectures are optimized for embedded computing. Software architectures, on
the other hand, are not embedded system specific, but closely resemble each other
for any computing device. The popular architectural principle, software layering,
is responsible for much of the overheads, and explains the stagnation of active
usage times of mobile devices. In this paper, we consider the observed devel-
opments against the needs of multimedia applications in mobile communication
devices and quantify the overheads in reference implementations.

1 Introduction

Current high-end mobile communication devices integrate wireless wide band data
modems, video cameras, net browsers, and phones into small software controlled pack-
ages. The small size of the devices is a design constraint as the sustained heat dissipa-
tion should be kept low, and long untethered active usage times should be provided [1].
Their software systems must satisfy a multitude of requirements, resulting in a complex
software solution that can only be implemented via concerted action of experts.

To facilitate this task most mobile communication device manufacturers have created
common platforms for their product families and define application programming in-
terfaces that remain the same across products, regardless of system enhancements and
changes in hardware/software partitioning, including the number of processors used.
Obviously, the software architectures and the components used need to be generic and
reusable, but it is at the cost of efficiency. Consequently, middleware is widely applied
in these systems as a key challenge is to enable uncomplicated integration of hardware
and software components to the defined platform.

An exhibit of the undesired side-effects of this development is the stagnation of the
talk-times of the mobile phones to around the 3h level, although the basic application
has not changed in an essential manner [2]. The reasons have been traced to increased
software architecture and interface overheads. In multimedia applications the overheads
can be expected to be even more significant due to the need to support numerous stan-
dards, such as JPEG, H.264, MPEG-4 and VC-1, in the same execution environment.
To provide control over these alternatives, more software layers are needed on top of
them, adding to the number of instructions to be executed. The number of instructions
executed matters, because the relative energy per instruction of embedded processor

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 5–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 T. Rintaluoma, O. Silven, and J. Raekallio

Table 1. Energy efficiencies and silicon areas of ARM processors [3]

Processor Max. clock Power consumption Silicon area
frequency (MHz) (mW/MHz) (mm2)

ARM7 (720T) 100 0.2 2.4
ARM9 (926EJ-S) 266 0.45 4.5
ARM10 (1022E) 325 0.6 6.9
ARM11 (1136J-S) 550 0.8 5.55

Table 2. Cycle and instruction counts of software based MPEG-4 decoders end encoders (VGA
30frames/s, 512kbit/s)

Processor Core/Bus CLK decoder encoder
MIPS Mcycles/s MIPS Mcycles/s

ARM7 (720T) 2/1 129,7 303.9 646,8 1446,3
ARM9 (926EJ-S) 2/1 129,2 211,9 638,2 948,5
ARM10 (1022E) 3/1 129,2 151,5 638,2 722,9
ARM11 (1136J-S) 3/1 99,2 147,3 570,6 740,1

architectures has grown during the last few years. Table 1 shows the characteristics of
ARM processors implemented using a 130nm CMOS process. Obviously, the advances
at silicon level have been swallowed by the solutions that enable higher clock rates.

In Table 2 we illuminate the impact of architectural improvements at application level
by comparing the instruction and cycle counts of software based MPEG-4 decoders. The
results come from simulations made using the RVDS 2.2 tool [4] and assuming 0-wait-
state memory accesses. The results for ARM11 are not completely cycle accurate. We
notice that the number of instructions to be fetched and executed is slightly reduced be-
tween ARM7 and ARM10, indicating moderate instruction set improvements. Clearly,
the real performance increases have come from higher clock rates.

Consequently, a multiprocessor based on lower performance processors could be
more energy efficient than a single processor solution. However, larger silicon area
adds to the cost, and the accompanied increasing leakage currents add to static energy
consumption. We may also ask, whether a multiprocessor solution with middleware is
really more energy efficient than a conceptually simpler single processor system.

Multitasking, APIs and middleware have big impacts on system performance due
to cache effects and the execution of instructions needed by the interface mechanisms.
Based on overhead measurements by Mogul and Borg [5] in 1991 and Sebek [6] in 2002
the context switch latencies appear to have remained the same for more than a decade
despite processors becoming much faster. This is explained by the low cache hit ratios
during the context switches.

Park et al (2004) measured the operating system effects on the performance of a
MPEG-4 codec run as a single task on an ARM926 processor with embedded Linux.
With this operating system the encoder run 20% and the decoder 27% slower [7]. Again,
the cache effects were pinpointed as the key reason for the slowdown. Using a Linux
platform, Verhoeven et al (2001) found that the performance of different middleware
solutions varied between 260 and 7500 calls per second [8].

Interface Overheads in Embedded Multimedia Software 7

Based on our findings presented in the following, middleware layers in embedded
system software may increase the overheads in a very significant manner. A contribut-
ing factor is the constantly increasing number of abstraction layers between software
platform generations. As a result, monolithic hardware accelerators even in computing
intensive multimedia processing are very attractive due to their low internal overheads.

2 Mobile Video Codecs and System Platforms

Typical mobile video codecs are currently built to adhere to MPEG-4 and H.264 stan-
dards. Both encoders and decoders consist of 10-20 algorithms that are in total invoked
around 1-2 million times each second for a VGA sequence, making the overheads of
the invocation mechanisms important, regardless of whether the implementation is in
the software or hardware.

Table 3 shows the typical overheads of interface mechanisms as ARM11 proces-
sor cycles on a Symbian operating system. Due to the interrupt latency it is obvious,
why the commercially available implementations are either pure software or monolithic
hardware accelerators, that interrupt the control processor, for example, once for each
frame. Fine grained hardware accelerators would be an inefficient approach due to the
high software overheads from interrupt based hardware/software interfacing. Middle-
ware as an interfacing mechanism must be exploited sparingly, limiting its use to rare
long latency services. In general, the total architectural overhead costs are unknown and
hidden in the application performance.

Table 3. Typical software interface costs in an embedded system environment (Symbian 9)

Mechanism Overhead/cycles
Procedure call 3-7
System call (user-kernel) 1000-2500
Interrupt latency 300-600
Context switch 400
Middleware 60000

2.1 MPEG-4 Software Decoder

Figure 1 shows the rough organization of a software based MPEG-4 decoder [9] that
consists of layers that each provide decoding functions for the upper layer. This is the
structure designed already into the standards. The sequence layer is executed once for
each frame or video packet, and extracts information on the employed coding tools and
parameters from the input stream. The macro-block layer in turn controls the block
layer decoding functions that have been designed to ensure the locality of addressing.
For a VGA bit stream, the macro-block layer is invoked at most 1200 times per frame,
while the block layer is run at most 7200 times.

Table 4 demonstrates the costs of software interfaces, when the APIs enabling
reusability of functionalities are placed on the sequence, macroblock and block lay-
ers, and the assumed call overhead is 7 cycles. The figures do not contain the costs of

8 T. Rintaluoma, O. Silven, and J. Raekallio

SEQUENCE LAYER

Short Video
Headers

Video Packet
Headers

VOP
Headers

Stream
Headers

MACROBLOCK LAYER

MV

CBPY

MCBPC

DC Coeff.

API and CONTROL LAYER

API

Control

BLOCK LAYER

VLC
 Motion

Compensation

AC/DC
Prediction

 IDCT

Fig. 1. Layered software architecture of a MPEG-4 video decoder

Table 4. The internal overhead share and energy costs of an MPEG-4 decoder with three API
layer options (VGA 30 frames/s, 512kb/s, ARM926EJ-S implemented at 130nm CMOS)

APIs Overhead Energy consumption
(cycles/s / ∼ MHz) (mW)

Sequence layer only 1806 / ∼ 0 0
Sequence and macroblock layers 2671599 / ∼ 2.7 1.2
Sequence, macroblock, and block layers 11376267 / ∼ 11.4 5.1

any functionality in the layers, and the experiments have been run without an operating
system for maximum efficiency.

Based on the above, the internal overheads of the decoder on the ARM926 are about
5.4% of the total decoder cycles given in Table 2. Energywise they cost about the same
as a hardware implementation of the MPEG-4 decoder using the same silicon tech-
nology. The control code in the sequence layer consumes additionally about 1.5 MHz,
while the share of control load elsewhere in the code is difficult to quantify.

The MPEG-4 software encoder and decoder codes do not fit in typical 16-32 kbyte
instruction caches. With an operating system, based on Park et al. [7], we should reserve
at least 20% of the processor cycles to cache related overheads alone.

2.2 MPEG-4 Hardware Decoder

The monolithic hardware decoder API is almost identical to the above software decoder
implementation [10]. Internally only a part of the sequence layer is implemented in the
software and already the bit-oriented stream parsing is in the hardware for the sake of
efficiency. The hardware interrupts the CPU after decoding each frame, on average 30
times per second. The sequence layer control software requires about 1 MHz, which is
somewhat less than with the software implementation (1.5MHz). The internal organi-
zation of the accelerator is again as instructed by the MPEG-4 standard.

Interface Overheads in Embedded Multimedia Software 9

2.3 Multimedia Software Frameworks

Mobile multimedia software frameworks are defined software architectures, including
APIs and middleware, intended to standardize the integration of software and hard-
ware based video coding solutions into embedded devices. In addition, the goal is to
provide mechanisms that enable building multimedia applications that are portable be-
tween platform generations.

The Symbian Multimedia Framework (MMF, Figure 2) is a multithreaded approach
for handling multimedia data, and provides audio and video streaming functionalities.
Regardless of whether the codecs are implemented in software or hardware, they are in-
terfaced as plugins to the Multimedia Device Framework (MDF). With actual hardware
codecs the plugins hide the vendor specific device drivers.

MDF with plugins is middleware that can be used to hide the underlying possible dis-
tributed implementation, for example, a decoder plugin may hide a decoder running on
a Texas Instruments DSP processor behind an XDAIS interface. The codec vendors im-
plement the MDF plugins with specified interfaces, and the MMF controller plugins that
take care of synchronization between audio and video [11], for example. The application
builders use the Client API that handles requests such as record, play,pause. At minimum,
these activations of requests go through five software interface layers before reaching the
codec. The performance depends greatly on the vendor provided controller plugins.

Symbian MMF Client API

MMF Controller Framework

Multimedia Device Framework

MDF plugins for devices

Devices

User Application

Audio Interface Video Interface
Tone Player

Interface
Audio Streaming

Interface

Audio Controller
Plugin

Video Controller
Plugin

DevVideoPlay DevVideoRecord DevSound

Post Processor
Plugin

Decoder Plugin
Pre Processor

Plugin
Encoder Plugin

Post Processor
Device Driver

Decoder Device
Driver

Pre Processor
Device Driver

Encoder Device
Driver

Fig. 2. Symbian Multimedia Framework

10 T. Rintaluoma, O. Silven, and J. Raekallio

Table 5. The costs of multimedia APIs

Decoder software interfaces
Proprietary API Symbian MMF Difference

Total cycles 220890240 225165845 2.14 MHz
D-cache misses 1599992 1633425 33433
I-cache misses 250821 322635 71813
D-cache hit ratio 94.7% 94.6% 0.1%
I-cache hit ratio 99.7% 99.6% 0.1%

In the Symbian operating system version 7 of 2003 the MDF was the whole frame-
work, and that increased with two new abstraction layers, Client API and Controller
Framework, in version 9 released in 2005. We are probably safe assuming additional
layers in the future to support more versatile multimedia applications, based, for exam-
ple, on the emerging MPEG-21 standard.

The proprietary solutions from mobile video codec manufacturers approach the
portability issue from a different angle. For instance, in [10] thin software wrapper
layers are used to facilitate porting the hardware and software codecs to the multimedia
engines that provides, for example, video recording and playback functionalities in a
tightly integrated manner. Table 5 compares the costs of accessing the video decoder
functionality directly via a proprietary API, and through the Symbian MDF level. These
costs are approximately the same for both software and hardware decoders. In power
consumption the difference between the multimedia frameworks would be around 1mW
on the ARM926 processor of Table 1.

The above measurements were made by running an MPEG-4 software decoder with-
out display post-processing and audio for a QVGA sequence (320x240 pixels,
30 frames/s). The experiments were made on an actual ARM11 platform without SIMD
optimizations and with a system supporting a single video coding standard. With more
codecs the overheads of using any of them are slightly higher, especially when middle-
ware interfaces are employed.

The results also provide a ballpark estimate on operating system and memory related
overheads. The decoding of a QVGA stream requires around 110MHz, while 0-wait-
state simulations predict half of that.

3 Energy Efficiency

To understand the role of the software interfaces in the energy efficiency of multimedia,
it is necessary to consider the characteristics of whole implementations. For this purpose
we use commercial hardware and software implementations of MPEG-4 and H.264
VGA video codecs [12]. Table 6 shows the estimated power consumptions of hardware
based codecs with their necessary control software (1MHz in all cases) on a proprietary
API. The applications were run on an ARM9 processor, and a 130 nm low power 1V
CMOS process is used for all hardware.

Due to the disparity between the algorithmic and computational complexities of
H.264 and MPEG-4 codecs, their monolithic accelerators differ significantly by gate

Interface Overheads in Embedded Multimedia Software 11

Table 6. Gate counts and estimated power needs of 30 frames/s hardware codecs

MPEG-4 H.264
kGates Power (mW) kGates Power (mW)

Decoder 161 5.6 373 24.2
Encoder 170 9.6 491 33.4

Table 7. Power consumption estimates (mW) for software based MPEG-4 and H.264 decoders

MPEG-4 H.264
ARM7 (720T) 64 140
ARM9 (926EJ-S) 96 232
ARM10 (1022E) 92 232
ARM11 (1136J-S) 118 348

counts and required silicon area. The above H.264 codec also supports MPEG-4 as that
adds only a few percentage points to the total gate count. The hardware shares of the
power consumption are almost independent of the bit rate that is an essential difference
to software implementations.

Table 7 shows the approximate power consumptions for architecture optimized soft-
ware implementations of MPEG-4 and H.264 decoders. The figures have been deter-
mined for 30 frames/s VGA 512kbit/s stream and the decoders are the only tasks being
run on ARM processors implemented using a 1V low power 130nm CMOS process.
The costs of system software interfaces and post-processing the video for display are
not included. Based on these results, multiprocessor solutions can indeed provide en-
ergy efficiency benefits.

The Symbian MDF supports multiprocessing and adds approximately 1mW to the
decoder power consumptions. This is not significant except with the MPEG-4 hardware
decoder (18%). We also observe that the power consumption of the ARM11 implemen-
tation of the software decoder is roughly 20% more than with the ARM9, which may
not justify the added complexity of a multiprocessor system.

Figure 3 compares the findings for both software and hardware decoders in terms of
normalized silicon areas (Mpixels/s/mm2) and power efficiencies (Mpixels/s/W) of the

Area
Efficiency
Mpixels/s/mm2

Energy
Efficiency
Mpixels/s/W

MPEG-4 SW Decoder

MPEG-4 HW Decoder
H.264 SW Decoder

H.264 HW Decoder

Fig. 3. Area and energy efficiencies of video decoder implementations

12 T. Rintaluoma, O. Silven, and J. Raekallio

MPEG-4 and H.264 implementations. The gap between respective software and hard-
ware implementations is striking, and there are no implementation options in between.

Returning to Table 4 that itemized the software function interface costs, we can
estimate that an interrupt driven macroblock accelerator implementation would need
around 50mW for software interfacing alone with an ARM926 (130nm CMOS). This
eliminates most of the potential energy gains from hardware acceleration, and is not an
attractive option.

4 Directions for Development

With an efficient software/hardware interfacing mechanism the energy overhead of fine
grained hardware acceleration should not exceed that of a pure software implementa-
tion. We estimate that the lower bound power consumption (again 130nm CMOS and
ARM926) for such a decoder would consist of 5.1mW from software interfaces and 5.6
mW from hardware accelerators and control software, totalling 10.7mW. Software im-
plementation defines a 96mW upper bound, so the energy efficiency should fall midway
between hardware and software implementations in Figure 3.

A model for the energy efficient approach can be obtained from periodically sched-
uled embedded real-time systems that run their tasks in a fixed order, and use hardware
accelerators without interrupts relying on their deterministic latencies. Even some early
GSM mobile phones employed this principle that in essence results in a multithreaded
system [13]. In those implementations fixed hand made schedules could be used. How-
ever, video coding has data dependent control flows, so the scheduling of the threads
and the allocation of hardware resources must be done dynamically. This can be per-
formed, for instance, by using a Just-In-Time (JIT) compiler. Figure 4 below illustrates
decoding an inter-macroblock using fine grained short latency hardware accelerators
with a schedule created from the contents of the video bit stream.

The accelerators, color conversion for display, inverse quantizer (IQ)+IDCT, and bi-
linear interpolator, have deterministic latencies, and the software uses the results when
they become available. Color conversion to display executes in hardware simultane-
ously with sequence and macro-block layer decoding. The threads alternate between
software and hardware execution without an interrupt based synchronization overhead.

Time

HW Threads

IQ+IDCT

Bilinear
Interpolation

Color
Conversion

Seq
Layer

MB
Layer

VLD
Get
MV

Add Pred.
& Diff.

WB VLD
Get
MV

VLD
Get
MV

IQ+IDCT

Bilinear
Interpolation

IQ+IDCT

Bilinear
Interpolation

Add Pred.
& Diff.

WBSW Threads

Block 0 Block 1 Block 2

Fig. 4. Multithreaded decoding of an inter-macroblock from a coded video bit stream

Interface Overheads in Embedded Multimedia Software 13

To implement the hardware/software multithreading applications, efficient means for
generating the schedules are needed. One option is to employ a set of fixed schedules
to choose from based on the task at hand, while JIT compilers providefor more flex-
ibility, although at the cost of higher overheads. Such compilation techniques could
perhaps reduce the number of defined layers in software architectures, in turn providing
compensationary savings. From the system developer’s point of view fine grained ac-
celerators cut the design verification time and provide faster time-to-market capability.
The enabling missing elements appear to be on the side of software technology.

5 Summary

In computing intensive software applications, such as video coding, the interface over-
heads are in principle only a small portion of the total processor cycles. Much
of the overheads originate from the layered software architecture style, and are am-
plified by cache related phenomena due to the decreased locality of code execution and
data accesses. The operating systems have similar effects on the performance. In total,
the overheads can exceed the number of cycles needed by the actual application.

When improved energy efficiency is targeted by the utilization of hardware acceler-
ators, the software overheads may play a very significant role. Based on our experience,
even the multimedia framework software interfaces may demand more processor cycles
than the actual control of a hardware accelerator.

The efficiency of software/hardware interfaces is becoming a critical issue, because
of the increasing leakage currents of silicon implementations. This makes run-time sil-
icon re-use, for example, via fine grained acceleration very attractive. The conventional
interrupt driven approach for hardware/software interfacing results in high overheads,
in fact, much higher than in pure software implementations. If fine grained hardware
accelerators could be interfaced to software at the cost of software functions, flexible
energy efficient solutions could be implemented.

Current comparable MPEG-4 decoder implementations in hardware and software
(ARM11) need 5.6mW and 118mW of power, respectively, without operating system
and cache overheads that range between 20% and 100%. Solutions that fall between
these figures are needed. The proposed simultaneous hardware/software multithreading
is a possible option that is under investigation.

Multiprocessor implementations offer 20-50% improved energy efficiency in video
coding when older processor architectures are used instead of the most recent ones.
However, for the same performance, twice the silicon area is needed, resulting in higher
static power consumption due to leakage currents. Furthermore, interprocessor commu-
nications can add significant overhead that falls in to the range of middleware costs.

Acknowledgements

Numerous people have contributed to this paper by providing their comments, questions
and technical expertise. In particular, we wish to thank Mr. Jani Huoponen and Mr.
Jarkko Nisula from Hantro Products, and Mr. Kari Jyrkkä from the Nokia Corporation.

14 T. Rintaluoma, O. Silven, and J. Raekallio

References

1. Neuvo, Y.: Cellular phones as embedded systems. In: Solid-State Circuits Conference.
Volume 1. (2004) 32–37

2. Silven, O., Jyrkkä, K.: Observations on power-efficiency trends in mobile communication
devices. In: Proc. 5th Int. Workshop on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation, LNCS 3553 (2005) 142–151

3. ARM: Processor core overview. In: www.arm.com/products/CPUs. (2005)
4. ARM: RealView Developer Suite. In: www.arm.com/. (2005)
5. Mogul, J., Borg, A.: The effect of context switches on cache performance. In: ASPLOS-IV,

Santa Clara, ACM (1991) 75–84
6. Sebek, F.: Instruction cache memory issues in real-time systems. Master’s thesis, Department

of Computer Science and Engineering, Mälardalen University, Västerås, Sweden (2002)
7. S. Park, Y.L., Shin, H.: An experimental analysis of the effect of the operating system on

memory performance in embedded multimedia computing. In: EMSOFT-04. (2004) 26–33
8. P.H.F.M. Verhoeven, J.H., Lukkien, J.: Network middleware and mobility. In: PROGRESS

workshop. (2001)
9. Hantro: 4100 MPEG-4 / H.263 Software Decoder. In: www.hantro.com. (2006)

10. Hantro: 8300 Multimedia Application Development Platform. In: www.hantro.com. (2006)
11. Symbian: Introduction to the ECOM Architecture. In: http://www.symbian.com/. (2006)
12. Hantro: Hardware and Software Video Codec IP. In: www.hantro.com. (2006)
13. Jyrkkä, K., Silven, O., Ali-Yrkkö, O., Heidari, R., Berg, H.: Component-based development

of DSP software for mobile communication terminals. Microprocessors and Microsystems
26 (2002) 463–474

A UML Profile for
Asynchronous Hardware Design

Kim Sandström and Ian Oliver

Nokia Research Center, Finland
{kim.g.sandstrom, ian.oliver}@nokia.com

Abstract. In thisworkwepresentUMLforHardwareDesign (UML-HD),
aUMLprofile suitable forAsynchronousHardwareDesignandanapproach
for automatically generating a Hardware Description Language (HDL)
model from UML-HD models. A UML-HD model comprises solely class
diagrams and an action language. We use stereotypes in two categories -
structure and activity - to categorise classes. Structure type stereotypes
signify state and activity type signify transitions. The approach is largely
inspired by Petri nets. Several model transformations are suggested in
this paper, but only code generation to Haste was implemented.

1 Introduction
As the size and complexity of silicon designs have increased, demands on systems
productivity and design time have largely stayed the same. Generating synthe-
sisable HDL from abstract models both decreases design time and increases the
designers ability to manage complexity. A more abstract definition of a design
offers advantages for both reuse and understandability.

Asynchronous design requires less implementation detail in the HDL model
than synchronous design, because no hardware (HW) needs to be designed for
synchronisation beyond a simple handshaking protocol. Asynchronous design is
done on a higher abstraction level, since it needs no functional elements dedicated
to synchronisation such as PLLs, clock divisors, clock domain synchronisation
or path synchronisation; even FIFO buffering can sometimes be neglected.

The level of abstraction is also raised by a modeling language that allows
behavioural modeling. Compilation and netlist synthesis is done by behavioural
compilers or synthesisers. A behavioural HDL model lets a compiler do a larger
part of the design decisions than a Register Transfer Level (RTL) synthesiser
would do. Behavioural modeling often implies new HDL languages and some-
times specific design tools.

UML [13] has long been the favoured approach for formal design in many
fields of engineering. It provides a formal, extensible, easy to understand syntax
for a high level design language and many possibilities to abstract used design
structures for an abstract modeling paradigm.

UML’s widely known syntax helps in training and understanding of a language
based on it. UML is understood and used in a large part of the engineering
world and thus suitable for documentation and re-use. UML is used in many
ways for specification or abstraction, Use for HW design is less common, though

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 15–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 K. Sandström and I. Oliver

particular work has focused on VHDL mappings, as can be seen in [1], which
produced VHDL suitable for simulation but not synthesising; other similar work
but using SpecC can be seen in [8] and a more generic approach in [7]. Otherwise
work has focused on methodology for this domain [9, 11, 10].

2 UML

2.1 UML-HD

UML for Hardware Design (UML-HD) uses three approaches for an easily under-
standable methodology of high level synthesisable descriptions of digital designs:
asynchronous design, behavioural design and mapping to UML.

UML-HD is a UML profile with a model transformation to Haste [2], a high
level, behavioural, asynchronous hardware description language. Since Haste is
a character based language, the transformation is actually a code generation.
Code generation was implemented as scripts in Coral [12]. Coral’s transformation
generation engine uses extended Python as a scripting language.

Structure

−register :ltyp

Activity

+ expression ():vtyp

changes data+

1..*stores data+

1..*

has only operationshas only attributes

A Class

Abstract

Fig. 1. Activity/structure paradigm

The semantics of the model is directly inspired by Petri nets [6] and based on
a semantic interpretation of structure and activity much in the sense of a Petri
net’s state and transition. The paradigm’s basis is that state and transitions
are stored in respective identifiable model elements. Activity is represented by a
category of UML classes and structure respectively by another.

2.2 Comparison to Petri Nets

In Petri nets the state primitive stores the system’s state by tokens residing in an
active state. Transition primitive allows a transition of tokens from one state to
another. Tokens indicate both which states are active and which transitions can
be triggered. UML-HD class diagrams express a Petri net like structure. Activity
classes trigger operations, structure classes access attributes. The semantics of an
activity class map onto transition, the semantics of a structure class onto state.

A UML Profile for Asynchronous Hardware Design 17

interface

<< channel >>

in

−in_channel :word16

<< channel >>

out

−out_channel :word16

pipeline_channels

<< channel , statement >>

C1

−a:word16

<< channel , statement >>

C2

−b:word16

<< channel , statement >>

C3

−c:word16

<< channel , statement >>

C4

−d:word16

<< location , statement >>

L2

−l2 :word16

<< location , statement >>

L1

−l1 :word16

<< statement >>

push5

<< location , statement >>

L3

−l3 :word16

source+

source+

source+

source+

source+

source+

<< location , statement >>

L0

−l0 :word16

source+
sequential

sequential

sequential sequential

<< location , statement >>

L4

−l4 :word16

source+
sequential

source+

source+

destination+

pipeline 2

Fig. 2. An example of a UML-HD design. A simple pipeline.

Mapping Petri net tokens is less obvious. They signify attribute data and may
trigger an activity class. Activity classes may guard each other, but are implicitly
assumed to trigger once during an execution cycle. Thus in structure classes;
tokens are provided and consumed by locations but passed on by channels.

An example can be seen in figure 2 and Haste code generated from it in quote 3.3.
Data is read from input channel ’in’ and pipelined to the output channel ’out’.
Note that a class may have several stereotypes and thus have a role both as
activity class and structure class. In this example, the destination role is omitted
as the destination locations are merged with the statements in such a way.

2.3 Comparison to Generic OO UML

The UML-HD approach is quite different from generic UML. A detailed analysis
of refinement to UML-HD from an OO model - that comprises class and state
diagrams and an action language - is not in the scope of this paper, but we will
shortly propose a transformation here.

Figure 1 describes a quite obvious approach to transform a generic UML to
the UML-HD activity/structure paradigm, but it’s not implemented within this
work. As we propose it we put forward the argument that UML-HD is indeed a
useful UML profile. A transformation from generic UML was a strong argument
of implementation in UML rather than another syntax.

In UML-HD behaviour and structure become two aspects of the same diagram,
represented by activity and structure classes respectively. Separation of structure
and activity into separate modeling elements is as such not Object Oriented (OO)

18 K. Sandström and I. Oliver

andatypical toUMLandOOdesign, but there arealso similarities.Classes inUML-
HD are descriptive of physical elements of an asynchronous HW implementation
and represents an OO approach in that design domain.

In UML-HD, structure classes have attributes but no operations, activity
classes have operations but no attributes. A UML class transformed to UML-HD
may be mapped to two classes, one structure and one activity class connected
by an association.

Transforming from UML state diagrams is not equally simple since UML-HD
uses no state diagrams at all. States and transitions must be mapped onto UML-
HD class diagrams. However we can transform any state diagram to a Petri net,
and map transitions onto activity classes and states onto structure classes. We
would add associations from the resulting set of structure classes to the UML-HD
structure class derived from the owning class.

2.4 Meta-model and UML Modeling Elements

To create a UML profile tha’s easily mapped onto the HDL, the activity/struc-
ture paradigm was implemented using UML stereotypes and structures in a
more hardware specific way than explained earlier. The meta-model shown in
figure 3 and figure 4, defines the syntactic rules of a UML-HD model and the
meta-meta-model in figure 1 ditto of the meta-model. They define allowed UML
modeling structures, such as what stereotypes and associations maybe used. The
meta-model’s classes represent the usable stereotypes, associations define legal
associations in the corresponding model.

Some meta-model classes are stereotyped activity or structure, as defined in
the meta-meta-model. From the meta-model, we can see that some UML-HD
stereotypes are in turn stereotyped according to rules set in the meta-meta-model.
Some are in the structure category some in the activity category. The meta-model

<< activity >>

expression

<< activity >>

statement

<< structure >>

channel
<< structure >>

location

provides data to gets data from+*

sequential

source destination

1..*

1..*

disjoint

Structure

Fig. 3. Part of the meta-model of UML-HD, the most important stereotypes

A UML Profile for Asynchronous Hardware Design 19

infinite

<< activity >>

statement

selection

forking

inclusive

parallel

sequential

composition
execute+

2..*

0..1

execute+ 1..*

if no relation exist a
statement is assumed
to have infintite repetition
and parallell composition
(those two are transitive)

Parallell composition
is assumed by default.

duplicate

execute+

0..1

1..*

<< activity >>

expression

0..1condition+

*

selrepetition

sequential

Each diagram view
implies ’repeat forever’
for all contained
statements with no
other explicit forking

Causality

bounded if

infinite repetition
is assumed by default.

non.persistent selection
−
selects one statement
for execution if a
condition is true −
else does not execute

persistent selection
−
waits until exactly
one statements
condition is true

guarded booleancase

Fig. 4. Suggested stereotypes for extension of UML-HD

in figure 3 shows the most important stereotypes: Statement, Expression, Location
and Channel. A less central part of the meta-model is shown in figure 4 on page 19.

All UML-HD classes are stereotyped. The activity category’s key stereotype
is ’statement’. A statement defines a concurrent process to be mapped onto a
CSP based language; such as Haste. Statements act as parallel processes that
communicate a value from a source to a destination. Both are defined by roles
from the statement over navigable associations, but if such roles can’t be found
the statement class itself is tested for suitability for either role. Only a non-
ambiguous class with appropriate structure category stereotype is accepted.

As shown in figure 3, a destination may be a channel or a location. A source
may be a channel or an expression or an expression implied by a location. If
the source is a location, then an expression solely referring to that expression
is implicitly assumed. Channels may be used only disjointly so that not both
source and destination are channels.

Locations define data structures that store data values. They map onto HDL
structures that define the static storage on silicon: registers, latches and flip-flops.
Features to control the physical representation exists in Haste. A mechanism for
it in UML-HD could be added as stereotypes or tags.

Channels do not store data. They act as a means to exchange information be-
tween statements in a reliable way. During communication, sender and receiver

20 K. Sandström and I. Oliver

DPRAM_port_B

<< channel >>

c__read_address

−read_addr :word16

<< channel >>

c_read_data

−read_data :word16

<< channel >>

c_write_address

−write_addr :word16

<< channel >>

c_write_data

−write_data :word16

Asynchronous_dp_ram

<< location >>

w_address2

−waddr :word16

<< expression >>

s_read

+ operation_1 ():word16

<< expression >>

s_write

<< expression >>

c_read

+ operation_2 ():word16

<< statement >>

wa1

<< statement >>

w2

<< statement >>

ra2

<< statement >>

r1

<< statement >>

wa2

<< statement >>

r2

<< statement , case >>

choose_word1

dp_words

<< statement , case >>

choose_word2

<< location >>

s_address

−addr :word16

<< location >>

caddress

−addr :word16

<< location >>

dp_word

−stored :word16

<< statement >>

w1

<< location >>

w_address1

−waddr :word16

<< statement >>

ra1

execute+ *

destination+

vector+
*address+

sequentialsequential

sequential

256

vector+

*

sequential

execute+ *

destination+

destination+

source+

destination+

source+

destination+

address+

destination+

condition+

<< expression >>

c_write

condition+

DPRAM_port_A

<< channel >>

s_read_address

−word_r_addr :word16

<< channel >>

s_read_data

−word_r_data :word16

<< channel >>

s_write_address

−word_w_addr :word16

<< channel >>

s_write_data

−word_w_data :word16
source+

source+

destination+

dpram

source+

1w2+

1 source <−

destination+

source+

source+

source+

Fig. 5. An example of a UML-HD model. A dual port ram arbitration scheme.

statements are synchronised by the channel that schedules the execution. A chan-
nel can be; written to only if the previous data in it has been read, and read from
only if it has been written to. This is known as asynchronous non-buffered commu-
nication. Haste has some extended features of this synchronisation and a mecha-
nisms to use them can be added to UML-HD as stereotypes or tags.

An expression acts as a source or guard to a statement. It composes locations
to be used by an action script. Only locations with a composition from the
expression can be referenced. The location’s name or role name is used as the
reference. Location attributes may not be referenced. The expression stereotype
is in the activity category because of its strong association with statement.

An action script – written in the action language – operate on location data
and constitute the method of an expression class’ operation.

A more extensive UML support for the HDL’s higher level features, allow the
generated code to be more readable and better suitable for the HDL compiler’s
advanced capabilities. Repetition, conditional statements and explicit compo-
sition allow a hierarchical structure of statements. It also raises the level of
abstraction of the UML model.

To further enhance code generation from the HDL in such a way, composite
statements were added. These specialised or extended statements have their own
stereotypes, but the ’statement’ stereotype must always be explicitly defined,
even if it could be implied. Stating it explicitly makes code generation easier.

The diagram in figure 4 describes this larger set of stereotypes but they were
not fully implemented. An example of implemented higher level constructs can
be found in figure 6 and figure 5.

The implemented higher level constructs map onto the conditional statements
’if’, ’case’ and ’sel’. A guard – defined by an expression class – selects a statement

A UML Profile for Asynchronous Hardware Design 21

channels

channel_test

<< statement , channel >>

A1

−a:word16

<< statement , channel >>

A2

−c:word16

<< statement , channel >>

C1

−e:word16

<< channel , statement >>

C2

−g:word16

<< location , statement >>

B1

−b:word16

<< location , statement >>

B2

−d:word16

destination+

destination+

destination+

destination+

<< location , statement >>

D1

−f:word16

<< location , statement >>

D2

−h:word16

source+

source+

source+

source+

<< statement , sel >>

selector

execute+ execute+

execute+

execute+

<< expression >>

guard

+ guard1 ():bool
+ guard2 ():bool
+ guard3 ():bool
+ guard4 ():bool

guard1

guard3

guard2

<< location , statement >>

S1

−attribute_1 :word16

source+sequential

<< location , statement >>

S2

−attribute_2 :word16

sequentialdestination+

sequential

sequential

sequential

sequentialsequential

Fig. 6. An example of UML-HD. Using channels triggered by guards.

to be executed. If the guard’s values do not fit, no statement is executed; the
conditional statement is terminated if it’s non-persistent, but if persistent it
waits until the value fits. An ’if’ or a ’case’ is non-persistent, but the ’sel’ clause
is persistent. ’sel’ and ’case’ have the same semantics except for persistance.

Since all features of the Haste language need not have a direct high level
mapping in UML-HD, support for constructs not mentioned earlier was dropped
from the code generator. Thus, not all extensions in figure 4 were implemented,
for example: the composite statements for repetition. Haste supports three types
of repetition; infinite, guarded and bounded. They are syntactically expressed in
Haste by ’forever do’, ’for’ and ’do’. Implementation would comprise no techno-
logical challenge beyond already implemented features, thus support could easily
be added.

UML-HD can support the dependency primitive. The semantics of a UML-
HD dependency depends on its name. Currently two types of dependencies
are supported: ’if’ and ’sequential’. Dependencies named ’sequential’ offer an
additional way to control the scheduling of statements. Dependencies named
’if’ implement the if-conditional and are drawn between a statement and a
boolean expression. It can be mapped onto a statement class with the ’if’
stereotype.

A UML-HD package is mapped onto a container structure in the HDL. The
container holds a set of CSP like processes mapped from UML-HD statements.
Any package that does not contain statements, are not mapped onto a container. A

22 K. Sandström and I. Oliver

Haste process acts as the container. All statements in a package will be statements
of the Haste process.

The statements are executed infinitely in a ’forever do’ loop, with parallel
execution as default. Alternatively a dependency (named ’sequential’) between
two statements makes the execution sequential. Execution order is also affected
by composite statements Any associations to classes not in the package are
mapped onto the process’ I/O parameters.

2.5 Behaviour

UML-HD’s Action Language is identical to what Haste’s authors define as ”an
expression”. It is used only in action scripts of expression classes. It can reference
location classes that have a composition from the expression class. These classes
map onto Haste locations and the scripts are in fact Haste expressions. If the
expression class has an empty method and a single composite location, a direct
reference of it is implicitly used as the action script.

Scheduling is controlled by four overlapping mechanisms. By an execution cy-
cle, by channel handshaking, by sequential type dependencies and by composite
statement. A considerable effort was put into a code generation that transpar-
ently respects the scheduling constraints defined within each mechanism.

An example of using all four scheduling structures can be seen in figure 6.
Every execution cycle, data is toggled between locations B1 and B2 via the
channels A1 and A2. As well, data is toggled between locations D1 and D2
via the channels C1 and C2. The location B1 outputs data to location S1 and
inputs data from location S2. Data transfers are guarded by the execution cycle,
by four channels, by seven sequential dependencies and one ’sel’ statement with
four guards. Code generated from the example can be seen here:

& channel_test : proc().
begin

A2 : chan word16 & A1 : chan word16 & C1 : chan word16
& C2 : chan word16
& B2 : var word16 & D1 : var word16 & S2 : var word16
& D2 : var word16 & B1 : var word16& S1 : var word16
& t_nonput_D2 : chan ~ & t_nonput_D1 : chan ~
& s_nonput_B1 : chan ~ & t_nonput_B1 : chan ~
& t_nonput_B2 : chan ~

| forever do
((t_nonput_D2?~ ; C1!D2)

|| (t_nonput_D1?~ ; (B1:=S2 || C2!D1)
; s_nonput_B1!~ ; t_nonput_B1?~ ; A1?B1 ; S1:=B1)

|| (t_nonput_B2?~ ; A2?B2)
|| sel D2[0] then C2?D2 ; t_nonput_D2!~
or D1[0] then C1?D1 ; t_nonput_D1!~
or B1[0] then s_nonput_B1?~ ; A2!B1 ; t_nonput_B1!~
or B2[0] then A1!B2 ; t_nonput_B2!~

les
) od
end

A UML Profile for Asynchronous Hardware Design 23

3 Code Generation

3.1 MDE Platform

Code generation was implemented as transformation script on the Coral platform
developed at Åbo Akademi. It is a general purpose Model Driven Engineering
(MDE) platform1, that can traverse a model and output another. Coral’s MDE
engine can read any language that has been defined using Object Management
Group’s (OMG) Meta Object Facility (MOF).

Coral reads and stores models conforming to MOF definitions. The scripting
language is Python extended with the Coral library. Models can be transformed
to other models by execution of a Coral script. A Coral script can alter, create
and delete models, traverse a model and create modeling elements in the same
or another model. Output can be generated using another or the same MOF
definition. The script can also use any other facility of Python to execute any
Python instructions, such as string manipulations and file access to generate a
character based language.

The UML-HD language conforms to the UML 1.4 MOF model in Coral but
it is also a proper subset of UML 2.0. Code generation output from UML-HD is
based on Pythons standard libraries. The output is character based and conforms
to the Haste language’s syntax and semantics.

3.2 Haste HDL Language

Haste [2] – a language for asynchronous HW design developed by Handshake
Technologies – was chosen as the target of code generation, because it offers a
high model abstraction and yet a very straight semantic mapping to physical
silicon. Much due to asynchronous design methodology. It’s originally inspired
by Hoare’s CSP [3] and Dijkstra’s GCL [4], but it now has a more verbose
syntax. A Haste model can be compiled to a netlist targeting a VLSI imple-
mentation. Haste does not generate any scheduling logic except the explicitly
defined channel handshakes, sequential dependencies and composite statements.
Synchronisation is done as asynchronous single-rail handshaking and no clock is
needed.

Haste declares either procedures (denoted by proc), or functions (denoted by
func). A procedure communicates their input and output values via a parame-
ter list, whereas functions terminate, have input parameters and return values.
Haste programs can define either a main procedure, or a main function. A meta-
language syntax template for a process or function:

<process name> : [main] {proc,func} (<param1>,<param2>,...).
begin <declarations> | <process body> end

Process bodies consist of parallel statements separated by the ’||’ operator.
Each parallel statement may consist out of several sequential statements sepa-
1 cf. OMG’s MDA, www.omg.org/mda

24 K. Sandström and I. Oliver

rated by the ’;’ operator. A location represents a register. Each statement per-
forms an assignment to a location. An expression which terms may consist of
locations determines the assigned value. The asynchronous handshaking is im-
plemented as channels with with non-buffered asynchronous locking on input
and output. A channel may be; written to iff it is empty or has been read from,
read from once iff it has been written to. Thus the channel propagates a data
token. Input from a channel in Haste is expressed with the ’?’ operator and
output to a channel with the ’!’ operator.

A meta-language syntax templates for a statement, for channel input and
channel output followed by an example of a channel input and output in a process
(the expressions ’E’ and ’F’ are not shown explicitely) and a tiny increment
program that uses a channel.:

<location>:=<expression>
<channel>!<expression> || <channel>?<location>

& channel_assign : proc().
begin a:chan bool | (a!<E> ; a!<F>) || (a?x ; a?y) end

Top:increment proc(a!chan [0..255]).
begin

x:var [0..255] ff := 0
| a!x ; do (x<255) then x := x+1 ; a!x od
end

3.3 Code Generation

The model in the repository is traversed for key modeling elements. Global
type declarations are found and generated into Haste. Packages are generated
into Haste processes while traversed for statements and possible type decla-
rations. Dependencies are parsed before output of the process, its parameters,
declarations and statements. At all times the code generator respects the
scheduling.

A stereotype on a class is parsed in such a way that statement classes and
their sources and destinations are found. Classes joined by associations may
have been merged to one class with the stereotypes of both original classes. The
only restriction is that such joining of classes may not cause ambiguity of which
stereotyped class should be parsed by the code generator. Some wellformedness
checking is implied by this described ambiguity parsing.

The code generation was implemented in 2414 lines of Coral script in 6 files.
The Python based code reads a UML-HD model stored in an XMI file and
parses it into the Coral model repository. Small examples of design structures
in such a model are shown in figure 2, figure 6 and figure 5. The generated
Haste code is written into a file from which the Haste compiler can gener-
ate a netlist. As an example we show here generated code from the model in
figure 2:

A UML Profile for Asynchronous Hardware Design 25

& pipeline_channels : proc(out!chan word16 & in?chan word16).
begin

C1 : chan word16 & C4 : chan word16
& C3 : chan word16 & C2 : chan word16
& L3 : var word16 & L0 : var word16
& L2 : var word16 & L4 : var word16 & L1 : var word16

|
forever do
((C4?L4 ; out!L4) || (in?L0 ; C1!L0)

|| (C1?L1 ; C2!L1) || (C2?L2 ; C3!L2)
|| (C3?L3 ; C4!L3))

od
end

4 Conclusions

A fully functional subset of Haste’s semantic features was implemented. An even
more minimal subset would have been sufficient for UML design, but we wanted
to demonstrate that advanced features of the target HDL can be supported.

Implementing a model transformation to HDL was more complex than antic-
ipated. Even if the semantics of UML-HD seemed very close to the CSP based
target HDL there were some semantic differences as well as differences in the
expressibility of the languages. The biggest differences were in type declara-
tions, process parameters and dependencies. Dependency parsing became quite
complex, comprising almost half of the code.

The UML-HD profile is oriented towards asynchronous parallel processes with
non-buffered synchronisation. Particular care was taken to adapt the profile to
code generation of a CSP like language like Haste. Little observance to HW
design was needed beyond that, because the Haste language and an asynchronous
design methodology offers a high level abstraction of HW design.

UML-HD’s way of using class diagrams and no state diagrams is unusual.
The basis for this solution comes both from CSP like languages and Petri Nets.
Describing more than usual of the model’s behaviour in the class diagram and
giving it state chart like semantics might be considered unorthodox by UML
purists, but the possibility of model transformation from generic OO UML sug-
gests benefits of an UML approach. UML-HD objects have a direct mapping to
physical silicon and thus it’s OO in its own domain.

References

1. William E. McUmber, Betty HC Cheng. UML-Based Analysis of Embedded Systems
using a Mapping to VHDL, In: ”High Assurance Software Engineering.”, IEEE. 1999

2. Ad Peeters, Mark de Wit, Handshake Solutions, High Tech Campus Eindhoven,
The Netherlands: Haste Manual, 1st of September 2005

3. C. A. R. Hoare:Communicating Sequential Processes, 1985-2004
4. E W Dijkstra. A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J.

1976

26 K. Sandström and I. Oliver

5. Ulrich Becker, Daniel Moldt, University of Hamburg Fachbereich Informatik:
Object-Oriented Concepts for Coloured Petri Nets, In: ”Conference Proceedings,
IEEE International Conference on Systems, Man and Cybernetics.”, October 1993

6. Lars M. Christensen, Søren Christensen, Kurt Jensen, University of Aarhus, Den-
mark: The practitioner’s guide to coloured Petri nets, In: ”International Journal on
Software Tools for Technology Transfer.”, 1998, pp. 98–132

7. Michele Marchetti, Ian Oliver. Towards a Conceptual Framework for UML to Hard-
ware Description Language Mappings, In: ”UML-B Specification for Proven Em-
bedded Systems Design.”, Kluwer. 1-4020-2866-0. 2003

8. Jorge Diaz-Herrera. An isomorphic mapping to SpecC in UML, In: ”Proceedings
of OMER-2: Workshop on Object-oriented Modeling of Embedded Real-Time Sys-
tems.”, May 2001

9. Luciano Lavagno, Grant Martin, Bran Selic. UML for Real - Design of Embedded
Real-Time Systems, Kluwer Academic Publishers. 1-4020-7501-4. 2003

10. Maher Awad, Juha Kuusela, Jurgen Ziegler. Object-Oriented Technology for Real-
Time Systems. A Practical Approach Using OMT and Fusion, Prentice-Hall. 1996

11. Bran Selic, Garth Gullekson and Paul T. Ward. Real-Time Object Oriented Mod-
elling, Wiley. 1994

12. Johan Lilius, Tomas Lillqvist, Torbjorn Lundkvist, Ian Oliver, Ivan Porres, Kim
Sandstrom, Glenn Sveholm and Asim Pervez Zaka1. An Architecture Exploration
Environment for System on Chip Design. In: Nordic Journal of Computing. 2006

13. Object Management Group, UML 2.0 Super Structure Specification, OMG ptc/03-
08-02. 2002

Automated Distribution of UML 2.0 Designed
Applications to a Configurable Multiprocessor Platform

Mikko Setälä, Petri Kukkala, Tero Arpinen,
Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems
P.O. Box 553, FI-33101 Tampere, Finland

mikko.setala@tut.fi

Abstract. This paper presents automated distribution of embedded real-time ap-
plications modeled in Unified Modeling Language version 2.0 (UML 2.0). The
automated distribution requires methods and tools for design automation, as well
as the run-time environment for the distributed execution on the target platform.
Executable application code is generated from UML models, and UML with a
custom profile is used to abstract hardware architecture and configure applica-
tion mapping. For experimenting, a full featured WLAN terminal was designed
in UML and implemented as a distributed multiprocessor system-on-chip (SoC)
on an FPGA prototype platform. Measurements show that a 50-70% reduction
in protocol delays is achived with distribution, and delay variations are reduced
45-85%.

1 Introduction

To fulfill the real-time constraints of complex embedded real-time systems, parallelism
and heterogeneous multiprocessor architectures are exploited. With complex hardware,
distribution of the application functionality onto the different processing elements is a
challenging task. To enable the development of hardware independent, reusable soft-
ware, the hardware implementation should be invisible for the software designer. At
the same time, mapping different application tasks to the architecture should be
straightforward.

In this paper we present automated distribution of applications described in Unified
Modeling Language 2.0 (UML 2.0). The automated distribution consists of methods
and tools for design automation, as well as the run-time environment for the distrib-
uted execution. The applications are executed on a configurable multiprocessor plat-
form with a Real-Time Operating System (RTOS). The run-time environment enables
the communication of processes of the same application executed on different CPUs,
while remaining invisible for the application level, as shown in Fig. 1.

Traditionally UML has been used in designing large software systems, but recently
it has been emerging also in embedded system design. The publication of the UML 2.0
standard [1] brought several important extensions to the language. Consequently, mod-
ern UML modeling tools automatically generate executable code from UML models,
making it possible to use a single language for modeling, verification and even im-
plementation of applications. In our approach, UML is also used to create an abstract

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 27–38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

28 M. Setälä et al.

Run-time environment for
distributed execution

CPU 1

UML
Process 1

UML
Process 2

Run-time environment for
distributed execution

CPU 2

UML
Process 3

UML
Process 4

UML Application

Fig. 1. Communicating processes of a UML application executed on different CPUs

model of hardware architecture and configure application mapping. The implementa-
tion of a full featured Medium Access Control (MAC) protocol for Wireless Local Area
Networks (WLAN) is presented as a case study to evaluate the feasibility and perfor-
mance of the approach.

The paper is organized as follows. Chapter 2 presents the related work. The auto-
mated implementation flow is presented in Chapter 3. Chapter 4 presents the WLAN
protocol case study and the related UML models. The run-time environment is pre-
sented in Chapter 5. In Chapter 6 the performance of the implementation is studied.
Chapter 7 concludes the work.

2 Related Research

Studies in microprocessor design have shown that a multiprocessor architecture con-
sisting of several simple CPUs can outperform a single CPU using the same area [2], if
the application has a large degree of parallelism. Kaiserswerth has analyzed parallelism
in communication protocols [3], stating that they are suitable for distributed execution,
since they can be parallelized efficiently and also allow for pipelined execution.

A common approach in designing distributed systems is the utilization of middle-
ware, such as the Common Object Request Broker Architecture (CORBA) [4], to ab-
stract the underlying hardware implementation from the application level. However,
the general middleware implementations are too complex for embedded systems. Thus,
several middleware approaches have been developed especially for real-time embedded
systems [5] [6] [7].

UML has potential to be used as a design environment for distributed embedded sys-
tems, due to its powerful and extensible notations. However, the absence of a standard
UML profile for modeling hardware and mapping has slowed down the development of
supporting methods and tools. The UML Platform profile proposed in [8] as well as the
Embedded UML profile proposed in [9] support the modeling of hardware resources
and services, as well as application mapping. Object Management Group (OMG) has
specified a UML profile for CORBA, which allows the presentation of CORBA seman-
tics in UML [10].

Born et al. have presented a method for the design and development of distributed
applications using UML [11]. It uses automatic code generation to create code skele-
tons for component implementations on a middleware platform. However, direct exe-
cutable code generation from UML models or modeling of hardware in UML are not
utilized.

Automated Distribution of UML 2.0 Designed Applications 29

Software build

Automatic code
generation

FPGA platform

Application model Architecture modelMapping model

Generated code

Hardware configurationDistributed executable application on multiprocessor SoC

Architecture
configuration tool

Hardware
platform
library

Application
distributor

Software
library

UML 2.0 models
with TUT-Profile

Fig. 2. Implementation flow for UML based multiprocessor systems

3 Automated Implementation Flow from UML to FPGA

The automated implementation flow for UML based multiprocessor systems is pre-
sented in Fig. 2. First, UML models for the system are developed. To model hardware
and mapping, a UML extension for embedded system design is utilized [12]. The struc-
ture and behavior of the application is described in the application model. The applica-
tion consists of processes described as state-machines. The architecture model defines
the processing elements in the hardware, as well as the communication architecture.
Applications described in UML are platform independent, and thus application and ar-
chitecture models can be designed independently. In the mapping model, the application
processes are mapped onto the processing elements.

The application model is transformed into executable code using automatic code
generation. In the software build the generated code is compiled and linked together
with components from a software library, as well as code generated by the application
distributor tool. The application distributor is discussed in detail in Chapter 5. As a
result, an individual application image for each processor is generated.

Based on the architecture model the hardware configuration is generated automati-
cally by an architecture configuration tool. It generates a model for the top-level archi-
tecture where the RTL models from the hardware platform library are instantiated, and
performs hardware synthesis.

The application distributor and architecture configuration tool are custom made
tools. Telelogic Tau G2 is used for the UML modeling and automatic code genera-
tion, and the architecture configuration tool uses Altera Quartus II for the hardware
synthesis. For the software build, Nios II GCC toolset is utilized.

4 Case Study: WLAN Terminal

To evaluate the feasibility of our distribution approach in practice, a full featured WLAN
terminal was designed in UML and implemented on a prototype platform. TUTWLAN
is a proprietary WLAN designed at the Tampere University of Technology (TUT) [13].

30 M. Setälä et al.

User

Radio

TDMA Scheduler

ReceptionTransmission

R
eception

processing delay

Transmission
processing

delay

Medium
access delay

Queuing delay Transmit buffer

Data processing functions

Data processing functions

Transmission throughput Reception throughput

Fig. 3. Key performance parameters of TUTMAC protocol

The central part of TUTWLAN is the TUTMAC protocol, which is a dynamic reser-
vation Time Division Multiple Access (TDMA) based MAC protocol. Several config-
urations of the TUTMAC protocol have been developed, one of which is presented in
this paper. The features of TUTMAC include Quality of Service (QoS) support, data
fragmentation, 8-bit CRC for packet headers, and 32-bit CRC and encryption with Ad-
vanced Encryption Standard (AES) algorithm for payload data.

The computationally intensive parts of TUTMAC, such as AES encryption, place
substantial requirements to the computational capabilities of the hardware platform.
Further, the TDMA scheduler has real-time requirements to maintain accurate frame
synchronization. Due to its high amount of parallel processing, TUTMAC is capable of
reaching its real-time requirements better as a distributed multiprocessor implementa-
tion than as a single CPU implementation.

In Fig. 3 the key performance parameters of TUTMAC are illustrated. Processing
delay is the time consumed in processing data in transmission or reception. Queuing
delay is the time between the arrival of a packet into the transmit buffer and the time
the packet is fetched from the buffer. Medium access delay is the time between fetching
a packet from the transmit buffer and sending it to the radio. In addition to the actual
delays, minimum variation of the delays is a key real-time requirement. Variation of
the medium access delay is of special interest, since it affects the accuracy of the frame
synchronization.

4.1 TUTWLAN Terminal Configurable Platform

The multiprocessor prototype TUTWLAN terminal is implemented on Altera’s Nios II
Development Kit, Stratix II Edition. The development board has a Stratix II ES2S60
FPGA and several peripherals such as external memories, serial ports, and an Ethernet
controller. An Intersil MACless Prism HW1151-EVAL radio is connected to the proto-
type expansion headers on the board. The radio is physically IEEE 802.11b compatible
but does not implement the standard MAC layer.

The configurable platform consists of multiple Nios II CPUs and custom hardware
accelerators, and is presented in detail in [14]. An instance of the platform is shown in
Fig. 4. It consists of five CPUs, a radio interface module, and custom hardware accel-
erators for 32-bit CRC calculation and AES encryption. One of the Nios II CPUs is an
I/O CPU, which connects to a wired network via Ethernet.

Automated Distribution of UML 2.0 Designed Applications 31

External
memories

Ethernet
controller Intersil WLAN radio

Prototype expansion header

Nios II
subsystem

Nios II
subsystem

Nios II
subsystem

Nios II I/O
subsystem

Nios II
subsystem

HIBI segment

AES
encryption

32-bit
CRC

Radio
interface

Nios II development board

Stratix II FPGA

UART
module

Fig. 4. Platform implementation on the development board

The platform components are connected with a Heterogeneous IP Block Intercon-
nection (HIBI) segment [15], a communication architecture targeted for complex SoC
designs. Communication is handled by an Application Programming Interface (API)
for HIBI. It offers data transfer services to device drivers for components connected to
HIBI, in this case AES, CRC, and WLAN radio.

Each Nios II subsystem is an independent module with local instruction and data
memories, and is running a local copy of the eCos RTOS [16]. Using a local copy of an
RTOS provides easy scalability, and different operating systems and CPUs can be used
in the same architecture. The main benefit of eCos is the real-time kernel providing
interrupt and exception handling, multithreading, thread synchronization, and timing
mechanisms.

4.2 Protocol UML Model with TUT-Profile

The TUTMAC protocol as well as the hardware architecture and application mapping
are modeled in UML 2.0. TUT-Profile defines a set of design practices and stereotypes
for embedded system design. The purpose is to enable automated system design using
only UML description.

The application components are modeled as classes, and their behavior as statechart
diagrams combined with action language. The structure of the application is described
with composite structure diagrams, which specify the component instances and their
interconnections. The composite structure can be hierarchical, i.e. components can have
an internal structure.

Parts of the UML application, e.g. complex algorithms, can be implemented as func-
tions calls. The functions can be implemented either in UML or as external C functions.
Further, the C functions can perform the calculation on a hardware accelerator or as a
software implementation. If both are available, the decision is based on the process
mapping. It is also possible to embed C code directly into the statechart diagrams.

The architecture model is a highly abstracted representation of the actual archi-
tecture, described as a composite structure diagram that instantiates the processing
elements taken from a platform library. The components in the library have parame-
terizable UML models, i.e. it is possible to set e.g. different cache sizes for CPUs or
different buffer sizes for communication wrappers. Each library component has also an
RTL model for the hardware synthesis, and an API for the UML application.

32 M. Setälä et al.

<<ProcessingElement>>
aes : AES

<<ApplicationProcess>>
encrypt : AES

<<ProcessGrouping>> <<GroupMapping>><<ProcessGroup>>

Group1 : Group
<<ProcessGrouping>><<ApplicationProcess>>

decrypt : AES

<<ProcessGroup>>

Group2 : Group
<<GroupMapping>> <<ProcessingElement>>

CPU1 : Nios_II_f

<<ApplicationProcess>>
crc8 : CRC8

<<ApplicationProcess>>
sched : Scheduler <<ProcessGrouping>>

<<ProcessGrouping>>

Fig. 5. Mapping of some application processes onto processing elements

Mapping of some application processes onto processing elements is shown in Fig. 5.
The mapping is done in two phases: process grouping and group mapping. First,
processes are divided into process groups. The grouping can be based on several dif-
ferent criteria, but it is guided by dependencies between processes, such as amount of
interaction, different priorities or shared resources. In the second phase, process groups
are mapped onto processing elements.

The hardware architecture and mapping in this case have been selected by the de-
signer, but we have developed a sophisticated method for automated architecture explo-
ration for UML based applications [17].

5 Automated Distribution

The automated distribution flow is presented in Fig. 6. The application software con-
sist of code generated by automatic code generation and the application distributor, and
software components from a library. The library components contain the platform soft-
ware, as well as the run-time environment for the distributed execution, consisting of
an RTOS API, Inter-Processor Communication (IPC) support, state-machine scheduler,
and signal passing functions.

To enable the distributed execution, information about the process mapping needs to
be included in the software. The information needed in the distribution is parsed from
the UML models with the UML parser tool, which stores the distribution information in
a compact XML format. Using this information, the application distributor creates code
including a mapping table, defining on which processing element each process group
is to be executed, as well as the processes in each group. Information about the signal

UML Models

UML Parser

Distribution information

Application distributor

Application software

Software Library

- RTOS API
- Device drivers

- State-machine scheduler

- RTOS

- IPC support
Generated code

Code generation

- Signal passing functions

Fig. 6. Automated distribution flow

Automated Distribution of UML 2.0 Designed Applications 33

Thread 1
[activated]

state
machine

scheduler

Thread 2
[inactive]

state
machine

scheduler

Thread 3
[activated]

state
machine

scheduler

Signal queue

Application process
(UML state machine)

IPC support

Signal passing
functions RTOS API

Thread 1
[inactive]

state
machine

scheduler

Thread 2
[activated]

state
machine

scheduler

Thread 3
[inactive]

state
machine

scheduler

Signal queue

IPC support

Signal passing
functions RTOS API

UML Application UML Application

HIBI API
Device drivers

eCos kernel
HIBI API

Device drivers
eCos kernel

Nios II CPU (1)
HIBI wrapper

Nios II CPU (2)
HIBI wrapper

Fig. 7. Run-time environment of a distributed UML application

parameters is also extracted from the generated code to implement the inter-processor
signal passing.

Fig. 7 presents the run-time environment for a distributed UML application. In an
RTOS, a process group corresponds to a thread, as processes in a group are executed
in the same thread. The priority of the groups can be specified in the mapping model,
and processes with real-time requirements can be placed in higher priority threads. The
execution of processes within a thread is governed by the state machine scheduler. The
internal and external signal passing are handled by signal passing functions, which take
care that the signal is transmitted to the correct receiver, independent of which CPU the
receiver is executed on.

5.1 Scheduling of Application Processes

The same generated code is used for all CPUs in the system, so that each CPU is able
to execute all processes of the application. When a CPU starts execution, it checks the
mapping table to decide which process groups (threads) it should activate. The signal
passing functions take care that signals are delivered to the correct receiver, and the
state-machine scheduler does not need the mapping information. All signals are handled
in the the order they are received. Inside threads, the state-machine scheduling is non-
preemptive, meaning that state transitions cannot be interrupted by other transitions.

The state-machine scheduler is integrated with an underlying operating system by
defining an RTOS API, which offers thread creation and synchronization services
through a standard interface. Consequently, different operating systems can be used
on different CPUs.

5.2 Inter-processor Signal Passing for UML Processes

The signal passing functions need services to transfer the UML signals between dif-
ferent CPUs. The IPC support provides these services by negotiating the data transfers

34 M. Setälä et al.

and handling possible data fragmentation. On the TUTWLAN platform, it uses the HIBI
API for the data transmissions.

State transitions occur when a UML process sends a signal which triggers a transition
in another process, or when a timer expires. Signals are comprised of a standard header
and payload data. Header includes information about the signal sender, receiver and
priority. Payload consists of zero or more parameters, which may have different data
types including integer values, strings, and arrays.

The signal passing at run-time is performed using two signal queues: one for signals
passed inside the same thread and other for signals from other threads. Processes within
a thread share common signal queues. When a signal is received, it is placed to the
corresponding queue.

Our run-time environment extends this basic functionality by enabling the commu-
nication between CPUs. When the state-machine scheduler detects that a signal is sent
to a process which resides on a different CPU, the signal passing functions transmit the
signal to the signal queue on the receiving CPU. The mapping table is used to determine
the target CPU. The signal passing functions use the code generated by the application
distributor to find information about the parameters of the signal. Based on this infor-
mation, the signal header and parameters are copied and sent to the receiver using the
IPC support.

When a signal is received, the IPC support passes the signal to the signal passing
functions. A UML signal is reassembled and added to the external signal queue. The
state-machine scheduler fetches the signal from the queue and passes it to the receiving
process. From the point of view of a UML process, IPC is transparent; the reception of
a signal is exactly the same for signals from all processes in the system, regardless of
which CPU or thread the sending process is executed on.

5.3 Dynamic Mapping

The context of a UML state machine is completely defined by its current state and the
values of its internal variables. Since threads have a common memory space, and the
variables are stored as global data structures, it is possible to change the mapping of
application processes between threads at run-time by updating the mapping table and
moving existing signals to correct queues.

Further, since all CPUs use the same generated code, it is possible to re-map
processes between processing elements at run-time. This operation is somewhat more
complicated, since it involves transferring the state-machine variables and signals be-
tween CPUs. This issue is beyond the scope of this paper and will be considered in
detail in future publications.

6 Performance Measurements

A distributed multiprocessor implementation of an application is expected to affect the
performance in terms of reduced execution time and variance. However, the distribution
itself causes overhead both in memory requirements and in execution time. The exper-
imental measurements were performed to evaluate the absolute amount of overhead as
well as the total effect on performance.

Automated Distribution of UML 2.0 Designed Applications 35

Table 1. TUTMAC static memory requirements for a single CPU

Software component Code (bytes) Data (bytes) Total (bytes)

Generated code 21 748 1 916 23 664
State-machine scheduler 26 064 13 137 39 201
External functions 22 600 33 889 56 489
Signal passing functions 7 064 10 764 17 828
HIBI API 3 552 36 100 39 652
IPC support 3 304 14 084 17 388
Device drivers 2 940 212 3 152
eCos 49 576 5 818 55 394

Total software 136 848 115 920 252 768

6.1 Resource Usage

The static memory requirements for a single CPU are given in Table 1. For each soft-
ware component the code and data memory requirements are shown. The total memory
requirements for a complete multiprocessor system can be evaluated by multiplying the
requirement of a single CPU with the number of CPUs in the system.

In addition to the static requirements, TUTMAC uses dynamic memory for signaling
between UML processes, and to buffer outgoing packets. The signaling requires ap-
proximately 4-5 kilobytes of memory, and depending on the size of the transmit buffer,
the total dynamic memory usage is 50-100 kilobytes. Dynamic memory usage is inde-
pendent on the number of CPUs. Altogether, a TUTWLAN terminal with four CPU’s
requires approximately 1.1 megabytes of memory.

The Stratix II FPGA used in the prototype implementation has 60,440 equivalent
4-input look-up tables and 2,544,192 bits of on-chip RAM memory. A TUTWLAN ter-
minal configuration consisting of five Nios II CPUs and AES, CRC, and radio interface
modules requires 69% of the logic elements and 36% of the on-chip memory.

6.2 Performance Evaluation

To evaluate the performance overhead caused by distribution, delays for signals passed
between processes were measured in three different scenarios: two communicating
processes on the same thread, on different threads on the same CPU, and on differ-
ent CPUs. The measured delays are shown in in Fig. 8. In each case the size of the
signal payload affects the delay, since the data is copied. On different CPUs, the delay
is also increased because of the IPC. If a data type passed as a pointer is used, then the
delay would be independent of the payload size between processes on the same CPU,
but between CPUs the data is always copied because of local memories.

The delay between different CPUs is 2.5-3 times larger compared to the delay be-
tween different threads, depending on the payload size. However, measurements with
the TUTMAC protocol show an increase in the total performance of an application by
distribution.

The measurements were performed on an architecture configuration consisting of
four CPUs and the AES hardware accelerator. Protocol functionality was divided to

36 M. Setälä et al.

0
200
400
600
800

1 000
1 200
1 400
1 600
1 800

64 128 256 512 1024
Signal payload (bytes)

D
el

ay
 (u

s)

Same thread
Different threads on the same CPU
Different CPUs

Fig. 8. Delays for UML signal passing in three different scenarios

Table 2. Mappings used in the performance measurements

Mapping 1 Mapping 2 Mapping 3 Mapping 4 Mapping 5

Process group CPU # CPU # CPU # CPU # CPU #

Control 1 1 1 1 1
Data processing (reception) 1 2 2 2 2
Data processing (transmission) 1 1 3 3 3
AES decryption 1 2 2 4 Hardware acc.
AES encryption 1 1 3 4 Hardware acc.

0

5

10

15

20

25

1 2 3 4 5
Mapping

Ti
m

e
(m

s)

Reception processing delay Transmission processing delay
Queuing delay Medium access delay

Fig. 9. Measured delays for TUTMAC protocol with different mappings

five process groups, and TUTMAC was executed using different mappings which dis-
tributed the groups to different processing elements according to Table 2. The control
group includes the TDMA scheduler, 8-bit CRC, radio interface, frame buffering and
protocol management. The data processing groups include 32-bit CRC, fragmentation
and user interface processes for transmission and reception, respectively. The last two
groups include the AES encryption and decryption.

The measured protocol delays are presented in Fig. 9. The results show that the
distribution has a significant effect on the execution times. The most notable effect is

Automated Distribution of UML 2.0 Designed Applications 37

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5
Mapping

Va
ria

tio
n

(%
)

Reception processing delay variation
Transmission processing delay variation
Queuing delay variation
Medium access delay variation

Fig. 10. Measured delay variations for TUTMAC protocol with different mappings

the reduction of the queuing delay, which with three CPUs is reduced to just 25.4%
of the original delay with a single CPU. In the first two mappings, the TDMA sched-
uler is unable to meet all of its real-time requirements and some TDMA data slots are
missed. Thus, frames cannot be transmitted at full speed, which increases the queuing
delay.

With three CPUs and the AES encryption module, the real-time requirements are
fulfilled and a 50-70% speed-up is achieved for all delays when compared to the sin-
gle CPU mapping. Using a fourth CPU for the AES calculation proved to be inef-
ficient in terms of reducing the delays, since the AES calculation is the most time
consuming function of the protocol and thus it is not efficient for transmission and
reception to share a common CPU for it. However, in the fifth mapping the hardware
accelerator can perform the AES calculation fast enough to reduce both processing
delays.

Changes in the delay variations compared to the single CPU mapping are shown
in Fig. 10. With three CPUs, the medium access delay variation is reduced by 84.0%.
Further, all other delay variations are also reduced 45-70%. These improve the accuracy
of TDMA scheduling and the robustness of the system.

7 Conclusions

This paper presented automated distribution of applications modeled in UML to a mul-
tiprocessor SoC. With the aid of design automation and modeling of hardware and
mapping in UML, the distribution is fully automated and straightforward.

The case study showed that the approach is feasible, and the measurements per-
formed on the prototype platform showed significant improvement in the protocol per-
formance. The future work will include measuring the efficiency overhead incurred
by high-level UML design compared to other implementation approaches. The state-
machine scheduler and IPC should be optimized to reduce the distribution overhead.
Further, possibilities of the dynamic process re-mapping in power management will be
studied.

38 M. Setälä et al.

References

1. Object Management Group (OMG): UML 2.0 Superstructure Specification (Version 2.0).
(2004)

2. Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K., Chang, K.: The case for a single-chip
multiprocessor. In: Proceedings of the Seventh International Symposium on Architectural
Support for Programming Languages and Operating Systems. (1996)

3. Kaiserswerth, M.: The Parallel Protocol Engine. IEEE/ACM Transactions on Networking 1
(1993) 650–663

4. Object Management Group (OMG): The Common Object Request Broker Specification
(Version 3.0). (2004)

5. Schmidt, D.C., Kuhns, F.: An overview of the real-time corba specification. Computer 33
(2000) 56–63

6. Brinkschulte, U., Ungerer, T., Bechina, A., Picioroaga, F., Schneider, E., Kreuzinger, J., Pfef-
fer, M.: A microkernel middleware architecture for distributed embedded real-time systems.
In: Proceedings of the 20th IEEE Symposium on Reliable Distributed Systems. (2001) 218–
226

7. Gill, C., Subramonian, V., Parsons, J., Huang, H.M., Torri, S., Niehaus, D., Stuart, D.: ORB
middleware evolution for networked embedded systems. In: Proceedings of the 8th Interna-
tional Workshop on Object Oriented Real-time Dependable Systems. (2003) 169–176

8. Chen, R., Sgroi, M., Lavagno, L., Martin, G., Sangiovanni-Vincentelli, A., Rabaey, J.: UML
and platform-based design. In: UML for Real: Design of embedded Real-time Systems.
Kluwer Academic Publishers (2003) 107–126

9. Martin, G., Lavagno, L., Louis-Guerin, J.: Embedded UML: A merger of real-time UML
and co-design. In: Proceedings of the Ninth International Symposium on Hardware/Software
Codesign. (2001) 23–28

10. Object Management Group (OMG): UML Profile for CORBA Specification (Version 1.0).
(2002)

11. Born, M., Holz, E., Kath, O.: A method for the design and development of distributed appli-
cations using UML. In: Proceedings of the 37th International Conference on Technology of
Object-Oriented Languages and Systems. (2000) 253–264

12. Kukkala, P., Riihimäki, J., Hännikäinen, M., Hämäläinen, T.D., Kronlöf, K.: UML 2.0 profile
for embedded system design. In: Proceedings of the Design, Automation and Test in Europe.
Volume 2. (2005) 710–715

13. Hännikäinen, M., Lavikko, T., Kukkala, P., Hämäläinen, T.D.: TUTWLAN - QoS supporting
wireless network. Telecommunication Systems - Modelling, Analysis, Design and Manage-
ment 23 (2003) 297–333

14. Arpinen, T., Kukkala, P., Salminen, E., Hännikäinen, M., Hämäläinen, T.D.: Configurable
multiprocessor platform with RTOS for distributed execution of UML 2.0 designed applica-
tions. In: Proceedings of the Design, Automation and Test in Europe. (2006)

15. Salminen, E., Lahtinen, V., Kangas, T., Riihimäki, J., Kuusilinna, K., Hämäläinen, T.D.:
HIBI v.2 communication network for system-on-chip. In: Proceedings of the International
Workshop on Systems, Architectures, Modeling and Simulation. (2004) 413–422

16. Massa, A.J.: Embedded Software Development with eCos. Prentice Hall PTR (2002)
17. Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hännikäinen, M., Hämäläinen, T.D., Ri-

ihimäki, J., Kuusilinna, K.: UML-based multi-processor SoC design framework. Accepted
on ACM Transactions on Embedded Computing Systems (2006)

Towards a Transformation Chain Modeling Language�

Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan,
Wouter Joosen, and Yolande Berbers

Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
{bert.vanhooff, Stefan.VanBaelen, Aram.Hovsepyan, Wouter.Joosen,

Yolande.Berbers}@cs.kuleuven.be

Abstract. The Model Driven Development (MDD) paradigm stimulates the use
of models as the main artifacts for software development. These models can be
situated at high levels of abstraction, close to the application’s business domain.
Many consecutive automatic transformations (a transformation chain) can be ap-
plied to these models to add the necessary details in order to generate a concrete
implementation. This means that a large part of the total development effort is
relocated to the development of transformations and hence we should have the
necessary tooling support for designing transformation chains. In this paper we
propose a metamodel for a transformation chain modeling language that enables
implementation independent composition of transformations. We also propose a
concrete syntax for this language that is based on UML activity diagrams.

1 Introduction

Model Driven Development (MDD) is an approach to developing software that proposes
using machine-readable models as its main artifacts. These models can be constructed
with domain specific modeling languages (DSMLs), which are tailored to a specific type
of applications and often have a rich visual syntax that hides implementation-level details.
These highly abstract models can then be (semi-)automatically transformed to lower-
level models by filling in missing details, which eventually makes its straightforward to
generate a concrete implementation.

The Object Management Group (OMG) is one of the major endorsers of MDD.
Their specific approach is well-known as the Model Driven Architecture (MDA), which
is both a specific vision on MDD as well as a collection of technology specifications
that support this vision. These specifications include a metamodeling language (MOF)
[1], a generic software modeling language (UML) [2], a (not yet fully standardized)
transformation specification language (QVT) [3] and many more.

Because the MDD philosophy relocates much of the development effort to transfor-
mations it is important to take up the transformation development task with care. In this
paper we argue for the need of multiple transformations to get from the highest level
models (possibly DSMLs) to the lowest level models (section 2). This requires config-
uring many transformations in a certain sequence in order to address the concerns of

� The described work is part of the EUREKA-ITEA MARTES project, and partly funded by the
Flemish government institution IWT (Institute for the Promotion of Innovation by Science and
Technology in Flanders).

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 39–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

40 B. Vanhooff et al.

a specific type of application. Such a transformation sequence is referred to as a trans-
formation chain. We propose a first step towards a modeling language for specifying
transformation chains that is based on UML Activity Diagrams. To accomplish this, we
provide a metamodel for this language in section 3 and map this to a UML profile in
section 4. We wrap up this paper by drawing conclusions and indicating future work in
section 5. Related work will be discussed throughout the paper when appropriate.

2 Multiple Transformations

Many papers concerning MDD use the notions of PIM (Platform Independent Model) and
PSM (Platform Specific Model), which were introduced by MDA. A PIM is a model of a
system that contains no technical details while a PSM is a representation of the same sys-
tem containing all technical details that are needed to realize it on a concrete technology
platform. The mapping between PIM and PSM is realized using an automatic transfor-
mation. Such a single-level transformation process allows us to capitalize on the stable
platform independent matters and generate PSMs for a range of different technology
platforms (figure 1). The platform specific knowledge is moved to the transformations,
effectively separating those concerns from the main application model.

Fig. 1. Single-level transformation (PIM to PSM)

We believe that single-level transformations are not the best way to fully exploit the
MDD opportunities. The use of transformations can provide a more elaborate sense of
separation of concerns than just pure technical concerns (as in the single PIM/PSM case).
Other concerns can be functional, non-functional or just convenience-related such as pre-
venting manual modeling inconsistencies or offering rich domain specific modeling en-
vironments. It would be hard and impractical to integrate all these concerns into one big
do-it-all transformation. Therefore we argue that it is better to feed a model to a chain of
many (small) transformations that each manipulate the model with regard to one specific
concern. This would allow us to better modularize the transformations themselves and
as a consequence make individual transformations easier to implement and reuse.

Transformation reuse will be most clear in product-line oriented development, as
is the case for many embedded applications. Product-lines share a common set of con-
cerns that have to be included or excluded depending on the specific product. If we
can encode each of those concerns in a separate transformation, we can more easily

Towards a Transformation Chain Modeling Language 41

leave out unwanted stuff and incorporate new things without having to redo the whole
application.

Figure 2 shows an abstract example of composing transformations into a transfor-
mation chain. This chain could be the replacement of one of the paths in figure 1.

If multiple transformations are in place, each intermediate model can be seen as
being specific to a virtual intermediate platform while being independent of platforms
further up the transformation chain. The notion of such a platform is introduced in [4]
as abstract platform and is defined as “an acceptable or, to some extent, ideal platform
from an application developer’s point of view”. Abstract platforms not only allow the
developer to model an application using appropriate concepts but also allow intermedi-
ate transformation developers to create mappings between models using concepts that
make sense at their particular level. We could for example treat distribution at one level
and timing constraints at another. We consider abstract platforms an integral part of a
transformation chain and consequently they are also represented in the model (figure 2).

If we use multiple transformations, the design of their composition (the transfor-
mation chain) becomes important next to their implementation. A transformation chain
model specifies the composition of many transformations by describing their sequence,
input and output model types, dependencies among transformations (such as traceabil-
ity), platforms etc. Such a model can serve as a construction plan for implementation or
as an execution plan after implementation.

Mind that we should very carefully consider how we distribute concerns over trans-
formations. Even though a specific concern can be tackled during one transformation
step, it is not always that obvious how all these concerns can be integrated in the overall
system. This is especially true for non-functional concerns since they often have subtle
effects on one another. A same type of problem arises in the Aspect Oriented Program-
ming (AOP) community, where the application of several aspects on top of each other
can produce undesired effects. Our approach to transformation chain modeling does not
specifically address these problems.

Fig. 2. Multi-level transformation showing intermediate platforms, multi-in/output transforma-
tions and vertical/horizontal transformations (respectively between platforms or within a single
platform)

42 B. Vanhooff et al.

In the next section we provide a metamodel that contains the necessary concepts to
model transformation chains.

3 Transformation Chain Modeling

In this section we identify the basic requirements of a transformation chain specification
language and we present the metamodel that we have conceived to answer to these
requirements.

3.1 Requirements

We did not start from scratch in defining a transformation chain specification language.
The ORMSC proposal for an MDA Foundation Model [5] gives a good starting point. It
consists of a metamodel that defines and relates basic transformation concepts, but does
not include concepts specific to composing transformations in transformation chains.
We identified the following shortcomings:

1. No specific support for connecting several transformations together.
2. No notion of (abstract) platform; the only typing of models is done through meta-

models.
3. No notion of composite transformations, which are reusable transformations that

are defined as a chain of lower level transformations themselves.
4. No support for input/output model constraints (pre/post conditions) other than those

enforced by the metamodel.
5. No technical considerations – each transformation is assumed to produce models

in compatible formats. In real life, even compatible metamodels can be expressed
in incompatible formats.

At the same time the MDA Foundation Model proposal contains some concepts that are
not that important for defining transformation chains or that are too MDA specific. We
consider the listed shortcomings as the additional requirements that our model has to
address. In the next subsection we present a metamodel that specifically addresses the
shortcomings.

3.2 Transformation Chain Metamodel

In order to adhere to good MDD practice, we define the abstract syntax of the transfor-
mation chain by using a metamodel (figure 3).

The model can be divided in two parts: a specification part (TransformationSpecifi-
cation) and an executional part (TransformationExecution). The TransformationSpecifi-
cation has two orthogonal specializations: Atomic or Composite and Directed and con-
tains one or more TransformationFormalParameters. Such parameters are typed by an
abstract Platform, which is in turn characterized by a Metamodel, optional ModelCon-
straints on that metamodel and possibly additional functionality offered by a ModelLi-
brary. A TransformationFormalParameter can also have specific ParameterConstraints
with which we can enforce additional pre- and postconditions.

Towards a Transformation Chain Modeling Language 43

F
ig

.3
.T

he
m

et
am

od
el

to
sp

ec
if

y
tr

an
sf

or
m

at
io

n
ch

ai
ns

44 B. Vanhooff et al.

A TransformationExecution is always directed (an undirected TransformationSpec-
ification becomes directed when it is executed) and has a number of TransformationAc-
tualParameters, typed by the TransformationFormalParameters of the related
TransformationSpecification. The Model, referred to by the actual parameter must ad-
here to platform of the formal parameter. Each TransformationActualParameter in the
role of output can be connected to one or more other TransformationActualParameters
in the role of input through a ParameterConnector.

The TechnologySpecification element is in place to be able to define technical spec-
ifications of transformation in- and outputs besides their types of metamodels. This is
needed because even if two models adhere to the same metamodel, they can be ex-
pressed using a number of different technologies (e.g. XMI v1.x, HUTN – Human
Useable Textual Notation, JMI – Java Metadata Interface). Each TransformationAc-
tualParameter belongs to a concrete implemented transformation so it has to specify
a technology for its model. In case of a CompositeTransformationSpecification the
TechnologySpecifications of the containing TransformationActualParameters will be
propagated to the TransformationFormalParameters (hence the association between
TransformationFormalParameter and TechnologySpecification).

The issue of specifying type (Platform and ParameterConstraint) and technology
(Technology) of transformation parameters is related to interoperability between trans-
formations. This subject is extensively addressed in [6], where a distinction is made
between functional (types) and protocol (technology) connectivity.

To make the metamodel complete we need to add some additional constraints, for
example to ensure that a Model bound to a TransformationActualParameter is compli-
ant with the Metamodel that can be reached though the associated TransformationFro-
malParameter. We do not show these constraints due to space restrictions.

In the following section we attach a concrete syntax to our conceptual metamodel.

4 Transformation Chain Profile

A metamodel is worth little without an accompanying concrete modeling language to
specify its models. There are roughly two options to specify a concrete syntax:

– A heavyweight approach: define a completely new language with its own symbols
(DSML) or extend an existing language (e.g. UML) at the meta level. This approach
allows the most freedom in tailoring the language to your own taste.

– A lightweight approach: adapt an existing language to your needs. In this case
the base language needs to support a kind of extension mechanism. The UML is
probably the most well-known language that allows such adaption in the form of
UML profiles (stereotypes, tagged values and constraints).

The first approach is conceptually the best but it has some practical drawbacks. Having
to precisely define semantics besides abstract and concrete syntax from the ground up
together with the need for custom tool support kept us from applying this approach.
The UML on the contrary contains the Activity package that is used to model actions
executed against a flow of objects, which is similar to transformations and models flow-
ing between them. Therefore we chose to define a UML profile that tailors the stan-
dard activity diagrams to our specific needs. Also, both the MEDAL [7] and VMT

Towards a Transformation Chain Modeling Language 45

[8] approaches to MDD make use of activity diagrams to specify transformations but
they operate at the transformation implementation level instead of at the transformation
chaining level.

In figure 4, we show a mapping of the transformation concepts from the metamodel
of figure 3 to stereotypes and tagged values. The figure is only shown as an illustration
and does certainly not contain the complete mapping, which would take too much space.
We also do not show constraints to prevent the use of unwanted activity elements such
as ControlFlow and CentralBufferNode.

Fig. 4. Partial mapping of the metamodel elements (in italic) to a UML profile; only the most
important stereotypes and tagged values are shown, constraints are omitted

The figure shows the UML metaclasses that are specialized using stereotypes and
refers to the original metamodel element. The mapping specializes the Activity meta-
class with the TFSpecification stereotype. A TFSpecification is atomic, if it does not con-
tain any TFExecutions (a specialization of CallBehaviorAction) or is composite when it
does. ActivityParameterNodes as well as Pins must be stereotyped with TFParameter,
respectively indicating a formal or an actual parameter. Two types of Constraints are in-
troduced: Technology and TFParameterConstraint. Finally a Platform is a specialization
of the Classifier element. Besides these, many other UML Activity elements need to be
specialized or excluded from the model in order to make the mapping complete.

Because the metamodel-profile mapping still leaves much to the imagination, we
give some examples using the concrete activity diagram notation in the next subsection.

4.1 Example of a Transformation Chain Model

Comprehending a modeling language is the easiest when looking at examples of its
concrete syntax. We therefore provide two examples.

Our first example is shown in figure 5. It specifies a transformation component
that transforms between domain specific models of cellphone applications and UML
component models.

We can see that the Phone2UML TFSpecification contains two parameters and has
a description, which should be more detailed in a real situation. The TFParameters are

46 B. Vanhooff et al.

Fig. 5. Example of an atomic transformation specification (on the left) and an accompanying
platform specification (on the right)

typed by a platform, specified by the Platform classifier. The ComponentUML platform
on the right is given as an example. It is based on the UML metamodel, constrained to
use component package at compliance level 3 (modelConstraints) and includes some
cellphone specific modelLibraries. The input parameter has an additional TFParame-
terConstraint saying that only the static structure of our cellphone model will be taken
into account.

The second example (figure 6) shows a composite transformation that has two in-
puts and one output and is specified by an internal structure of two TFExecutions.
The top one (Phone2UML) is reused from figure 5. The TFExecution at the bottom

Fig. 6. Example of a composite TransformationSpecification

Towards a Transformation Chain Modeling Language 47

(PhoneComponentDeployment) takes the UML component model (output from
Phone2UML) together with a hardware model for a specific type of phone and gen-
erates the most optimal UML deployment model. We can further see that two Tech-
nologySpecifications are given: the output of Phone2UML is accessible through a Java
Metadata Interface (JMI), while the second input of the PhoneComponentDeployment
is required to be given in XMI format.

The given examples just give a flavor of what can be specified in a transformation
chain model. Real world models will need to be more detailed in many ways, for ex-
ample in the specification of metamodel and parameter technology. More formal spec-
ification of constraints on input/output parameters can be done using the OCL-based
approach of [9].

5 Conclusions and Future Work

An important part of the effort in an MDD-based project lies in the development of
an appropriate transformation chain, which in turn eases the construction of the appli-
cation(s) described in the project. Having multiple levels of transformations facilitates
transformation reuse, especially in product-line oriented development, which is often
the case for embedded systems.

Being faithful to the MDD philosophy, transformation chains also have to be de-
signed and modeled before implementation. We have proposed a transformation chain
modeling language of which we defined the abstract syntax using a metamodel. This
metamodel is an elaboration of the MDA Foundation Model proposal. We then mapped
the metamodel’s elements onto UML’s Activity Diagrams, which are well-suited, though
not ideal, to model transformation chains.

The design of a transformation chain is only part of a project-specific MDD in-
frastructure. In order to support the concrete realization of transformation chains we
will design and implement a transformation chaining framework that uses the proposed
language to allow easy concatenation of transformation components that may be im-
plemented in different transformation languages. The results of experimenting with this
infrastructure will be used to refine the proposed transformation language. We are also
developing a design process to guide the development of transformation chains [10].
This process should help MDD developers in identifying the correct transformation
components, platforms, etc.

References

1. Object Management Group: Meta object facility 2.0 core specification. Misc (2004)
2. Object Management Group: Uml 2.0 superstructure conv. document. Misc (2004)
3. Object Management Group: Qvt-merge group submission for mof 2.0

query/view/transformation. Misc (2005)
4. Almeida, J.P., Dijkman, R.M., van Sinderen, M., Pires, L.F.: On the notion of abstract plat-

form in mda development. In: EDOC. (2004) 253–263
5. Object Management Group ORMSC: A proposal for an mda foundation model, white paper

(2005)

48 B. Vanhooff et al.

6. Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus: Towards the interoperability of modelling
tools. In: MDAFA. (2004) 17–32

7. Guelfi, N., Ries, B., Sterges, P.: MEDAL: A CASE Tool Extension for Model-Driven Soft-
ware Engineering. In: SWSTE ’03: Proceedings of the IEEE International Conference on
Software-Science, Technology & Engineering, Washington, DC, USA, IEEE Computer So-
ciety (2003) 33

8. Sendall, S., Perrouin, G., Guelfi, N., Biberstein, O.: Supporting model-to-model transforma-
tions: The vmt approach. Technical report (2003)

9. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: Ocl for the specification of model trans-
formation contracts. In Patrascoiu, O., ed.: OCL and Model Driven Engineering, UML 2004
Conference Workshop, October 12, 2004, Lisbon, Portugal, University of Kent (2004) 69–83

10. Vanhooff, B., Ayed, D., Berbers, Y.: Towards a Transformation Chain Design Process. (2006)

Key Research Challenges for Successfully Applying
MDD Within Real-Time Embedded Software

Development�

Aram Hovsepyan, Stefan Van Baelen, Bert Vanhooff,
Wouter Joosen, and Yolande Berbers

Katholieke Universiteit Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
B-3001 Leuven, Belgium

{Aram.Hovsepyan, Stefan.VanBaelen, Bert.Vanhooff, Wouter.Joosen,
Yolande.Berbers}@cs.kuleuven.be

Abstract. Model-Driven Development (MDD) is a software development para-
digm that promotes the use of models at different levels of abstraction and per-
form transformations between them to derive one or more concrete application
implementations. In this paper we analyze the current status of MDD regard-
ing its applicability for the development of Real-Time Embedded Software. We
discuss different modeling framework approaches used to specify the various
models, and compare OMG/MDA-based approaches (MOF, UML Profiles and
executable UML) with a generic MDD-based approach (GME). Finally, we iden-
tify the key challenges for future MDD research in order to successfully apply
MDD within RTES Development. These challenges are mainly situated in the
field of modeling and standardization of abstraction levels, model transformations
and code generation, traceability, and integration of existing software within the
MDD development process

1 Introduction

Model-Driven Development (MDD) is a software development paradigm that promotes
the use of models at different levels of abstraction and performs transformations be-
tween them in order to derive a concrete application implementation. MDD promotes
the construction of high-level models which can be (semi-) automatically transformed to
lower-level models and ultimately into optimal code for the selected target implementa-
tion platform. A model is a coherent set of formal elements built for some purpose that is
amenable to a particular form of analysis. A model is expressed in a modeling language
at some abstraction level which in itself can be defined by metamodels. MDD captures
expert knowledge as mapping functions that transform between one model and another.

In the same manner as compilers raised the programming abstraction level from
assembler code towards higher-level programming languages, thereby automatically
transforming the language constructs into machine-level instructions, MDD tries to up-
grade the software development process artifacts from code towards models. Models

� The described work is part of the EUREKA-ITEA MARTES project, and is partly funded by
the Flemish government institution IWT (Institute for the Promotion of Innovation by Science
and Technology in Flanders).

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 49–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 A. Hovsepyan et al.

will as such become the key development assets within software development. Such
approach will allow to design an application once and target it towards distinct software
and/or hardware platforms, even towards future platforms that are still unknown during
the initial development. MDD will enable better integration and interoperability on top
of the target platform and supports system evolution as platform technologies evolve.

Even though research on several aspects of MDD (modeling abstractions, transfor-
mations, processes, ...) has been going on for several years, there are still a number of
issues to be solved in order to successfully apply MDD for software development in
general and for Real-Time Embedded Software in particular.

In section 2, we compare the distinct approaches towards an MDD modeling frame-
work and application model specifications at different levels of abstraction. On the one
hand, a meta-metamodel approach could be used in order to create a DSML, using
OMG’s MOF or another meta-metamodel. The newly specified DSML can then be used
in turn to specify dedicated application models. On the other hand a general purpose
modeling language such as UML could be used, profiling it to simulate the required
DSML. As a third approach, executable UML could be used as a high-level platform
abstraction on top of which applications could be simulated or executed.

In section 3, we identify the key challenges for future MDD research in order to
successfully apply MDD within Real-Time Embedded Software Development. These
challenges are mainly situated in the field of modeling and standardization of abstrac-
tion levels, model transformations and code generation, traceability, and integration of
existing software within an MDD development process.

2 MDD Approaches

This section compares the different approaches towards an MDD modeling framework
and application model specifications at different levels of abstraction.

2.1 MDD Versus MDA

MDD is a generic software development paradigm that can be applied in different man-
ners. The Object Management Group (OMG) has defined a variant of MDD called
Model-Driven Architecture (MDA). MDA aims to represent systems using OMG’s
general-purpose Unified Modeling Language (UML) along with specific profiles, or us-
ing a Domain-Specific Modeling Language (DSML) expressed in OMG’s MOF (Meta-
Object Facility). The key idea behind MDA is to start with the specification of an
Platform-Independent Model (PIM), extracting the common concepts of an applica-
tion targeted towards a number of platforms and as such allowing a higher level of
application specification. Starting from this PIM, a PSM is generated which defines an
application model targeted towards a specific platform. A PSM is an elaboration of a
PIM that includes platform specific details. For many parts of the application model,
the process of obtaining a PSM from a PIM can be automated and the transformation
knowledge captured into platform-specific transformation rules. From this PSM, code
can be (semi-)automatically generated for the target platform to a certain extent (skele-
ton, partial or full code generation).

Key Research Challenges for Successfully Applying MDD 51

Model-Integrated Computing (MIC) [1] is another variant of MDD, introduced by
the Institute for Software Integrated Systems (ISIS) at Vanderbilt University. MIC uses
DSMLs to represent system elements and their relationships as well as their transfor-
mations to platform-specific artifacts. We discuss in the next section how the meta-
metamodel approach can support MIC.

2.2 Modeling Frameworks

Models and transformations are key concepts in MDD. Currently several different ap-
proaches exist for specifying application models at different abstraction levels within
MDD software development. Although we do not aim to be exhaustive, we will discuss
the main distinctive approaches.

2.2.1 Meta-metamodel Approach
A rather formal approach consists of firstly creating a generic modeling infrastructure in
order to describe different kinds of metamodels. This meta-metamodel can then be used
to create DSMLs which in turn are used to specify dedicated application models. The
meta-metamodel should be able to describe what exactly should exist in the DSML in
terms of concepts, how they relate to one another and which rules govern their existence
and behavior.

MDA-based MOF. Probably the most known instance of a meta-modeling framework
is the MOF. The MOF architecture conceives of four “meta-levels”. The highest level
(M3) is the MOF meta-metamodel which is an instance of itself. The MOF can be used
to create a DSML (M2). This newly created DSML can be used to model an application
(M1), which in turn contains a run-time instantiation model (M0).

Currently there are very limited number of tools that support a DSML definition
based on the complete MOF 2.0 metamodel. Several shortcomings of MOF and its
implementation are outlined by [2] and [3]:

– As any standard, the MOF standard prescribes no choice for implementation.
– The standard API for browsing through models in a MOF repository is too low-

level to be really efficient.
– MOF lacks any standard mechanisms for specifying DSML concrete syntax. There

is no standard way to declare a particular graphical notation.
– MOF’s lack of support for associations incorporating state makes the definition of

some DSMLs awkward.
– Interoperability between “MOF-compliant” tools is a huge issue (see the discussion

on XMI in section 3).

Generic Modeling Environment. Even though MDD is mostly associated with MDA
and OMG standards there are modeling frameworks other than MOF. The Generic Mod-
eling Environment (GME) [4] is an alternative implementation of the meta-metamodel
approach, and supporting the MIC approach.

GME is a configurable toolkit for creating DSML and program synthesis environ-
ments. The configuration is accomplished through metamodels specifying the modeling
language of the application domain. The metamodel contains all the syntactic, semantic,

52 A. Hovsepyan et al.

and presentation information regarding the domain and the concepts to be used for con-
structing models. The modeling framework also specifies what relationships may exist
among those concepts, how the concepts may be organized and viewed by the mod-
eler, and rules governing the construction of models. The metamodels specifying the
DSML are used to automatically generate a target domain-specific modeling environ-
ment. This environment can then support the specification of dedicated domain models
that are stored in a model database. From these models, applications can automatically
be generated. GME has full-featured universal predicate expression language (based on
OCL), which can represent very complex relational constraints.

2.2.2 “Lightweight” Approach Using UML Profiles
OMG advocates the more pragmatic approach for a modeling framework based on the
idea of developing a DSML using UML Profiles. UML has been improved with mod-
eling language extension features which can raise UML’s abstraction level. Stereotypes
and tagged values are the extension mechanisms that can be grouped in a profile. The
profiling information is used by modeling tools, model transformators and code gen-
erators in order to perform domain-specific actions. An example of such an extension
is the UML profile for Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [5], which is discussed in section 3.

Even though extending UML is considered to be easy, UML as well as its exten-
sion mechanisms are quite complex. It is also not clear how well tools will be able to
manipulate and exchange these UML Profile extensions.

2.2.3 xUML Approach
Executable UML (xUML) [6] is a third approach to MDD, whereby compilers for the
UML modeling language (or a specific subset) are built, treating UML as a program-
ming language on its own. Developing applications using xUML offers several advan-
tages, such as precise and complete semantics, and model visualization and simulation
at early stages. However an executable UML model does not have the expressive power
of programming languages at the current moment. For example, an executable UML
model does not specify issues regarding distribution, the number and allocation of sep-
arate threads, or the organization of data. In addition, xUML does not have the power
of domain specific modeling languages and supports only a small subset of UML.

2.2.4 Discussion
There are two OMG visions on MDA, supporting respectively MOF and UML exten-
sions (UML Profiles and xUML). Non-OMG MDD approaches mostly rely on meta-
metamodel approaches in order to define dedicated DSMLs. GME is an example of
such generic MDD modeling framework. GME as most of other non-OMG approaches
introduces proprietary standards which inhibit the interchange capabilities. This is pre-
cisely one of the strongest points of MOF, which introduces unique means of model
interchange and storage. However from a modeling framework perspective, MOF still
misses generic editor and generator definitions for DSML creation, and proper tool
support. On the other hand, GME and other similar non-OMG modeling frameworks
do offer tools to support their modeling frameworks, although they are rather specific
for the underlying approach.

Key Research Challenges for Successfully Applying MDD 53

There is no reason why UML cannot be used as a base for the development of a
domain specific modeling framework, although it is questionable whether using such
approach is a good way to build modeling frameworks. Since UML Profiles are defined
on top of the whole UML standard, any DSML that is defined as a UML Profile carries
the whole UML metamodel within (if not specifically excluded from the profile). The
profile approach also restricts the DSML from using the full semantic power of object-
oriented class modeling that a true meta-metamodel approach could offer. In addition,
within a UML Profile one cannot declare new associations among UML metamodel
elements or among stereotypes.

2.3 MDD Promises

The MDD and MDA approach promise a number of important benefits to significantly
improve the software development process once a full MDD software development
process is in operation.

Time savings. A full MDD development process supported by adequate tool support can
provide significant time savings by generating dedicated code for a specific execution
platform from the high-level models. Advanced tools will generate code from dynamic
models and even provide suitable code for the realization of constraints expressed in
e.g. OCL (Object Constraint Language). In addition, reuse of architectures and designs
will be actively supported.

Quality improvement. A well-defined architecture incorporates adequate solutions for
the realization of the system quality attributes, such as performance, availability, secu-
rity, modifiability, scalability, reliability etc. In traditional software approaches the sys-
tem architecture is well-designed during the first iteration, but tends to get diluted by
subsequent iterations and new upcoming requirements. Because models and automatic
transformations are central in an MDD approach, the system architecture can always
be enforced and updated as new requirements arise. The transformation and code gen-
eration mechanisms will be created and extensively tested by experts. This raises the
quality of every step in an MDD-based development process.

Cross-platform development and enhanced platform migration. As platforms chan-
ge over time, software applications must continuously be re-implemented. Typically
software developers either start everything from scratch or try to port the application
to the new platform. In the first case the previous solution gets (partially) lost, while in
the second case developers often invent low-level hacks in order to get the application
running on the new platform. MDA offers support for cross-platform development and
enhanced platform migration by introducing a PIM representation of a software system.
When the platform changes, the application can be preserved by reusing the PIM in
order to generate a PSM and code of an application targeted towards this new platform.

3 Key Research Challenges

This section presents a number of key issues that currently obstruct the application of
MDD for the development of Real-Time Embedded Software.

54 A. Hovsepyan et al.

3.1 Modeling Levels

Even though models are a central concept in MDD, it is not yet obvious which abstrac-
tion levels and notations are the most suitable.

3.1.1 Models for Embedded Platforms
Although MDD has already been successfully applied in a number of embedded pilot
projects, it is not yet very clear how to integrate the variations of the software platforms,
hardware platforms, and available services and devices of a system. There is no simple
notion of a “platform” as in the case of more general software development (e.g. J2EE,
.NET). Moreover, the gap between an embedded platform and an application model
abstraction is usually larger. A number of UML profiles have been designed to assist
modeling for embedded systems.

SysML [7] is a domain-specific visual modeling language for System Engineer-
ing. SysML supports the specification, analysis, design, verification and validation of a
broad range of systems and systems-of-systems. These systems may include hardware,
software, information, processes, personnel and facilities.

UML profiles for System on Chip (SoC) and SystemC are designed in order to assist
integrating UML modeling into the current SoC design process. The UML 2.0 pro-
file for SystemC captures both the structural and the behavioral features of SystemC
language. It makes translation from a high-level platform independent to a lower-level
platform dependent SystemC model straightforward.

The MARTE profile intends to provide a common way of modeling both hardware
and software aspects of Real-Time and Embedded Systems. As a result, interoperabil-
ity between development tools used for specification, design, code generation etc. will
be possible. Quantitative and partitioning predictions regarding hardware and software
characteristics will be fostered. The profile is intended to provide a foundation for
applying transformations from UML models into a wide variety of analysis models.
The MARTE profile defines precise semantics for time and resource modeling. These
precise semantics allows to automatically transform models to lower abstraction level
models such as UML for SoC for hardware/software simulation or into C++ for imple-
mentation purposes.

However all the profiles are still under development and not yet officially standard-
ized. Moreover they tend to overlap and their interrelationships are still unclear.

3.1.2 Concepts to Model
While static class and component diagrams describe the software structure, dynamic
models describe its behavior. Clearly we cannot expect a generator to produce more
than just skeleton code if we do not provide information about the behavior.

The MDD community has progressed very little concerning the code generation from
dynamic models. Even though most of the modeling frameworks allow users to create
dynamic models, the lack of uniform methodology to generate code from models de-
creases the added value of creating and maintaining dynamic models. It is also not clear
how far we should go using dynamic models. Different mathematical algorithms (e.g.
Fast Fourier Transforms) could be modeled using UML collaboration diagrams.

Key Research Challenges for Successfully Applying MDD 55

But it is unclear whether the benefits still outweigh the complexity of creating com-
plete models. Very often, such algorithms are easier and shorter to write directly in
code.

3.2 Model Transformations

Even though model transformations and code generation are central concepts in MDD,
it is not yet obvious how to define and apply the model transformations in order to
establish an adequate MDD transformation chain.

3.2.1 Transformation Implementation
One of the biggest limitations of the MDA approach is the lack of a unique standard
for specifying transformations between models, as well as between models and code.
Many custom solutions have been introduced such as Atlas Transformation Language
(ATL)[8], usage of OCL to generate code, and Velocity Templates[9]. However these
solutions are not standardized and work only with specific tools.

OMG has issued two Requests for Proposals (RFP) for MOF 2.0 QVT[10] and for
MOF Model to Text Transformation (MOF2T) [11]. MOF2T is still in its early de-
velopment stage. QVT describes the needs for a new standard that should be able to
manipulate any model based on the Meta-Object Facility (MOF) meta-model. Since
the RFP issue, there have been several submissions which were ultimately merged into
one [12].

3.2.2 Transformation Composition
We expect that transformations should be able to incorporate functional, non-functional
(e.g. memory management) and technical (e.g. J2ME specifics) concerns. Obviously,
such transformations could become very cumbersome and complex. Ideally, there
should be a chain of transformations each addressing only one concern so that it be-
comes easy to implement and to reuse. However most of the current MDD practices
imply MDA’s monolithic forward PIM-to-PSM and PSM-to-code transformations.

We believe that it is better to feed a model to a chain of several transformations
that each manipulate the model with regard to one specific functional, non-functional
or technical concern. Multiple transformations would allow us to better modularize the
transformations themselves. As a consequence the individual transformations would be
easier to implement and reuse. When introducing a transformation chain we should not
only identify the transformations, but also pay attention to their interdependencies in
order to obtain composable, loosely coupled transformations.

3.2.3 Model Interchange and Storage
In order to use MDD for software development, a wide range of model transformations
need to be applied and different tools need to be connected for performing all required
operations. This creates the need for linking the output of a process step to the input
of another process step. Due to the heterogeneity of tools in both functionality and the
way users interact with them, connecting tools is very difficult.

56 A. Hovsepyan et al.

OMG tries to solve this problem by introducing XMI, an XML standard for inter-
changing MOF-compliant models. However XMI versions 1.x are known to lack strong
semantics which has forced each tool provider to interpret the standard differently. Ver-
sions 2.x are said to fix the issues from previous versions however no implementation
results are available yet.

An alternative to the OMG solution is to admit the heterogeneity of model represen-
tation and storage and try to implement a “model bus” [13] which realizes model inter-
change. The idea behind a model bus is to ensure functional and protocol connectivity.
Functional connectivity means that the input and output of each transformation should
have compatible metamodels in order to be connected. Protocol connectivity should en-
sure that transformation connections can be realized. In particular, the connected trans-
formations must agree in a model representation form and interaction styles.

3.3 Traceability

Traceability is often associated with the tracking of requirements across all artifacts
throughout the software development process. However, it can also refer to the log-
ging of transformation operations and their source/target model element mappings. We
define traceability as the ability to extract transformation history out of a transformed
model. A specific model element can then be traced back to their originating artifact,
which can be another model element, a use case, a requirement, etc.

We can distinguish between generic/full traceability and specific traceability. Full
traceability could be automatically accomplished by the transformation engine by link-
ing every changed element in the output model to its counterpart in the source model.
This makes traceability complete but not necessary very usable in subsequent trans-
formations since the created links are tightly coupled with the particular implemen-
tation of the previous transformation. Specific traceability does not aim to link every
source/target tuple but rather aims to form tuples that have a more semantically rich
meaning without overcrowding that traceability model. Such specific links can be used
more easily across transformations, but may require the developer to insert them man-
ually. It is also not very clear how to determine which kinds of specific links could be
useful for subsequent transformations.

Related to the levels of traceability is the issue of standardization of traceability
models. It is important to think about what information exactly will be stored in the
traceability model. For example, do we want to link as far as textual requirements, do
we want traceability across different types of models, do we want to record responsible
developers, etc. The advantage of having a single standardized traceability metamodel
is that every transformation can always understand the included information, while the
disadvantage probably would be its genericity. A possible solution is to have a basic
but extensible traceability metamodel that can be adapted to specific needs while still
allowing interoperability and interchange between tools and people.

Finally there is the issue of representation of traceability links and integration of
traceability in models. Should we store traceability information inside our models them-
selves (intra-model) or rather externally in a separate traceability model that refers to
the elements of the former model (extra-model)? One could argue that the intra-model
approach, which can for example be realized with profiles in the UML case, leads to

Key Research Challenges for Successfully Applying MDD 57

a certain pollution of the model. In the extra-model approach, we need a mechanism
to refer to model elements from within our traceability model, for example unique
identifiers. In this case a problem would be keeping both models synchronized. Us-
ing two separate models can potentially make transformations more complicated since
they need to take an extra input if they want to use traceability information.

3.4 Integration of Existing Software

Programming languages usually provide a rich set of libraries which contain implemen-
tations of complex mathematical functions, different algorithms, text manipulation, etc.
These libraries of existing functionality can save developers a huge amount of time. It
is however not always very clear how to make these functions available to the modeler.
Two possible approaches that are taken by tool manufacturers are the following:

– Provide a domain abstraction layer that captures all knowledge on these API calls.
This approach does not scale and each time a new programming language or API
version arises the tool should be modified to include the new mappings.

– Reverse engineer the whole language API into a model. This results into a rather
huge and unstructured API model. Moreover we can reverse engineer only to the
lowest level of abstraction, and thus cannot easily use higher-level API-related de-
sign patterns in the PIMs.

Besides integration of standard libraries it is also important to consider the integration
of COTS software and legacy applications into new MDD efforts. Existing systems of-
ten serve as a starting point for new developments since they have proven their strength
and are considered to be “trustworthy”. Therefore it is unrealistic for an MDD project to
assume starting from scratch. COTS and legacy system integration is often a matter of
representing existing interfaces in our modeling environment using adequate wrappers.
However, it is not always clear how to do this. Should we just take the raw interfaces
(e.g. by capturing them in UML interfaces) or should we hide the interfaces behind a
domain concept? Many problems in this field are worked on by OMG’s ADM (Archi-
tecture Driven Modernization) task force.

4 Conclusion

MDD is based on the idea to describe the software using a model and apply an automated
transformation which creates the source code from the model. MDD is a generic para-
digm which does not aim to specify how and which models and transformations should
be specified. MDA and MIC are specific visions of MDD which present different mod-
eling frameworks and guidelines. It is still unclear at this moment whether to favor a
Meta-metamodel based MDD approach above a UML Profile-based MDD approach.

Projects that have successfully applied MDD do exist, but they tend to fill the gaps in
an ad-hoc way. In order to obtain the benefits from a full MDD Software Development
Process for Real-Time Embedded System Development, there are a number of research
challenges that still have to be addressed adequately, including proper standardization
and tool support, in the field of modeling levels, model transformations, traceability and
existing software integration.

58 A. Hovsepyan et al.

References

1. ISIS: (Model integrated computing)
2. X. Blanc, S.B., Gervais, M.P.: (A critical analysis of mda standards through an implementa-

tion: the modfact tool)
3. Emerson, M.: (Gme-mof: A mda metamodeling environment for gme)
4. ISIS: (Generic modeling environment)
5. ProMARTE: (Uml profile for modeling and analysis of real-time and embedded systems)
6. S. Mellor, M.B.: Executable UML. (2002)
7. SysMLPartners: (Sysml)
8. authors-not specified: Atl : Atlas transformation language (2002)
9. authors-not specified: (Velocity templates)

10. Group, O.M.: Omg/rfp/qvt mof 2.0 query/views/transformations rfp (2001)
11. Group, O.M.: (Omg rfp: Mof model to text transformation rfp)
12. Group, O.M.: Qvt-merge group submission for mof 2.0 query/view/transformation (2005)
13. Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus: Towards the interoperability of modelling

tools. In: MDAFA. (2004) 17–32

Domain-Specific Modeling of Power Aware Distributed
Real-Time Embedded Systems

Gabor Madl and Nikil Dutt

Center for Embedded Computer Systems
University of California, Irvine, CA 92697, USA�

{gabe, dutt}@ics.uci.edu

Abstract. This paper provides two contributions to the research on applying
domain-specific modeling languages to distributed real-time embedded (DRE)
systems. First, we present the ALDERIS platform-independent visual language
for component-based system development. Second, we demonstrate the use of
the ALDERIS language on a helicopter autopilot DRE design. The ALDERIS

language is based on the concept of platform-based design, and explicitly cap-
tures asynchronous event-driven component interactions as well as the underly-
ing platform for the computation. Unlike most modeling languages, ALDERIS has
formally defined semantics providing a way for the formal verification of dense
real-time properties and energy consumption.

1 Introduction

Component-based design is an emerging principle for the engineering of complex high-
availability distributed real-time embedded (DRE) systems. It has been successfully
applied in the domains of hardware design [1], QoS-aware middleware [2], and intel-
lectual property (IP) reuse [3], among others. Components provide an intuitive way
to reuse proven designs and implementation, shifting the focus from development by
construction to development by composition.

Despite recent advances in component-based system design, several key challenges
remain that make it hard to develop complex DRE systems with hard QoS-support.
Mission-critical system design requires a paradigm shift from conventional methods;
the worst case behavior of components have to be considered instead of the average be-
havior. QoS-support has to be an integral part of the design process providing a way for
the rapid evaluation of system designs on a formal basis. To provide a practical model-
ing language for embedded systems one has to consider how to express multiple QoS
properties using the same language. Designers have to provide a method that allows to
find a balance between various properties such that the system as a whole satisfies all
major design constraints.

Domain-specific modeling languages (DSMLs) are languages targeting a well-de-
fined application domain. This approach is rather different from mainstream modeling
efforts that focus on creating a language for a wide range of applications, such as UML.
DSMLs in our approach are defined using meta-modeling [4] therefore the designer
has the option of creating languages that have well defined semantics and are a good

� This research was partially supported by the NSF Grant ACI-0204028.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 59–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

60 G. Madl and N. Dutt

fit for a problem domain. Large-scale systems that involve several application domains
are modeled as a composition of DSMLs. We believe that defining semantics to smaller
modeling languages and their composition is more likely to succeed than to define it for
a large generic modeling language.

This paper presents the Analysis Language for Distributed, Embedded and Real-
time Systems (ALDERIS) DSML. ALDERIS is a specification language for power aware
distributed real-time embedded systems. The language captures dense (continuous-
scale) real-time properties on a distributed platform, and energy savings methods based
on frequency- and voltage-scaling. ALDERIS provides a way for the design-time for-
mal verification of system models as well as automated simulation. We also present an
equivalent compact XML representation that is the input language of the open-source
Distributed Real-time Embedded Analysis (DREAM) tool. DREAM implements several
analysis and optimization algorithms [5] and also supports formal verification based on
the UPPAAL [6] and IF toolsets [7].

The remainder of the paper is organized as follows: Section 2 describes the ALDERIS

language its design by meta-modeling, Section 3describes a case study that demonstrates
the use of the ALDERIS modeling language, Section 4 compares the results with related
work on the field, and Section 5 presents concluding remarks.

2 The ALDERIS Domain-Specific Modeling Language

This section describes the ALDERIS DSML and its role in our model-based analysis
framework. The formal semantics of ALDERIS is described in [5]. We formalize an
abstract model of computation that can express dense real-time properties and power
consumption in a common semantic domain. We propose a platform-based analysis of
DRE systems consisting of two major aspects: dependency, which describes various
relations and dependencies between tasks, and platform, which specifies the platform

Fig. 1. Model-based Analysis Framework based on ALDERIS and DREAM

Domain-Specific Modeling of Power Aware DRE Systems 61

that executes the tasks. We capture both these aspects in ALDERIS by specifying the
event flow between tasks and their mappings to platform processors.

The ALDERIS language has both visual and textual concrete syntax. Subsection 2.2
describes how we used the meta-modeling to specify the visual syntax of ALDERIS

using the Generic Modeling Environment (GME) [8] tool by specifying elements and
associations between them. Associations can express various relations such as contain-
ment, inheritance etc. The textual syntax of ALDERIS is based on XML schemas that
provides an easy way to exchange the models between various tools. The XML repre-
sentation has the same abstract syntax as the visual models.

Figure 1 shows an overview of the model-based analysis framework based on
ALDERIS and DREAM. ALDERIS models can directly be analyzed using the DREAM

tool. The DREAM tool is based on the timed automata [9] model of computation and
implements algorithms for (1) real-time verification using the UPPAAL [6] and Verimag
IF [7] tools, (2) simulation-based verification of non-preemptive systems based on a
discrete event scheduler [5], and (3) power management policy synthesis using the UP-
PAAL tool [5]. The timed automata models are automatically generated from ALDERIS

models as described in [10]. This paper describes the format of the visual and textual
ALDERIS models in a simple helicopter autopilot case study. We illustrate the use of
the timed automata-based analysis in Section 3. However, the ALDERIS DSML does
not assume the timed automata formalism and allows the use of other models of com-
putation such as data-flow or Petri-nets. For the detailed discussion of analysis methods
already implemented in DREAM please see [10, 5].

2.1 Syntax

The ALDERIS model of computation is a tuple M = {T,C,TR,T H,PR} where T is a
set of tasks, C is a set of event channels, TR is a set of timers which are special tasks
that publish events at a given rate, T H is a set of threads that represent tasks that are
scheduled non-preemptively, and PR is a set of platform processors. Tasks and timers
are assigned to execute on a specific thread and processor. The thread associated with a
given task or timer is specified by the map Thread : T ∪ TR → T H, and the processor
associated with a given thread is specified by the map Processor : T H → PR. Timers
generate periodic events as specified by the map Period : T R → N

+. Tasks are attributed
by the properties priority, sub-priority, deadline, worst case execution time, best case
execution time specified by the mappings p(t) : T → N

+, sp(t) : T → N
+, deadline(t) :

T → N
+, wcet(t) : T → N

+, bcet(t) : T → N
+. We write State(t,x) to denote the state

of t at (global) time xg: (∀t ∈ T)(∀x ∈ N) State(t,x) ∈ {init,wait,run,pass}.

2.2 Specifying the ALDERIS DSML Using Meta-modeling

The ALDERIS language is expressive enough to capture a wide range of DRE sys-
tems [5]. This section demonstrates how the concepts of model-integrated computing
(MIC) [4] can be utilized to define the ALDERIS DSML. MIC promotes a metamodel-
based approach for powerful domain-specific abstractions that capture key concepts and
concerns of DRE systems, such as their structure, behavior, and environment, as well
as the QoS properties they must satisfy.

62 G. Madl and N. Dutt

Fig. 2. Specifying the ALDERIS DSML using Meta-modeling

GME [8] is an MIC toolsuite that provides a visual interface to simplify the devel-
opment of domain-specific modeling languages (DSMLs). GME contains a metamodel-
ing environment that supports the definition of paradigms, which are type systems that
describe the roles and relationships in particular domains. GME has a flexible object-
oriented type system that supports inheritance and instantiation of elements of DSMLs.

Figure 2 illustrates the specification of the ALDERIS language using the GME meta-
model, which is a variation of UML class diagrams. The figure shows a part of the
ALDERIS meta-model with its corresponding visual representation in GME. The curvy
arrows show how individual modeling elements and their relations are defined by dif-
ferent parts of the meta-model. The ALDERIS modeling language is automatically syn-
thesized from the meta-model by the GME tool. The next section describes how the
synthesized ALDERIS DSML is used to model power aware DRE systems.

3 Applying ALDERIS to Helicopter Autopilot Design

This section describes a small-scale helicopter autopilot case study to illustrate the use
of the ALDERIS modeling language. Please see our technical report [5] for more de-
tailed discussion, performance analysis and large-scale examples, and the underlying
analysis methods based on timed automata model checking methods and simulations.

Helicopter controllers are well-known real-time mission-critical systems, since he-
licopters inherently have unstable flight modes that have to be avoided, otherwise the
safety of the helicopter can be at risk. Although energy consumption is not a traditional

Domain-Specific Modeling of Power Aware DRE Systems 63

Fig. 3. The Dependency Aspect of the Autopilot Design

problem domain for autopilot design, the wider adoption of unmanned aerial vehicles
(UAVs) will require cheaper and smaller DRE systems where power consumption is an
essential design constraint. Traditional engineering practices used in airplane and heli-
copter design involve extensive testing and validation that is too costly for UAV design.
ALDERIS provides a simple modeling language to experiment, evaluate, and formally
verify power aware DRE systems.

Figure 3 shows the dependency aspect of the autopilot application. Dependencies
are captured using generic (not synchronous) dataflow semantics, following the pub-
lisher/subscriber communication pattern [11]. The event channels serve two major pur-
poses in the design: (1) they can model delays in the communication between tasks
and components. The event channel captures delays as intervals similarly to the tasks’
execution intervals. (2) Event channels provide simple FIFO buffering between tasks
and components alleviating the need to synchronize communication between the event
sources (publishers) and the event sinks (subscribers).

The dependency aspect focuses mainly on the software components and their inter-
actions. The autopilot consists of 3 major components and a few tasks that represent
simple sensors and actuators. There are 3 timers in the system (Gyro Rate, INS Rate,
and Radio Rate) that drive the computations with different rates. The top part of Fig-
ure 3 shows the tail rotor controller. The Gyro component reads the gyroscope sensor
values and is connected directly to the tail servo that controls the tail rotor speed. This
setup provides fast response times resulting in stable tail movement, and is therefore
commonly used in helicopters.

The INS component represents the internal navigation system of the helicopter,
and is based on several sensors such as the inertial measurement unit, compass,
and/or GPS devices. The INS component implements computationally more expensive

64 G. Madl and N. Dutt

Fig. 4. The Platform Aspect of the Autopilot Design

functionalities than the Gyro component. Instructions for the autopilot may be transmit-
ted over the radio that is handled by the receiver. The received message together with
the INS data is fed into the Pitch component that controls the cyclic and collective
pitch of the main rotor. The control signal is sent to the servos/actuators ”steering” the
aircraft as necessary.

Figure 4 shows the platform aspect of the autopilot case study. There is one main
CPU in the system that schedules the Control Thread and Radio Thread preemp-
tively based on their priorities. The assignment of tasks and timers to the two threads is
shown with dashed lines. The event channels and some of the simple tasks represent-
ing sensors and actuators are not mapped to the main CPU as these components are
scheduled non-concurrently. The reason for this in the case of sensors/actuators is that
they have their own hardware and their execution depends solely on their own states.
The event channels model delays and the buffering of the network layer which does not
require further scheduling. Priorities for the threads and sub-priorities for the tasks are
represented in the model as simple attributes that can be updated using the visual GUI.

Table 1. Timing Information for the Autopilot Case Study

Task WCET BCET DL P

Gyro 3 2 5 -
Tail Servo 1 1 2 -
INS Task 4 2 5 high

Pitch Task 2 1 7 high
Main Servos 2 2 3 -
Receiver 3 3 20 low

Channel WCDelay BCDelay

Gyro Channel 2 1
INS Channel 3 2
Pitch Channel 3 1

Receiver Channel 4 2

Domain-Specific Modeling of Power Aware DRE Systems 65

<?xml version="1.0" encoding="UTF-8"?>
<DRESystem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="alderis.xsd" name="helicopter autopilot" version="1.0">

<DependencyAspect>
<Node>

<Task name="Gyro" deadline="2" subpriority="1" wcet="1"/>
...<Channel name="Gyro Channel" buffersize="2"/>
...<Timer name="Gyro Rate" period="5"/>

<Hierarchy>
<Component name="INS">

<TaskContainment task="INS Task"/>
</Component>
...</Hierarchy>

<Dependency>
<TimerToTask timer="Gyro Rate" task="Gyro"/>
...<TaskToChannel task="Gyro" channel="Gyro Channel"/>
...<ChannelToTask channel="Gyro Channel" task="Tail Servo"/>
...</Dependency>

</DependencyAspect>
<PlatformAspect>

<Thread name="Control Thread" priority="1" queueingpolicy="FixedPriority">
<TimerMapping timer="INS Rate"/>
<ComponentMapping component="INS"/>
...</Thread>

<CPU name="Main CPU" schedulingpolicy="FixedPriority">
<QoSLevel speed="2" power="4"/>
...<ThreadMapping thread="Control Thread"/>
...</CPU>

<CPU name="NonConcurrentManager" schedulingpolicy="NonConcurrent">
<ThreadMapping thread="NonConcurrent"/></CPU>

</PlatformAspect>
</DRESystem>

Fig. 5. Partial ALDERIS XML Representation for the Helicopter Autopilot

The possible execution speeds and their corresponding power levels can be specified as
QoS-level attributes of the Main CPU. In the helicopter autopilot case study we assume
that Main CPU has a full speed and a half-speed mode, and that tasks that execute in the
full speed mode consume 4 times as much energy.

Figure 4 shows how we modeled these two QoS-levels by introducing two
QoSLevel atoms and associating them with the CPU. Any number of QoS-levels can
be modeled this way, however ALDERIS cannot capture voltage scaling on a continuous
scale. This method provides a way to capture dynamic voltage scaling as well as fre-
quency scaling by specifying the relation between execution speed and its correspond-
ing power level for each QoS-level. Algorithmic methods can utilize this information to
obtain a power management policy that respects real-time guarantees. Please see [5] for
the thorough discussion of the timed automata-based method for power management
policy synthesis, and the timed automata models generated from ALDERIS. Figure 5
shows the XML representation of the helicopter autopilot case study shown in Figure 3
and Figure 4. The XML format is specified using schemas and provides a simple method
to exchange ALDERIS models between tools.

Table 1 shows the parameters assigned to the case study. We have analyzed the heli-
copter autopilot case study using these parameters using the DREAM tool, and found that
it is unschedulable because the INS component misses its deadline. At first this seems
strange as the INS component is deployed on the high-priority Control Thread, and
depends only on the INS Rate timer, therefore it should not wait for low-priority tasks.

66 G. Madl and N. Dutt

Fig. 6. Unschedulable Execution Trace Detected using Timed Automata Models

A great advantage of the model checking method is that whenever a property is vio-
lated a counter-example can be automatically obtained. Figure 6 illustrates the execution
trace of the counter-example generated by the UPPAAL model checker. The reason be-
hind the missed deadline is that the Pitch component may already been executing when
the INS component becomes enabled. Since non-preemptive scheduling is used between
tasks deployed on the same thread the INS component has to wait for the Pitch compo-
nent to finish its execution. To compensate for this hidden dependency between the INS
and Pitch component we have increased the deadline of the INS component to 7 units
which turns the system schedulable. Moreover, our analysis shows that if we specify 10
units deadline for the INS and Pitch components the processor can save 24% energy by
switching to the half speed mode during the execution of these tasks.

The performance of the timed automata-based verification scales exponentially with
respect to the number of tasks. Verifying the example shown in Figure 3 and 4 takes
around 2 seconds on a 1.6GHz Pentium 4-M processor with 768 MB memory running
the Windows XP OS. Please see [10, 5] for the detailed discussion on the verification
method.

4 Related Work

The SAE AADL is an international standard avionics architecture description language.
AADL is a successor of the Honeywell MetaH toolset [12], a commercially available
domain-specific architecture description language (ADL) for developing reliable, real-
time multiprocessor avionics system architectures. AADL, however, does not consider
energy savings as an objective. In contrast, ALDERIS targets power aware DRE systems.

Domain-Specific Modeling of Power Aware DRE Systems 67

Ptolemy II [13] is a complex modeling framework that composes heterogeneous
models of computation to simulate and evaluate embedded systems. Although the MoCs
and their composition is formally defined the focus in Ptolemy II is simulation, not ver-
ification. In contrast, ALDERIS and the DREAM tool provide a way for formal verifica-
tion of dense timed systems using several model checkers.

The SYSWEAVER [14] toolset is a component-based framework that supports the
reusability of components across systems with different requirements. It supports code
generation, as well as automated analysis based on Matlab/Simulink and real-time rate-
monotonic analysis tools, such as the TIMEWIZ model-checker. In contrast, ALDERIS

focuses on dense time formal verification using the asynchronous event-driven
paradigm.

The CADENA [15] framework is an integrated environment for building and analyz-
ing CORBA Component Model (CCM) based systems. Its main functionality includes
CCM code generation in Java, dependency analysis, and model-checking. The empha-
sis of verification in Cadena is on software logical properties. In contrast, ALDERIS

represents time and power levels explicitly and allows dense time verification.
The Component Synthesis using Model Integrated Computing (COSMIC) [16]

toolkit is an integrated collection of DSMLs that support the development, configu-
ration, deployment, and evaluation of DRE systems based on CIAO, which is an imple-
mentation of the CORBA Component Model that is integrated with Real-time CORBA.
The major focus of COSMIC is software development, and does not support formal
verification.

The Virginia Embedded Systems Toolkit (VEST) [17] is a framework designed for
the reliable and configurable composition and analysis of component-based embed-
ded systems from COTS libraries. VEST applies key checks and analysis but - unlike
ALDERIS and the DREAM tool - does not support formal proof of correctness.

5 Concluding Remarks

This paper presents the ALDERIS domain-specific modeling language for component-
based power aware distributed real-time embedded systems with both visual and XML
textual syntaxes. ALDERIS explicitly captures component interactions as well as the
platform for computations providing an abstract framework for formal verification and
analysis. The ALDERIS meta-model is available for download at http://alderis.
ics.uci.edu. Models developed using ALDERIS can be verified and analyzed us-
ing the open-source DREAM tool available for download at http://dre.
sourceforge.net.

References

1. Alberto Sangiovanni-Vincentelli: Defining Platform-based Design. EEDesign of EETimes
(2002)

2. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
3. Daniel D. Gajski and Allen C.-H. Wu and Viraphol Chaiyakul and Shojiro Mori and Tom

Nukiyama and Pierre Bricaud: Essential Issues for IP Reuse. In: Asia and South Pacific
Design Automation Conference (ASP-DAC 2000). (2000) 37 – 46

68 G. Madl and N. Dutt

4. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. IEEE Computer (1997) 110–112
5. Madl, G., Dutt, N.: Tutorial for the Open-source DREAM Tool. In: CECS Technical Report.

(2006)
6. Pettersson, P., Larsen., K.G.: UPPAAL2k. Bulletin of the European Association for Theoret-

ical Computer Science 70 (2000) 40–44
7. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF Toolset. Formal Methods for the

Design of Real-Time Systems, LNCS 3185 (2004) 237–267
8. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J.: Composing

Domain-Specific Design Environments. Computer (2001) 44–51
9. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2)

(1994) 183–235
10. Madl, G., Abdelwahed, S., Schmidt, D.C.: Verifying Distributed Real-time Properties of

Embedded Systems via Graph Transformations and Model Checking (accepted). The Inter-
national Journal of Time-Critical Computing (2006)

11. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley & Sons, New York
(2000)

12. Vestal, S.: Formal Verification of the MetaH Executive Using Linear Hybrid Automata. In:
RTAS ’00: Proceedings of the Sixth IEEE Real Time Technology and Applications Sympo-
sium (RTAS 2000), Washington, DC, USA, IEEE Computer Society (2000) 134

13. Lee, E.A., Hylands, C., Janneck, J., II, J.D., Liu, J., Liu, X., Neuendorffer, S., Stewart,
S.S.M., Vissers, K., Whitaker, P.: Overview of the ptolemy project. Technical Report
UCB/ERL M01/11, EECS Department, University of California, Berkeley (2001)

14. de Niz, D., Bhatia, G., Rajkumar, R.: Model-Based Development of Embedded Systems:
The SysWeaver Approach. In: Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’06). (2006) 231–242

15. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath, V.P.: Cadena: An Integrated De-
velopment, Analysis, and Verification Environment for Component-based Systems. In: Pro-
ceedings of International Conference on Software Engineering. (2003)

16. Gokhale, A., Balasubramanian, K., Balasubramanian, J., Krishna, A.S., Edwards, G.T.,
Deng, G., Turkay, E., Parsons, J., Schmidt, D.C.: Model Driven Middleware: A New Par-
adigm for Deploying and Provisioning Distributed Real-time and Embedded Applications.
The Journal of Science of Computer Programming: Special Issue on Model Driven Archi-
tecture (2005 (to appear))

17. Stankovic, J., Zhu, R., Poornalingham, R., Lu, C., Yu, Z., Humphrey, M., Ellis, B.: VEST:
An Aspect-based Composition Tool for Real-time Systems. In: Proceedings of the IEEE
Real-time Applications Symposium. (2003)

Mining Dynamic Document Spaces with Massively
Parallel Embedded Processors

Jan W.M. Jacobs1, Rui Dai2, and Gerard J.M. Smit3

1 Océ Technologies BV, PO Box 101,
5900MA Venlo, The Netherlands

jan.wm.jacobs@oce.com
2 National University of Singapore, Design Technology Institute Faculty of Engineering,

10 Kent Ridge Crescent, Singapore 119260
3 University of Twente, PO Box 217,
7500AE Enschede, The Netherlands

Abstract. Currently Océ investigates future document management services.
One of these services is accessing dynamic document spaces, i.e. improving the
access to document spaces which are frequently updated (like newsgroups). This
process is rather computational intensive.

This paper describes the research conducted on software development for mas-
sively parallel processors. A prototype has been built which processes streams of
information from specified newsgroups and transforms them into personal infor-
mation maps.

Although this technology does speed up the training part compared to a gen-
eral purpose processor implementation its real benefits emerges with larger prob-
lem dimensions because of the scalable approach.

1 Introduction

We are living in a society that is flooded with information. People need tools to struc-
ture this information and/or inform users on new trends or remarkable events. One way
of visualising the unknown structure of the targeted information sources is by using the
Self Organising Map (SOM) neural network [1][2][3]. This network can be visualised
by a rectangular map, see Fig. 1. In the map similarity between newsgroup articles,
indicated by the labelled dots, is expressed as proximity1. The colour of the neurons
indicates whether neighbouring neurons are similar or different. Clusters of similar ar-
ticles are grouped into a “country”, which has been given a name and is bordered by
red lines.

For recurring visualisations the map is only useful if its global structure does not
change that much when new articles are incorporated. Only then will the user be able to
quickly reorientate so he/she can see the new changes (cognitive spatial memory effect).

The generation of these maps, however, is very demanding in compute power. Ear-
lier implementations based on Intel’s Pentium lack the required responsiveness but do
show a straightforward development process, a property of programmable systems. For-
tunately, many datamining tasks show simple massively parallel processing.

1 The shown partial example map covers the newsgroup BBC News and BBC Sports in June
2005. It is built up by a grid of 16 by 32 squared tiles (neurons) and each tile can accommodate
one or more samples (newsgroup articles).

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 69–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

70 J.W.M. Jacobs, R. Dai, and G.J.M. Smit

Fig. 1. Part of map of newsgroup articles Fig. 2. SOM reduces dimensions with good
preservation of structure. The original space
doc ∈ R

N = (f0, f1, . . . , fN−1) is mapped on a
better comprihensible space doc ∈ N

2 =(i, j).

This research is inspired by the potential advantages of massively parallel embed-
ded processors, namely flexibility and shorter design cycles compared to an FPGA ap-
proach, while attaining better performance (by scalable design) than a general purpose
processor. An important departure point, and in our eyes a novelty, is the reuse of the
same hardware for other demanding tasks like colour image processing [4] in Océ’s
problem domain. This research has been conducted in co-operation with Aspex Semi-
conductor, a fabless semiconductor company specialising in high performance, software
programmable, parallel processors based on associative technology [5].

The problem addressed in this paper is the implementation of the performance de-
manding SOM neural network training on a massively parallel processor in both an
effective and efficient way.

In chapter 2 the reader is introduced to some for this paper relevant concepts such
as: SOM, data mining and hardware architectures used for SOM. In chapter 3 we will
elaborate on the particular application and in subsequent chapters on implementation
issues (chapter 4) and results (chapter 5). Finally, in chapter 6 some conclusions will be
drawn.

2 Related Work

Data mining is an application that tries to find hidden patterns and relationships in data
that can be used for various purposes such as data analyses, observing trends, prediction
etc. One nice way to visualise the hidden relationships is by using the SOM neural
network. The network reduces the data volume of the original space while preserving
its original structure as faithfully as possible, see Fig. 2. The SOM network projects
the data in the N-dimensional space to a two-dimensional space. The original space is
encoded by sparse vectors, typically having over 104 dimensions, containing the relative
frequency of occurrence of significant words in the whole collection. After training, the
network exhibits a topological ordering, i.e. data samples (or newsgroup articles) which
are similar to each other are positioned in their proximity. Successful applications of
SOM networks can be found in visualising document spaces such as newsgroup articles
[2] and conference abstracts [3].

The reasons why SOM is taken as a clustering and visualisation tool are: it is better
suitable for human interpretation (2D graphic presentation versus 1D list as in Google),

Mining Dynamic Document Spaces with Massively Parallel Embedded Processors 71

it maintains the original structure as closely as possible, it allows for associativity (topo-
logical ordering) and it is less computational intensive and more robust than its com-
petitor Multi Dimensional Scaling (MDS) [6].

SOM training is in general a relative computational intensive step in data mining ap-
plications [7][6]. That is the reason why many hardware mappings for SOM have been
described since its conception in 1982. Because of its inherent parallel structure also
parallel implementations have been made. The most advanced ones have been written
for SIMD architectures such as CNAPS, Hypercube, Connection Machine and Mas-
Par, which, however, are expensive, bulky and have extremely high power consumption
[8][7][9]. Also other, more embedded parallel solutions have been devised like Trans-
puter [10] or FPGA [11]. The latter, however, exhibits rather long development cycles.
Fast development is supported by a general purpose processor with special SIMD ex-
tensions [12], but is too costly to be a serious contender for embedded applications.

Traditional computers, rely upon a memory that stores and retrieves data by its ad-
dress rather than its content. In such an organisation (von Neumann architecture), every
accessed data word must travel individually between the processing unit and the mem-
ory. The simplicity of this retrieval-by-address approach has ensured its success, but
has also produced some inherent disadvantages. One is the von Neumann bottleneck,
where the memory-access path becomes the limiting factor for system performance.
A related disadvantage is the inability to proportionally increase the performance of a
unit transfer between the memory and the processor as the size of the memory scales
up. Associative memory, in contrast, provides a naturally parallel and scalable form of
data retrieval for both structured data (e.g. sets, arrays, tables, trees and graphs) and
unstructured data (raw text and digitised signals). An associative memory can be easily
extended to process the retrieved data in place, thus becoming an associative processor.
This extension is merely the capability of writing a value in parallel into selected cells
[5]. Applications range from handheld gaming, multi-media, base transceiver stations
(BTSs), on-line transaction processing to heavy image processing, pattern recognition
and data mining [13][5].

Aspex’s Linedancer is an implementation of a parallel associative processor. The ap-
proach taken by Aspex Semiconductor is to use many simple associative processors in
a SIMD arrangement. Each of the 4096 processing elements on the Linedancer device
has about 200 bits of memory (of which 64 bits are full associative) and a single bit
ALU, which can perform a 1 bit operation in 1 clock cycle. Operations on larger data
types take multiple clock cycles. The aggregate processing power of Linedancer de-
pends entirely on parallel processing. For example: a 32-bit add will take many times
the number of clock cycles taken by a high-end scalar processor, but due to the paral-
lelism 4096 additions can be performed in parallel. Multiple Linedancer devices can be
easily connected together to create an even wider SIMD array.

The Linedancer device (shown in Fig. 3) includes an intelligent DMA controller, to
ensure that data is moved in and out of the ASProCore concurrently with data process-
ing, and a RISC processor, to issue high level commands to the ASProCore and to set-up
the DMA controller. All parts of the device run at the same clock frequency, which can
be up to 400MHz.

72 J.W.M. Jacobs, R. Dai, and G.J.M. Smit

Fig. 3. Aspex Semiconductor’s Linedancer

Fig. 4. Processing pipeline, the amount of data communicated between the modules is indicated

A Linedancer is programmed in an extended version of C, with additional syntax for
controlling the ASProCore.

3 Specification of the Application

The purpose of the system presented in this paper is to transform the personal news-
group feeds into a personal 2D map. In this way the user will have a quicker overview
of the changes in his area of interest. The whole pipeline is described in Fig. 4. In order
to cluster newsgroups all articles have to be expressed in a common notation. As in
[2] we use multi-word terms extracted from the corpus (a collection of documents) of
newsgroup articles. Currently a tool named Sigmund is used, a Prolog project developed
at the University of Amsterdam [14].

The number of features in a newsgroup collection can become very large, even with
a modest number of articles. Since these document spaces are very sparse simple com-
pression methods suffice and good results have been reported [2].

One of the most time consuming tasks in the pipeline is the training of the SOM
neural network. The purpose of a neural network is to generalise from its training input
so that new and not trained samples can be clustered or classified correctly. The process
simply boils down to a controlled annealing of a set of neurons arranged in a rectangular
grid as will be described in section 3.1. The SOM exhibits spatial ordering, that is
neighbouring neurons have similar content.

Mining Dynamic Document Spaces with Massively Parallel Embedded Processors 73

The spatial order in the SOM is now exploited: similar newsgroup articles are posi-
tioned near each other. This allows for associativity since related articles are positioned
in each other vicinity. The final module prepares a Scalable Vector Graphics [15](SVG)
file for a light weight client. This SVG format allows for operations like zooming, pan-
ning and selection for viewing the article itself.

3.1 SOM Training

In this section we will go into some of the details of SOM training. First some defini-
tions are given, then followed by a mathematical framework and finally an example is
included. The most important concepts are:

– a neuron mi j(t) ∈ R
N with dimension N on a fixed position in a grid r = (i, j),

– an input sample xs ∈ R
N with the same dimension N as the neurons,

– a learning rate α(t) ∈ R to control the amount of learning,
– a neighbourhood matrix Λi j(t) ∈ R

2, defined on the same grid r = (i, j) to provide
for spatial ordering and finally

– a scalar σ(t) ∈ R to control the effective size of the neighbourhood matrix.

In the annealing process all samples xs are repeatedly offered (in so called epochs)
to all neurons mi j(t) in the grid. The neurons will be tuned towards a particular sample
xs by a certain fraction, see (1) below. This fraction is determined by the difference
between the sample xs and the neuron mi j(t), the learning rate α(t) and the neighbour-
hood matrix Λi j(t). The learning rate is relatively large in the early epochs to allow
for large changes and is small towards the end. In order to realise spatial ordering the
neighbourhood matrix Λi j(t) is controlled by the neighbourhood parameter σ(t). The
neighbourhood is as large as the network in the beginning and small in the end, see (2).
The function exp refers to the standard exponential function with base Euler’s number

e. The norm or length of a vector x can in general be defined by Lp(x = p
√

∑N
i |xi|p,

where p ∈ R, p ≥ 1. For p = 1,2,∞ the norm represents respectively Manhattan dis-
tance (1-norm), Euclidian (2-norm) and the max-norm, which is equivalent to maxi(xi).
The neighbourhood function, often a Gaussian function, is positioned in the 2D grid at
the location rwin ∈ N

2 of the best matching neuron, i.e. the neuron which is most similar
to the sample xs, see (3).

mi j(t + 1) = mi j(t)+ α(t) ·Λi j(t) · (xs − mi j(t)
)

update rule (1)

Λi j(t) = exp

(‖r − rwin(t)‖2

2σ2(t)

)
neighbourhood (2)

rwin(t) =
(
r,(i, j) ∈ N

2 | ∀i j min(xs − mi j(t)
)

winning neuron (3)

The following 5 steps will compute the update for a single neuron for a given sample
within an epoch:

Step 1. determine the high dimensional distance: ∀i j(xs − mi j(t))
Step 2. determine winning neuron location: rwin(t) = ∀i j min(xs − mi j(t))
Step 3. 2D distance computation: ∀i j(ri j − rwin(t))
Step 4. neighbourhood computation: see equation (2)
Step 5. compute the update for the neurons: see equation (1)

74 J.W.M. Jacobs, R. Dai, and G.J.M. Smit

3.2 Complexity Analysis for SOM Training

For this research we restricted ourselves to the SOM training. The algorithm of the
training process is given below, see program in Table 1. The training consists of a se-
quence of epochs, training sessions, in which 2 parameters are decreased in a controlled
way: the learning rate (α) and the neighbourhood (σ). Typical values for epochs is 250,
number of samples is 500 and map sizes W = 32, H = 16 and N = 256. The following

Table 1. SOM training program

for all epochs do
decrease α; decrease σ;
for each sample do

dist N D = compute N D distance(sample, all neurons); (1)
winning neuron = determine winner(dist N D); (2)
dist 2D = compute 2D distance(winning neuron, all neurons); (3)
neighbourhood = compute neighbourhood(dist 2D,σ); (4)

all neurons = all neurons + α·neighbourhood . (sample – all neurons); (5)
end

end

table not only summarises the sequential complexity but also includes concrete opera-
tion counts for the herefore mentioned values (in cycles per epoch per sample). In the

Table 2. Base complexity, for comparison purposes and projected gain by parallelisation

training step sequential complexity
order of operations

sequential
operations

projected order of
parallel operations

1. Distance in highD O(W ·H ·N) 393216 O(H + log2N)
2. Winner selection O(W ·H) 768 constant
3. Distance in 2D O(W ·H) 2560 constant
4. Determine neighbourhood O(W ·H) 512 O(H)
5. Update neurons O(W ·H ·N) 393216 O(H)

second column cycles are expressed in (big O) order notation. Conversion to concrete
numbers of operations is straightforward; the distance computations (steps 1 and 3),
however have to account for the subtraction, taking absolute value (for the 1-norm) and
finally adding all component values together. The 3rd column contains an estimate of
number of operations for a sequential processor. The last column shows the projected
parallel complexity for a particular parallel architecture, which is parallel in W ×N but
sequential in H. The additional O(log2N) accounts for the time to compute a binary
adding tree in parallel.

4 Implementation Restrictions and Choices

In order to map the SOM algorithm on the Linedancer in a performance optimal way
the following observations are important. It is shown in [11][7] that SOM is flexible

Mining Dynamic Document Spaces with Massively Parallel Embedded Processors 75

in the sense that it is somewhat robust to 1) lower precision (e.g. to 8 bit), 2) using a
simple distance metric (e.g. 1-norm or Manhattan distance) and 3) approximating the
neighbouring function as a box function.

With a 2 Linedancer system we have an 8K PE budget. Every PE is equipped with
128 bit Extended Memory (EM) and 64 bit Content Addressable Memory (CAM). We
have chosen to store the neurons in the array and the input samples in off-chip DRAM.
For the choice of dimension N, [16] has shown that for newsgroup articles N = 315
is adequate. For our application we used N = 256. Reference [11] reports a precision
of 8 to 16 bit; we used 8 bit. Although not tested extensively we, however, have the
impression that these values are sufficient for our purposes. The same applies to the
box function [7], our choice for the neighbouring function.

This leaves us with the following choice for map dimensions: W × H × N = 32 ×
16 × 256. The EM is used to store the neurons, the CAM is used to host the temporary
work registers. Each set of 256 PEs covers a row of H = 16 neurons with dimension
N = 256 and precision 8 bits, which fits in EM (i.e. 16 neurons × 8 bit=128 bits), see
Fig. 5. The DMA engine will copy the current input sample into I/O memory in a fast
way and in parallel to the computations.

The algorithm above is mapped in the following way, see also Fig. 6:

Step 1. The distance between the current sample and all neurons allows for parallel
computation of steps (1) and (5). For the current neuron column these absolute
differences is stored in the middle column of CAM (Fig. 6). The max-norm
is used to compute the length of these 32 differences in parallel instead of a
time consuming parallel adding tree. These results are stored in location 0 at
the bottom of each 256-segment. Subsequently the 15 other neuron columns
have their distances with this sample computed and stored at locations 1..15.

Fig. 5. Vertical arrangement of neurons over
PEs in extended memory

Fig. 6. Selecting the winning neuron and
computation of the neighbourhood in CAM
memory

76 J.W.M. Jacobs, R. Dai, and G.J.M. Smit

The end result is a single byte wide column (left column in CAM), covering
all 32×16=512 distances between the current input sample and the neurons.

Step 2. The winner selection is performed by a global minimum operation on these
512 distances, which can be done in a relatively fast way by using the associa-
tive property of the array. The winning neuron is indicated by one exclusively
tagged PE.

Step 3. From now on steps 3, 4 and 5 are performed per neuron column (so H times
in sequence). The (x,y) location of each neuron is conveniently stored in an
adjacent, rightmost, 16 bit column in the CAM. Hence the winning location
is selected to be broadcasted to each neuron, after which the 2D distance is
determined.

Step 4. The neighbourhood matrix is computed by a parallel comparison of locally
computed 2D distance from the previous step with the current global neigh-
bourhood parameter (2).

Step 5. The final update step is computed in parallel by multiplying the global learning
rate with the recomputed difference between neurons and input sample, only
for those neurons which were selected in the previous step (1).

5 Results

The performance measurements are now compared with two Pentium implementations,
one with SSE instructions and one without SSE instructions. See Table 3 for a detailed
comparison. Since the SSE can operate on 4 single precision floats at a time step 1 and
5 can speed up the sequential computation with this factor at maximum. Both Pentium
versions use the 1-norm for computing the length of a vector. The SSE version is de-
rived by compiling the algorithm Table 1 with the Intel C++ compiler (version 8.0).
The Linedancer results are measured cycles; the Pentium results are estimates derived
from assembly code. The Linedancers do speed up step 5 significantly beyond the clock
frequency ratio (2 GHz / 300 MHz). However, the performance of step 1 is disappoint-
ing for the 1-norm as well as for the max-norm. Especially for the max-norm, which
was expected to take fewer cycles because there is no need to sum up all components
as in 1-norm. In comparison with a Pentium a speed up of a factor 7 is achieved by a
2 Linedancer system, see Fig. 7. Using the 1-norm distance metric a speedup of 3.5 is

Table 3. Comparison

Training step Pentium Aspex Linedancers
sequential version
estimate [cycles]

SSE estimate
[cycles]

1-norm
[cycles]

max-norm
[cycles]

1. Distance in highD 393216 65024 43384 18028
2. Winner selection 768 768 2158 2158
3. Distance in 2D 2560 2560 100 100
4. Determine neighbourhood 512 512 38 38
5. Update neurons 393216 98304 5590 5536

Mining Dynamic Document Spaces with Massively Parallel Embedded Processors 77

achieved. The expected speed up is somewhat disappointing because the inherent paral-
lel nature of the SOM training process should map efficiently on the massively parallel
Linedancer.

The main reason for that is the relative high communication overhead in the time
spent in the inner loop. We collected for the most dominant part, the high dimensional
distance (step 1), how many cycles were spend in communication and how many in
computation. See Fig. 8. This figure shows that the communication overhead dominates
the computation cost.

If inter PE communication would be improved then for this step the performance
could match O(H+log2N) for 1-norm and O(H) for max-norm. When processing and
communication were perfectly balanced then this would result in a 3× performance
improvement for 1-norm and 5× for max-norm.

Fig. 7. Comparison of implementation alter-
natives

Fig. 8. Distribution of communication and
computation in High Dimensional Distance
computation

6 Conclusions

A single Linedancer is 3.5 times faster than a Pentium implementation in training a
SOM neural network.

Improving on inter PE communication such that computation and communication are
better balanced would not only increase the performance significantly (factor of 3 for
1-norm and 5 for max-norm) but would also improve the scalability to larger network
dimensions using multiple Linedancers.

It is recommended to improve the performance of the inter PE communication. A
solution could be to introduce a chordal ring communication structure [17] or wired-
OR functionality.

References

1. Meij, J., ed.: Introduction to Multidimensional Scaling. In: Dealing with the data flood.
Mining data, text and multimedia. STT/Beweton, The Hague, The Netherlands (2002)

2. Perelomov, I., Azcarraga, A.P., Tan, J., Chua, T.S.: Using structured self-organizing maps in
news integration websites (2002) http://citeseer.ist.psu.edu/perelomov02using.html.

3. Skupin, A.: A cartographic approach to visualizing conference abstracts. In: IEEE Computer
Graphics and Applications. (2002) 50–58

78 J.W.M. Jacobs, R. Dai, and G.J.M. Smit

4. Jacobs, J., Bond, W., Pouls, R., Smit, G.: Colour image processing with massively parallel
embedded processors. To appear in Parallel Computing (2005)

5. Aspex Semiconductor Ltd: Linedancer - overview (2005) http://www.aspex-semi.com/
pages/products/products linedancer overview.shtml.

6. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience (2000)
7. Kohonen, T.: Self-Organizing Maps. Springer (1997)
8. Nordstrom, T.: Designing parallel computers for self-organizing maps (1992) http://

citeseer.ist.psu.edu/nordstrom92designing.html.
9. Schikuta, E., Weidmann, C.: Data parallel simulation of self-organizing maps on hypercube

architectures. In: Proceedings of WSOM’97, Workshop on Self-Organizing Maps, Espoo,
Finland, June 4-6. Helsinki University of Technology, Neural Networks Research Centre,
Espoo, Finland (1997) 142–147 http://citeseer.ist.psu.edu/72587.html.

10. Wu, C.H., Hodges, R.E., Wang, C.J.: Parallelizing the self-organizing feature map on multi-
processor systems. Parallel Computing 17 (1991) 821–832

11. Pohl, C., Franzmeier, M., Porrmann, M., Rückert, U.: gnbx reconfigurable hardware accel-
eration of self-organizing maps. In: Proceedings of the IEEE International Conference on
Field Programmable Technology (FPT’04), Brisbane, Australia (2004) 97–104

12. Garcia, C., Prieto, M., Pascual-Montano, A.: A speculative parallel algorithm for self-
organizing maps. To appear in Parallel Computing (2005)

13. Krikelis, A., Weems, C.: Associative Processing and Processors. IEEE Computer Society
(1997)

14. Anjewierden, A., de Hoog, R., Brussee, R., Efimova, L.: Knowledge flows in weblogs. In:
Proceedings of the 13th International Conference on Conceptual Structures (ICCS 2005),
Kassel, Germany (2005)

15. W3Schools: Introduction into svg (2006) http://www.w3schools.com/svg/svg intro.asp [On-
line, accessed 12/04/2006].

16. Azcarraga, A.P., Teddy N. Yap, J.: Extracting meaningful labels for websom text archives. In:
CIKM ’01: Proceedings of the tenth international conference on Information and knowledge
management, New York, NY, USA, ACM Press (2001) 41–48

17. NeoMagic Corporation: The technology of associative processor array (2002) http://
www.neomagic.com/product/apa version3 1.pdf.

Efficient Automated Clock Gating Using CoDeL

Nainesh Agarwal and Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria
Victoria, B.C., Canada

{nagarwal, nikitas}@ece.uvic.ca

Abstract. We present a highly efficient automated clock gating plat-
form for rapidly developing power efficient hardware architectures. Our
language, called CoDeL, allows hardware description at the algorithm
level, and thus dramatically reduces design time. We have extended
CoDeL to automatically insert clock gating at the behavioral level to
reduce dynamic power dissipation in the resulting architecture. This is,
to our knowledge, the first hardware design environment that allows an
algorithmic description of a component and yet produces a power aware
design. To estimate the power savings, we have developed an estimation
framework, which is shown to be consistent with the power savings ob-
tained using statistical power analysis using Synopsys tools. To evaluate
our platform we use the CoDeL implementation of a counter and vari-
ous integer transforms used in the realm of DSP (Digital Signal Process-
ing): discrete wavelet transform, discrete cosine transform and an integer
transform used in the H.264 (MPEG4 Part 10) video compression stan-
dard. These designs are then clock gated using CoDeL and Synopsys.
A simulation based power analysis on the designed circuits shows that
CoDeL’s clock gating performs better than Synopsys’ automated clock
gating. CoDeL reduces the power dissipation by 83% on average, while
Synopsys gives 81% savings.

1 Introduction

For rapidly prototyping hardware architectures, we have developed a system level
design language, called CoDeL (Controller Description Language) [1,2,3], which
allows system description at the algorithmic level. CoDeL allows rapid design
and implementation of hardware modules without understanding the intricacies
of hardware description languages such as VHDL and Verilog. In fact, CoDeL
compiles to create synthesizable VHDL code that can be simulated and syn-
thesized using standard VHDL tools. CoDeL is a procedural language in which
the order of the statements implicitly represents the sequence of activities. It
extracts the data and control flow from the program automatically, assigns the
necessary hardware blocks and exploits inherent parallelism. It is similar to the
C programming language and is therefore easy to learn. Details of the language
can be found in [1, 4].

We have now developed extensions to the CoDeL compiler which implement
clock gating to dramatically lower dynamic power dissipation in CMOS VLSI

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 79–88, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 N. Agarwal and N.J. Dimopoulos

circuits. To estimate these power savings from automated clock gating, we have
developed an analysis framework, which allows quick and accurate power savings
estimation based on the description at the behavioral level. This estimation
framework is built into the CoDeL compiler and the estimates are output upon
compilation of a design. To test this CoDeL platform we have built and analyzed
four architectures: a simple counter, a discrete wavelet transform, a discrete
cosine transform and an integer transform used in the H.264 (MPEG4 Part 10)
standard [5].

Section 2 provides a brief description of CoDeL’s clock gating extension. In
section 3 we present an analysis framework for estimating the power savings from
CoDeL’s clock gating extension. In section 4, four architectures are presented
and implemented to test the CoDeL platform. Results are presented in section
5, while section 6 concludes.

2 CoDeL Clock Gating

In synchronous circuits, it is well known that the continuously switching clock
signal can account for as much as 45% of the system power [6]. Thus, reduction
in the power used by the clock signal is key in reducing total power dissipation.
Gated clocks can be used to reduce the clock switching in the clock tree and to
the leaf registers and flip-flops, where feasible. Clock gating has been explored
by several researchers [6, 7, 8, 9, 10].

CoDeL uses a sequential machine to determine the sequence of operations
and data transfers in and out of registers. Because of this sequential machine,
we know the exact time of the events, and we can anticipate them.

The compiler gathers information on register reads and writes in each state
of the finite state machine. We express reads as rs

i , where a read is performed for
register i in state s. Similarly, writes to register i in state s are referred to as ws

i .
The set of all registers written in state s is ws, while the set of all registers read
in state s is rs. Let the total number of registers be N and the total number of
states be M , i ∈ [1, N], and s ∈ [1, M].

Using state transition information and the set of reads and writes in each
state we can determine the register writes which are necessary and which are
useless. The following rules determine that a particular write (ws

i) is useless.

– Multiple writes without any read in between means all but the last write are
useless.

– All writes after the last read of a further-unused register are useless.

Using these rules the set of writes ws is minimized to include only those
register writes that are necessary. We call this minimized set w̃s.

It is not possible to discover all useless writes through a pure static analysis
of the state machine. A run-time mechanism is needed to discover all such useless
writes.

Since CoDeL implements designs as a Moore finite state machine, the clock
gates for the registers are simply a function of the current state. Thus, simple

Efficient Automated Clock Gating Using CoDeL 81

combinational logic can be used to set up a clock gate. It should be noted that
the register encoding the state is not clock gated. Thus, to ensure the state value
stabilizes and setup and hold times are met for the register inputs, we use the
falling edge of the clock to clock the gated registers. In effect, we have introduced
a two-phase clocking mechanism. This allows us to clock a register only in the
state where the value of the register needs to be updated. Otherwise, the register
is not clocked. This is presented in figure 1.

Combinational
LogicState bits

FF

Clk

Register

Fig. 1. Clock Gating Circuit

The minimum number of bits for a register which should be clock gated is
left as a configurable parameter, ξ, which is an input to the CoDeL compiler.
Thus, a register r is clock gated only if len (r) ≥ ξ.

3 Power Savings Estimation Framework

The dynamic power savings obtained are divided into two parts. In the first part,
we examine the saved power due to the removal of useless switching, while in
the second part we examine the savings due to the reduction of clock fanning.

3.1 Useless Switching

For the entire state machine the total number of bits that are potentially written
to, W , can be calculated as W =

∑M
s=1
∑

ws
i ∈ws len (ws

i), where ws is the unop-
timized set of written registers in state s. The optimized total number of written
bits, W̃ , needs to account for all those non-gated registers whose bit length is
less than the threshold ξ.

W̃ =
M∑

s=1

⎡
⎢⎣ ∑

ws
i ∈w̃s

len (ws
i) +

∑
ws

i ∈ws,len(ws
i)<ξ

len (ws
i)

⎤
⎥⎦ .

To take into account that not all potential writes result in actual writes,
the total number of written bits W needs to be reduced. Let η be a statistical
quantity representing the fraction of total potential writes that are actual writes.

82 N. Agarwal and N.J. Dimopoulos

Not taking into account the clock gating overhead, the fraction of clock power
saved due to the removal of useless switching, Ps, is proportional to the fraction
of writes saved.

Ps = 1 − 0.5 W̃

0.5 ηW
= 1 − W̃

ηW
(1)

where the 0.5 factor is included to reduce the number of actual number of
bits that change states. Here we assume that on average when a register value
changes, only half of its bits change value.

3.2 Clock Switching

The total number of clocked register bit states is given by C = M ×∑N
i=1 len (ri),

where ri is the ith register.
After clock gating, the number of clocked register bit states is given by

C̃ =
M∑

s=1

⎡
⎢⎣ ∑

ws
i ∈w̃s,len(ws

i)≥ξ

len (ws
i) +

∑
len(ri)<ξ

len (ri)

⎤
⎥⎦ .

Not taking into account the clock gating overhead, the fraction of power
saved due to the reduction in clock switching, Pc, is proportional to the fraction
of clock cycles saved, given by

Pc = 1 − C̃

C
. (2)

3.3 Clock Gating Overhead

We call the additional power requirement for clock gating Pg, which is a mono-
tonically increasing function of the number of clock gated bits and the frequency
of changes in the state of these gates. We can approximate this overhead by sum-
ming the additional switching activity and the additional clocking requirement.

The proportion of additional switching activity, ps, is

ps =
∑M

s=1 count (ws
i ∈ w̃s, len (ws

i) ≥ ξ)
0.5ηW

(3)

where, as before, the 0.5 factor is used to reduce the number of bits that change
states, based on the assumption that when a register value changes, half of its
bits change value.

The proportion of additional clocking overhead, pc, is given by

pc =
M ·∑N

i=1 {1 if len (ri) ≥ ξ; 0 otherwise}
C

. (4)

Efficient Automated Clock Gating Using CoDeL 83

The overall gating overhead can now be stated as

Pg = αsps + αcpc, (5)

where αs is the fraction of dynamic power dissipation attributable to register
switching activity and αc is the fraction of dissipation attributable to clocking.

3.4 Total Power Saved

The total power saved P is the sum of savings due to the removal of useless
switching, Ps, and the saving due to reduction in clock switching, Pc. We also
need to take into account the clock gating overhead, Pg. The total power saving
is then given by

P = αsPs + αcPc − Pg, (6)

where, as before, αs is the fraction of dynamic power dissipation attributable to
register switching activity and αc is the fraction of dissipation attributable to
clocking.

In the power evaluation of our circuits, which use the TSMC 0.18-micron
CMOS technology, we find that the dynamic power in non-clock-gated circuits
is close to 99.5%. Further, experimentation shows that for our circuits αs = 0.4
and αc = 0.6 gives good approximations to dynamic power consumption. This
means that approximately 60% of the dynamic power is attributable to clock
switching, while 40% is due to the switching of other circuit elements.

It should be noted that the numbers for αs and αc presented above are simply
guidelines and could vary considerably depending on the specific circuit and the
underlying implementation technology. More accurate values will be obtained
over time through simulation of a number of different circuits.

4 Evaluation

To evaluate CoDeL’s power efficient compilation we use an implementation of
four integer algorithms 1:

– A simple 16-bit counter.
– A 5/3 Discrete Wavelet Transform using the lifting technique [11, 12]. The

5/3 DWT is used to perform lossless compression of images in the JPEG2000
standard [13].

– A multiplierless approximation to the eight-point Discrete Cosine Transform
(DCT) [14]. The DCT forms the heart of the JPEG and MPEG standards
[15, 16]. From [14] we use the C7 DCT based on Chen’s factorization.

– An integer transform used in the H.264 (MPEG4 Part 10) standard [5]. H.264
is an important, new video compression standard suitable for very high data
compression.

1 This is because CoDeL does not currently support floating point or fixed point
arithmetic. We are currently working on integrating a floating point unit into CoDeL
to allow floating point calculations.

84 N. Agarwal and N.J. Dimopoulos

4.1 Implementation

All four modules are implemented using CoDeL. For synthesis we have used
Synopsys tools with the TSMC 0.18-micron CMOS technology.

Table 1. CoDeL vs. VHDL code complexity

Lines of Code
Module CoDeL VHDL VHDL

(No Clock Gating) (Clock Gating)
Counter 13 98 144
DWT 116 719 1089
DCT 80 569 1124
H.264 33 181 358

Table 1 shows the code complexity, as measured by the number of lines of
code, of the CoDeL description as compared to the VHDL description of the
various designs. We see that the clock gated VHDL descriptions use nearly 10
times the number of lines of code as the CoDeL description. This shows that
CoDeL is able to significantly reduce the complexity of describing power efficient
hardware architectures.

5 Power Saving Results

The CoDeL compiler automatically implements clock gating as presented in
section 2. Using the calculations presented in section 3, power savings estimates
are obtained for the designs implemented. These are then verified through power
analysis using the Power Compiler from Synopsys. All the results are presented
for the gate level design, before placement and routing. We are currently working
on getting more accurate results after placement and routing. For brevity, most
numerical results are rounded to the nearest integer.

For synthesis, we initially used a 10 MHz clock resulting in a 100 ns maxi-
mum propagation delay constraint. To obtain the power dissipation in the cir-
cuits Synopsys was used to perform the calculations based on two methods.
The first method uses no user specified switching activity annotation and re-
lies on Synopsys’ default, statistically based, annotations [17] to perform the
power calculations. The second method uses switching activity annotation using
simulation, where actual input data is provided.

Table 2 shows power, area and timing results for the non-clock-gated (NCG),
Synopsys clock gated (SCG), and CoDeL clock gated (CCG) designs using a 10
MHz clock for synthesis. These results are obtained using method one where
statistical switching activity annotation is used.

We see that in almost all cases CoDeL’s clock gating produces more power
efficient designs relative to no clock gating and Synopsys clock gating. Only the

Efficient Automated Clock Gating Using CoDeL 85

Table 2. Clock gating results based on statistical analysis, 10 MHz clock (NCG = No
Clock Gating, SCG = Synopsys Clock Gating, CCG = CoDeL Clock Gating)

Power (μW) Total Cell Area Longest path (ns)
NCG SCG CCG NCG SCG CCG NCG SCG CCG

Counter 20 9 10 1919 1796 1971 2.21 1.48 1.42
DWT 376 184 134 55938 51645 57577 10.37 7.32 10.12
DCT 643 389 361 69538 63224 78441 6.36 4.84 6.04
H.264 231 153 140 20604 18364 23759 5.15 1.26 2.40

counter exhibits slightly higher dissipation when CoDeL clock gating is used
compared to Synopsys clock gating.

We also see that the Synopsys clock gated designs exhibit reduced total
cell area, while CoDeL clock gating increases cell area. The lower area with
Synopsys clock gating is because clock gating allows Synopsys to use more area
efficient TSMC cells to implement the sequential elements, namely the flip flops.
Specifically, we discovered that the non clock gating designs (NCG) use the
DFERPQ1 cells to implement the register flip flops, meanwhile the clock gated
designs (SCG, CCG) use the simpler DFFRPQ1 cells. The increase in area using
CoDeL clock gating can be attributed to the increase in combinational logic
required to generate the clock enable signal.

The timing results show that the clock gated designs exhibit better timing
than the non clock gated designs. This means that the clock gated designs can
be clocked at a higher frequency. This is again due to the use of simpler flip flops
in clock gated designs. The higher timing requirement for CoDeL clock gated
designs is due to the addition of multi-stage combinational logic in generating
the enable signal.

Table 3. Clock gating results based on simulation analysis (NCG = No Clock Gating,
SCG = Synopsys Clock Gating, CCG = CoDeL Clock Gating)

Power (μW)
Module NCG SCG CCG
Counter 21 10 10
DWT 273 41 31
DCT 337 19 13
H.264 113 7 5

Table 3 shows the power dissipation results using method two, where sim-
ulation is used to accurately annotate switching activity in the circuit. For all
designs, other than the counter, the input data is provided from a 128 × 128
grayscale image of Lena2. Also, in all cases, a 10 MHz clock is used to clock
the circuits in the simulations. We find, as before, that clock gating performed
2 The standard grayscale Lena image is 512×512. We used IrfanView, which uses the

Lanczos resampling algorithm, to reduce this to 128 × 128.

86 N. Agarwal and N.J. Dimopoulos

by CoDeL is more effective at reducing dynamic power dissipation than clock
gating performed by the Synopsys Power Compiler.

Table 4. Power Savings (SCG = Synopsys Clock Gating, CCG = CoDeL Clock Gating)

Measured using Synopsys
Statistical (%) Simulation (%)

Module Estimated (%) SCG CCG SCG CCG
Counter 28 55 50 52 52
DWT 51 51 64 85 89
DCT 43 40 44 94 96
H.264 36 34 39 94 96
Average 40 45 49 81 83

Table 4 provides the power savings obtained using clock gating. The first
column presents the estimated power savings using the calculations presented
in section 3. The other columns present statistical and simulation based mea-
surements of dynamic power savings using automated clock gating using Synop-
sys and CoDeL. Since the estimation framework also implicitly uses statistical
switching activity annotation, the statistical analysis performed using Synopsys
provides a better comparison for our estimation framework than the simulation
based analysis. The simulation based power analysis, however, is a more accurate
estimate of the expected power savings in the final design.

We find that the power savings estimated using the analysis framework com-
pares quite well to the power savings using statistical power analysis. We find
that in all cases, other than the counter, CoDeL clock gating provides more
power savings than Synopsys clock gating. The averages show that using a sta-
tistical analysis, CoDeL clock gating saves 49% power, while Synopsys clock
gating saves 45%. Using simulation analysis, CoDeL clock gating saves 83%
power, while Synopsys clock gating saves 81%. This is a reasonable result since
the CoDeL compiler still lacks the ability to reuse states and provide automated
pipelining. Therefore, some parts of the circuit may remain idle during process-
ing. The addition of clock gating reclaims much of the power consumed in these
idle sections.

To assess the scalability of our results, we also synthesized our circuits using
stricter constraints and faster clocks. It was found that using Synopsys and the
TSMC 0.18-micron CMOS technology the highest clock frequency for which all
circuits could be successfully synthesized without any manual circuit optimiza-
tion was 200 MHz.

Table 5 shows power, area and timing results for a 200 MHz clock using sta-
tistical switching activity annotation. Although the area and power requirements
to support this frequency are higher, the relative power savings using Synopsys
clock gating and CoDeL clock gating are within 2% of those obtained with a
10 MHz clock. Thus, we feel that our clock gating approach scales well as the
circuit frequency is increased.

Efficient Automated Clock Gating Using CoDeL 87

Table 5. Clock gating results based on statistical analysis, 200 MHz clock (NCG =
No Clock Gating, SCG = Synopsys Clock Gating, CCG = CoDeL Clock Gating)

Power (μW) Total Cell Area Longest path (ns)
NCG SCG CCG NCG SCG CCG NCG SCG CCG

Counter 402 189 191 1918 1797 1971 2.21 0.74 0.71
DWT 8436 4192 3178 72668 66972 76555 4.55 2.84 7.05
DCT 14200 8456 7732 93785 82938 97724 4.54 2.86 7.04
H.264 4830 3122 2876 24975 21609 27341 4.55 4.69 6.85

6 Conclusions and Future Work

We find that extending CoDeL to implement automated clock gating produces
power efficient designs. The synthesized circuits that use CoDeL clock gating,
at least in the examples we have used, are more power efficient than the circuits
that use Synopsys clock gating.

We have studied the power efficiency using both switching activity annotated
through simulation as well as through statistical methods. In virtually all cases,
CoDeL outperforms Synopsys in clock gating. This is an indication of consistency
of our clock gating techniques. Further, we find that the power savings obtained
using CoDeL clock gating scale quite well to higher frequencies and still beat
Synopsys’ clock gating efforts.

We have also found that our power savings estimation framework provides
estimates that are quite close to the power savings analyzed using statistical
power analysis. Thus, the estimation framework is an effective tool for quickly
approximating power savings at the behavioral level.

We are currently looking at ways to improve the efficiency of the designs
generated by the CoDeL compiler by introducing state and register reuse and
some form of automated pipelining. Also, we are currently in the process of
incorporating automated power gating into CoDeL to reduce static dissipation
in low voltage technology architectures.

References

1. Agarwal, N., Dimopoulos, N.J.: Using CoDeL to rapidly prototype network process-
sor extensions. In: Proc. SAMOS IV. (2004) 333–342

2. Agarwal, N., Dimopoulos, N.: Power-efficient rapid system prototyping using
CoDeL: The 2D DWT using lifting. In: Proc. IEEE PacRim 2005. (2005)
550–553

3. Agarwal, N., Dimopoulos, N.: Power efficient rapid hardware development using
codel and automated clock gating. In: Proc. ISCAS 2006. (2006)

4. Sivakumar, R., Dimakopoulos, V., Dimopoulos, N.: CoDeL: A rapid prototyping
environment for the specification and automatic synthesis of controllers for multi-
processor interconnection networks. In: Proc. SAMOS III. (2003) 58–63

5. Malvar, H.S., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity trans-
form and quantization in h.264/avc. IEEE Trans. Circuits Syst. Video Techn. 13
(2003) 598–603

88 N. Agarwal and N.J. Dimopoulos

6. Palumbo, G., Pappalardo, F., Sannella, S.: Evaluation on power reduction applying
gated clock approaches. In: ISCAS 2002. Volume 4. (2002)

7. Raghavan, N., Akella, V., Bakshi, S.: Automatic insertion of gated clocks at register
transfer level. In: Twelfth International Conference On VLSI Design. (1999) 48–54

8. Cadenas, O., Megson, G.: Power performance with gated clocks of a pipelined
cordic core. In: 5th International Conference on ASIC. Volume 2. (2003)
1226–1230

9. Benini, L., Siegel, P., Micheli, G.D.: Saving power by synthesizing gated clocks for
sequential circuits. IEEE Design and Test of Computers 11 (1994) 32–40

10. Lang, T., Musoll, E., Cortadella, J.: Individual flip-flops with gated clocks for
low power datapaths. IEEE Transactions on Circuits and SystemsII: Analog and
Digital Signal Processing 44 (1997) 507–516

11. Gall, D.L., Tabatabai, A.: Subband coding of digital images using symmetric kernel
filters and arithmetic coding techniques. In: Proc. of the Intl. Conf. on Acoustics,
Speech Signal Processing. (1988) 761–764

12. Sweldens, W.: The lifting scheme: A new philosophy in biorthogonal wavelet con-
structions. In: Proc. SPIE 2569. (1995) 68–79

13. Rabbani, M., Joshi, R.: An overview of the JPEG2000 still image compression
standard. Signal Processing: Image Communication Journal 17 (2001)

14. Liang, J., Tran, T.: Fast multiplierless approximation of the dct with the lifting
scheme. In: Proc. SPIE Apps. of Dig. Img. Process. XXIII. (2000)

15. Pennebaker, W.B., Mitchell, J.L.: JPEG Still Image Data Compression Standard.
Kluwer Academic Publishers, Norwell, MA, USA (1992)

16. Mitchell, J.L., Pennebaker, W.B., Fogg, C.E., Legall, D.J., eds.: MPEG Video
Compression Standard. Chapman & Hall, Ltd., London, UK, UK (1996)

17. Synopsys: Power Compiler User Guide. Release w-2004.12 edn. Synopsys (2005)

An Optimization Methodology for Memory Allocation
and Task Scheduling in SoCs Via Linear Programming

Bastian Ristau and Gerhard Fettweis

TU Dresden, Vodafone Chair Mobile Communications Systems
01062 Dresden, Germany

{ristau, fettweis}@ifn.et.tu-dresden.de

Abstract. Applications for system on chips become more and more complex.
Also the number of available components (DSPs, ASICs, Memories, etc.) rises
continuously. These facts necessitate a structured method for selecting compo-
nents, mapping applications and evaluating the chosen configuration and map-
ping. In this work we present a methodology for the last named. We will consider
optimization of memory allocation and task scheduling as a packing problem and
minimize needed memory area. The results can be used as one element of an
automated performance analysis for a given system on a high abstraction level.
This analysis is essential for establishing a framework that iterates over a large
quantity of possible systems. Considering a part of the H.264 codec as an exam-
ple we will illustrate the results. Furthermore we will show that results can be
retrieved fast compared to other NP-hard problems due to intelligent formulation
of conditions within the linear program.

1 Introduction

In todays system on chip (SoC) design there is a big gap between register transfer level
simulations and higher abstraction level models. Efforts have been made to close this
gap in recent years. But commercial solutions still assume a given system and con-
sider mainly the process of mapping tasks to the system components. The quality of
the system still depends on the knowledge of the system engineer. From the research
area frameworks are emerging that enable automatic iterations over various systems.
Unfortunately, performance analysis of the chosen mapping often stays unrevealed, is
forwarded to the next lower abstraction level or focuses on heuristics like list schedul-
ing. In most cases also memory sizes are assumed as constraints and not as variables.
Therefore, overall execution time or throughput is optimized.

But memory allocation and scheduling strongly influences die size, power consump-
tion and moreover the whole communication architecture of the resulting SoC. Thus, an
early proper evaluation for the chosen memory hierarchy is necessary. For evaluation
exact algorithms are eligible, which are able to determine how much memory is needed,
when tasks have to start and how data can be stored without fragmentation. We will
present a methodology that solves this problem for application tailored SoCs via lin-
ear programming. In doing so we show that this problem can be regarded as modified
packaging problem.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 89–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

90 B. Ristau and G. Fettweis

We will not focus on minimizing overall execution time but on minimizing used
memory resources under a given timing constraint. This is done for mainly two rea-
sons. First, in lots of applications in mobile networking a maximum overall execution
time is given, e.g. time for decoding a picture within a video stream. Second, after a sys-
tem is chosen and tasks are mapped to components and memories, the final die size is
only influenced by used memory capacities. Hence, this minimization of used memory
resources leads directly to minimization of necessary die size and silicon costs. More-
over, smaller memory capacities result in less energy consumption, which is crucial for
embedded systems in mobile devices.

We think of the presented methodology as a starting point for evaluating systems
configurations without time-consuming simulations and trial-and-error approaches. To-
gether with automated analysis of other metrics, automatic iteration over and evaluation
of various system configurations can be possible. The results can then be used for sim-
ulations on lower abstraction levels.

2 Related Work

A large contribution in closing the gap mentioned in section 1 has been done by the
MESCAL [1] and Ptolemy [2] projects . These as many other tools (e.g. Artemis [3]) are
based on the Y-chart approach [4]. It describes the need and a possible modus operandi
for automatic iteration over various SoCs and different abstraction levels. Another ap-
proach based on integer linear programming and considering the entire mapping process
is presented in [5].

As mentioned in section 1 the focus of this paper is restricted to scheduling. Pio-
neering work has been done by Liu and Layland back in 1973 [6] and Baruah et. al. [7].
Since then a lot of papers were presented treating scheduling in different ways. Many
approaches focus on minimizing makespan, e.g. [8] and neglect optimization of mem-
ory requirements. An optimization methodology for energy consumption under a given
memory size can be found in [9].

A possibility to minimize memory requirements is presented in [10]. Therein the au-
thors focus on minimizing buffer requirements for all rate-optimal schedules. In contrast
we consider all schedules meeting the (given) timing constraint. Furthermore multiple
memories as well as restrictions on simultaneous memory accesses are included.

In some tools multi-objective optimization (MOO) is used, e.g. [11]. But we rejected
optimizing both makespan and resources simultaneously. From the mathematical point
of view MOO has some downsides. Firstly, it produces a set of pareto-optimal solutions,
from which the preferred one has to be chosen manually. Secondly, the existence of
more than one solution prevents solvers from efficiently making use of branch&bound
techniques. Latter leads to significantly higher solving times and, therefore, the ne-
cessity to use suboptimal heuristics or genetic algorithms. However, if optimization of
more than objective is wanted, our result is suitable for a first step optimization in an
lexicographical objective environment.

A mathematical introduction with a collection of algorithms for classic scheduling
problems mainly treating minimizing makespan can be found in [12]. An approach for
a classification scheme regarding resource-constraint scheduling is presented in [13].

An Optimization Methodology for Memory Allocation and Task Scheduling 91

3 Methodology

The given problem ”Minimizing total needed memory capacity via scheduling” can
be formulated as a modified two-dimensional strip packaging problem (2D-SPP). The
2D-SPP describes the problem of packing boxes of fixed width and height into a strip
of fixed width in such a manner, that total height is minimized and boxes are non-
overlapping. It is described more detailed in [14].

We assume that the application is given as algorithm. Dependencies between the
tasks (e.g. functions, operations) are data dependencies described by variables. In our
model execution time of a task depends on the used component and memories. So exe-
cution time is fixed after mapping of tasks to components and memory. Components in
this context are defined as elements processing tasks, such as Microprocessors, DSPs,
ASICs, FPGAs, etc. A task itself consists of three phases:

1. fetch, in which needed data is transferred into the work memory,
2. execute, in which the task is performed by the assigned component,
3. write back, in which data is transferred into other memories for further processing.

Furthermore we presume a given maximal overall execution time by the standard speci-
fication. Therefore, the number of possible paths/branches caused by if/then conditions
is finite and loops can be eliminated by series arranged tasks. In case of data dependent
iteration counts each possible number of iterations is considered as one possible path.

Applying this scenario to the problem of scheduling tasks and packing variables into
memory the x-axis is time (where maximum execution time is determining the width
of the strip) and of the y-axis is memory capacity (Fig. 1). The given problem placing
variables and scheduling tasks necessitates a slight modification of the classic 2D-SPP,
because there are not only one but two kinds of boxes to be packed:

1. Outer boxes represent the life cycles of variables. A life cycle starts when the vari-
able is initialized in or transferred into memory and ends when it is needed no
longer or transferred into another memory. The life cycles (respectively memory
requirements) of the variables are the lengths (heights) of the boxes.

2. Inner boxes. Life cycles consist of different phases: phases, where the variable is
used by a task or for transfer, and phases, in which the variable is stored, but not
accessed. The inner boxes are characterized by the times the variable is accessed by
tasks or transferred to another memory. Consequently, these boxes are nested in the
outer boxes. The widths of the inner boxes are determined by the execution times of
the corresponding tasks, the heights again are given by the memory requirements.

Note that the width of the inner boxes is given by the execution time of the referring
task and fixed after mapping. In difference to classical 2D-SPPs the width of the outer
boxes is variable due to the mutable storage times of variables between tasks. The two
kinds of boxes are resulting in two different kinds of condition blocks in the later given
mixed integer linear program (MILP) as visualized in Fig. 1:

1. Order conditions. As a result of data dependencies between tasks the inner boxes
cannot be packed arbitrary regarding the horizontal position, e.g. if task i has to be
completed before task j starts. These dependencies are included by one-dim. order
conditions.

92 B. Ristau and G. Fettweis

life cycle variable 1 time

memory
capacity

address of
variable 1

address of
variable 2

placement conditions

maximum overall
execution time

order conditions

order conditions

exec. time
task 1

Fig. 1. Illustration of the scheduling problem interpreted as two-dimensional strip-packing prob-
lem. Outer boxes identify the life cycles and memory addresses of variables, inner boxes denote
the execution times of tasks.

2. Placement conditions. This condition block is related to the two-dimensional place-
ment conditions of the outer boxes (variables). In principle the positioning of these
is free unless they do not overlap (respectively are not stored in the same memory
address), but maybe restricted by order conditions referring to the inner boxes.

Fig. 1 illustrates only one possible path in the flowchart and one memory. Optimization
however has to be simultaneous for all possible paths and existing memories. This is
done by ensuring that all tasks that exist in two paths start at the same time and variables,
whose life cycles overlap in two paths, are placed at the same memory address. To
consider multiple memories multiple 2D-SPPs are merged in one superior 2D-SPP. Both
are described more detailed in the following section.

4 Detailed Problem Formulation

We will now present the mathematical formulation of the verbal given modified 2D-SPP
as mixed integer linear program. But before we start, we need some definitions.

4.1 Definitions

With xi ≥ 0 (respectively wi ≥ 0) we denote the start time (execution time) of task i.
yi ≥ 0 (hi ≥ 0) specifies the start memory address (memory requirements) of variable i.
W represents the maximum overall execution time. Furthermore we use the variables
ui, j, bi, j and b′

i, j as follows:

ui, j :=
{

1 if variable i is placed below variable j
0 otherwise

(1)

bi, j :=
{

1 if variable i is placed before variable j
0 otherwise

(2)

b′
i, j :=

{
1 if task i ends before task j starts
0 otherwise

(3)

An Optimization Methodology for Memory Allocation and Task Scheduling 93

cn denotes the vector of available memory capacities for memory n, an the vector of
areas for the respective memory capacities and H ≥ maxn cn a constant. Let

zn,k :=
{

1 if capacity step k is chosen for memory n
0 otherwise

(4)

Supplementary we need some set definitions. Let

Mn
g,v :=

{
(p, t)

∣∣∣phase p of task t in path g is accessing variable v in mem-
ory number n

}
(5)

which is according to the set of all phase/task pairs accessing the variable v in path g
and memory n. Within that set we denote the phase p and task t in which the life cycle
of the variable v in memory n is beginning (ending) with sMn

g,v (eMn
g,v) ∈ Mn

g,v.

Mn
g := {Mn

g,1,M
n
g,2, . . .} (6)

is the set of all variables allocated in memory n. Analogous we define En
g := {e1,e2, . . .}

and Sn
g := {s1,s2, . . .}. These are the sets of tasks being end and respectively start of the

lifecycle of a variable in memory n and path g.

4.2 Placement Conditions

First all boxes have to be placed within the strip or in other words have to end before
maximum overall execution time. This is done by

xi + wi ≤ W ∀i ∈ Mn
g,v, ∀g,n (7)

To implement the corresponding vertical condition block we have to go into more
detail. Since classic 2D-SPPs are NP-complete the range of solvable problems in finite
time is limited. But the good news is that this special case of the problem (or to be more
precise the minimization of needed memory resources) does not have to be solved ex-
actly. Memory capacity is only available in discrete capacity steps, usually to the power
of 2. So if memory is available for example in 32KBit and 64KBit it makes no differ-
ence if the capacity needed is 52KBit or 33KBit, as long as optimization cannot result
in ≤32KBit and a solution ≤64KBit is capable. This characteristic is implemented by

yi + hi ≤ ∑
k

cn,kzn,k ∀i ∈ Mn
g , ∀g,n (8)

and

∑
k

zn,k = 1 ∀n (9)

(8) guarantees that all outer boxes are placed below the chosen memory size, (9) makes
sure that exactly one memory size is chosen for each existing memory. Considering as
an example we will show in the following section that this minimization of memory
capacity, not total needed memory, will result in considerable less time needed to find
an optimal solution than minimizing total required memory resources.

94 B. Ristau and G. Fettweis

Having ensured that all variables are placed within the memory and all tasks are
completed before maximum execution time we have to ensure that two variables exist-
ing in the same path and memory are not allocated to the same memory address. That
means all boxes (inner as well as outer ones) must not overlap. This is assured by

xei + wei −W +Wbi, j ≤ xs j (10)

yi + hi − H + Hu j,i ≤ y j (11)

b j,i + bi, j ≤ 1 (12)

u j,i + ui, j ≤ 1 (13)

u j,i + ui, j + b j,i + bi, j ≥ 1 (14)

(10) – (14) hold ∀i, j ∈ Mn
g , i �= j, ei ∈ En

g , s j ∈ Sn
g, ∀g,n. For each pair i, j of boxes (14)

ensures at least one of the four conditions resulting from (10) and (11) is not redundant
with xi ≥ 0 or yi ≥ 0 respectively. (12) and (13) prevent overlapping of the boxes. There
is always one phase of a task constituting the start and end of the life cycle of a variable.
So to prevent overlapping of the outer boxes, it is sufficient to postulate (10) only for
the inner boxes delimiting an outer box.

To include if/then-conditions into the MILP (15) is added. It guarantees the place-
ment of a variable existing in two possible paths g1 and g2 in the same vertical spot if
at least one task is shared by the two paths.

yMn
g1,v

= yMn
g2,v

∀Mn
g1,v ∈ Mn

g1
, Mn

g2,v ∈ Mn
g2

: ∃(p, t) ∈ Mn
g1,v ∩Mn

g2,v, ∀n (15)

Note, by definition a task existing in two possible paths is always started at the
same time. However, if differentiated starting times are desired, a slight modification
in terms of incorporating identifiers for the corresponding path by additional indices is
necessary. It is also presumed that loops are eliminated. Remark that infinite loops do
not exist due to the given maximum overall execution time resulting in a finite number
of possible tasks.

The given set definitions also guarantee that two inner boxes with the same tag in
different memories are located on the same spot horizontally. Hence, the starting time
of the associated task is independent of the accessed memories. These facts and (15)
are the only placement conditions between different paths and memories.

4.3 Order Conditions

The order conditions are defined by the application and can be derived from the flow-
chart. There are two different kinds of order conditions. Firstly, (16) denotes that task j
is dependent on task i.

xi + wi ≤ x j (16)

Secondly, the number of simultaneously performed tasks by one component or the
quantity of simultaneous memory accesses by different tasks can be limited. (17) and
(18) are an example for such a limitation.

xi + wi −W +Wb′
i, j ≤ x j (17)

b′
i, j + b′

j,i = 1 (18)

In the given case the number of simultaneous accesses to one memory by tasks is limited
to one. Formulation for other cases can be adopted easily.

An Optimization Methodology for Memory Allocation and Task Scheduling 95

4.4 Objective Function

The objective function is given by

∑
n

∑
k

an,kzn,k → min (19)

With (19) total area used by memory components on the system is minimized. Area in
this model is given by the sum of areas of all used memory elements. Other components
of the system are unaccounted because these elements are fixed after mapping. More
sophisticated definitions for calculating die size can be integrated easily by modifying
the objective and adding additional constraints.

5 Results

We have tested the methodology with a part of the H.264 video codec [15] from the
Fraunhofer Hertz Institute Berlin, namely the function decodeMBInter. The problem
characteristics are shown in table 1.

Table 1. Characteristics of the examined H.264-part

of tasks 14
of paths 14
of variables 21

Fig. 2 illustrates the given data dependencies. Maximum overall execution time,
times of tasks, memory requirements of the variables and memory capacity steps are
a first estimate for a possible SoC configuration. Data dependencies were modified
slightly to include possible parallel processing of tasks mapped to different compo-
nents. Parallel processing of two tasks mapped to the same component was forbidden.

We assumed two components and two memories. One acting as system memory
equipped with a single port and one representing a shared memory with double port.
The mapping of tasks to components is shown in table 2. Note that tasks 1 and 14 denote
dummy tasks identifying start and end. Consequently they do not have to be assigned to
any components. Local memory for both components is the shared memory. To simulate
memory transfers and the three phases fetch, execute and write back in our model a
temporary variable is transferred from system to shared memory at the beginning of
each task. After execution the variable is transferred back to system memory.

Optimization was done for the shared memory. The resulting MILP had 814 vari-
ables (thereof 748 binary) and 1491 constraints. Fig. 3 illustrates the result. As you

Table 2. Assumed mapping of tasks to components for the examined H.264-part

component executed tasks
1 2 – 5
2 6 – 13

96 B. Ristau and G. Fettweis

23
21

14

8

5

6

7

9

10

11

12

13

15
15
15

1
15, 16, 17

15, 16

15, 16, 17
4

19

20

15 15

18

15, 16

16

15

Fig. 2. Flowchart of the examined H.264-part. Numbers in the boxes identify the tasks, numbers
beside the arcs label variables. Temporary variables needed only within the tasks are later referred
by the number of the corresponding task. Task 1 and 14 denote additional inserted starting and
ending tasks, which are not assigned to components.

can see the depicted solution is far away from minimum overall memory usage but
optimal in respect to the chosen memory capacity step. The problem was solved in
about 5 seconds on an AMD Dual Opteron System with 2.2 GHz processors each using
CPLEX 9.1.

By contrast the solving time for minimizing needed memory capacity h (with mod-
ified condition (8): yi + hi ≤ h and without condition (9)) took more than 500 sec. or
in this case > 10,000% compared to minimizing needed memory capacity step. It also
illustrates the possible impact of a slightly different MILP formulation. The reason for
this big difference is the utilization of the memory capacity steps as upper and lower
bounds. If during the algorithm automatically generated lower bound and the capable

10-10

6-
8-

11-11

2-2

17-2

15-2

3-3

4-4

5-5

7-7
9-9

12-12

13-13

-5 -10 -11 15-12 15-13

-516-2 -10 -11 16-12 16-13

-6,8

-4

-4

18-13

19-5

-4 -6,8

21-3 -4

maximum overall
execution time

32

16

time

15-7,9

16-7,9

17-7,9
20-7,9

memory
capacity

Fig. 3. Illustration of the optimized schedule of tasks and allocation of variables in respect to
memory capacity step. Light blue boxes mark the outer boxes representing the life cycle of the
variables, narrow boxes denote the phases in which a variable is transferred/initialized and blue
boxes identify the inner boxes representing the tasks accessing the required variables. The labels
of the boxes identify tasks – variables.

An Optimization Methodology for Memory Allocation and Task Scheduling 97

solution are in between the same two memory capacity steps the algorithm terminates.
This behavior is illustrated in Fig. 3, where optimization is stopped after a solution of
32 Kbit is capable and a solution of 16 Kbit is ruled out.

We also performed a trade off analysis with a different system configuration. The
shared memory was replaced by a single ported memory for each component. Opti-
mization resulted in a required memory capacity of at least 32 Kbit for each compo-
nent. Although single ported memory is smaller compared to double ported, the overall
needed die size was almost the same for both configurations. For calculation we used
custom designed memory elements by UMC/Virtual Silicon Technology.

6 Conclusions

In section 5 we have demonstrated a methodology for memory allocation and task
scheduling applicable to real life problems of small size. The solution time shows that
the full potential of the methodology is not tapped by the passed problem.

Furthermore our approach is highly flexible. The assumption that a task consists
of the three phases, is not a must. Inclusion of additional phases or reduction to one
phase is possible without large effort. Latter can be reasonable, if exact execution and
transfer times are not known in an early design stage, but a first estimation model for
scheduling is desired. For this case also data dependencies can be reduced to simple task
dependencies. Moreover the methodology does not care what is stored in the memory.
The MILP formulation holds for data as well as instruction code. Also, the type of
memory to be optimized is arbitrary. Thus, scratchpad memory, register files, etc. can
be simulated.

As mentioned in section 2 there exist methods for optimizing memory allocation
under given memory capacities. Examination of possible combination of these meth-
ods with our methodology could lead to a refinement of existing high abstraction level
models and consequently could be the next step for automated iteration over and per-
formance evaluation of several systems.

References

1. Mihal, A., Kulkarni, C., Sauer, C., Vissers, K., Moskewicz, M., Tsai, M., Shah, N., Weber,
S., Jin, Y., Keutzer, K., Malik, S. In: Developing Architectural Platforms: A Disciplined
Approach. Volume 19. IEEE Design and Test of Computers (2002) 6–16

2. Lee, E.A.: Overview of the ptolemy project. Technical memorandum UCB/ERL M03/25,
University of California, Berkeley, CA, 94720, USA. (2003)

3. Pimentel, A.D., Hertzberger, L.O., Lieverse, P., van der Wolf, P., Deprettere, E.F.: Exploring
Embedded-Systems Architectures with Artemis. Computer 34 (2001) 57–63

4. Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An approach for quantitative
analysis of application-specific dataflow architectures. In: ASAP ’97: Proceedings of the
IEEE International Conference on Application-Specific Systems, Architectures and Proces-
sors, Washington, DC, USA, IEEE Computer Society (1997) 338

5. Niemann, R., Marwedel, P.: Hardware/software partitioning using integer programming. In:
EDTC ’96: Proceedings of the 1996 European conference on Design and Test, Washington,
DC, USA, IEEE Computer Society (1996) 473

98 B. Ristau and G. Fettweis

6. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment. J. ACM 20 (1973) 46–61

7. Baruah, S.K., Gehrke, J.E., Plaxton, C.G.: Fast scheduling of periodic tasks on multiple
resources. Technical Report CS-TR-95-02, University of Texas, Austin, Austin, TX, USA
(1995)

8. Jin, Y., Satish, N., Ravindran, K., Keutzer, K.: An automated exploration framework for fpga-
based soft multiprocessor systems. In: CODES ’05: Proceedings of the 2005 International
Conference on Hardware/Software Codesign and System Synthesis. (2005) 273–278

9. Verma, M., Wehmeyer, L., Marwedel, P.: Dynamic overlay of scratchpad memory for en-
ergy minimization. In: CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP inter-
national conference on Hardware/software codesign and system synthesis, New York, NY,
USA, ACM Press (2004) 104–109

10. Govindarajan, R., Gao, G., Desai, P.: Minimizing Memory Requirements in Rate-Optimal
Schedules. In: ASAP ’94: Proceedings ot the International Conference on Application Spe-
cific Array Processors. Volume Application Specific Array Processors, . Proceedings., Inter-
national Conference on. (1994) 75–86

11. Dick, R.P., Jha, N.K.: MOGAC: a multiobjective genetic algorithm for the co-synthesis of
hardware-software embedded systems. In: ICCAD ’97: Proceedings of the 1997 IEEE/ACM
international conference on Computer-aided design, Washington, DC, USA, IEEE Computer
Society (1997) 522–529

12. Bruckner, P.: Scheduling Algorithms. 4th edn. Springer-Verlag (2003)
13. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project

scheduling: Notation, classification, models, and methods. European Journal of Operational
Research 112 (1999) 3–41

14. Belov, G., Chiglintsev, A., Filippova, A., Mukhacheva, E., Scheithauer, G., Shirgazin, R.: The
two-dimensional strip packing problem: A numerical experiment with waste-free instances
using algorithms with block structure. Preprint MATH-NM-01-2005 TU Dresden (2005)

15. Wiegand, T., Sullivan, G., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC video
coding standard. In: Circuits and Systems for Video Technology, IEEE Transactions on.
Volume vol.13, no.7., IEEE Circuits and Systems Society (2003) 560–576

Designing Wireless Sensor Nodes

Marcos A.M. Vieira1, Adriano B. da Cunha2, and Diógenes C. da Silva Jr.2

1 Dept. of Computer Science, Federal University of Minas Gerais,
2 Dept. of Electrical Engineering, Federal University of Minas Gerais,

Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
mmvieira@usc.edu, {adborges, diogenes}@cpdee.ufmg.br

Abstract. Wireless sensor networks are networks of large quantities of
compact microsensors with wireless communication capability. Emerg-
ing applications of data gathering range from the environmental to the
military. Architectural challenges are posed for designers such as com-
putational power, energy consumption, energy sources, communication
channels and sensing capabilities. This work presents the current state-
of-the-art for wireless sensor nodes, investigating and analyzing these
challenges. We discuss the characteristics and requirements for a sen-
sor node. A comprehensive comparative study of sensor node platforms,
energy management techniques, off-the-shelf microcontrollers, battery
types and radio devices is presented.

1 Introduction

A wireless sensor network (WSN) is composed of many autonomous and compact
devices called sensor nodes. The objective of this network is to collect data.
The availability of integrated low-power sensing devices, embedded processors,
wireless communication kits, and power equipment are enabling the design of
sensor nodes.

Wireless Sensor Network has the potential for many applications and some
already exists, for example in a large metropolis to monitor traffic density and
road conditions; in engineering to monitor bridges and buildings structures; in a
forest for fire detection, in other environments like oceans and air resources; in
precision agriculture; in disaster recovery service; in condition based maintenance
devices like powerplants; in biomedicine. Other applications include managing
complex physical systems like airplane wings and complex ecosystems.

A sensor node is composed of a power unit, processing unit, sensing unit, and
communication unit. The power unit has the purpose to supply the energy to the
node. The processing unit collects and processes signals captured from sensors
and transmit them to the network. Sensors devices are devices that produce a
measurable response to a change in a physical condition like temperature and
pressure. The wireless communication channel enables a medium to transfer
signals from sensors to exterior world (provided by a gateway), and also an
internal mechanism of communication to establish and maintain of WSN.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 99–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 M.A.M. Vieira, A.B. da Cunha, and D.C. da Silva Jr.

Power consumption is and will be the primary metric to design a sensor node.
While there is the Moore’s Law, that predicts doubling the number of transistors
of microelectronic chips every 18-month, and Gilder’s Law, which theorizes that
the total communication bandwidth triples every year, there is no equivalent
forecast for battery technology.

The objective of this work is to present the design considerations and discuss
the component choices for a device for WSN. We present the state-of-the-art for
sensor node architectures, investigating and analyzing some of the architectural
challenges posed by these devices, including a survey of sensor node platforms
and energy management techniques. A comparative study of component-off-the-
shelf (COTS) such as microcontrollers, battery types, and radio devices, which
are very important for system design, is presented. The design focus on individual
components and not in subsystem level details. We also discuss some architecture
issues and design trade-offs.

2 WSN Architecture

This section gives an overview of the WSN architecture. WSNs are networks
composed of a large number of sensor nodes. The objective of these networks is
to collect data. Sensor nodes are usually deployed over a desired area, then they
wake-up, self-test and establish dynamic communications among them, compos-
ing a network [1].

Fig. 1 illustrates a WSN. Each dot represents a sensor node. Each device senses
the environment, processes andusually transmits the data to gatewaynodes. Gate-
way nodes transmit their data to an external observer called base station. Gateway
nodes are ordinary sensor nodes or more complex devices, having more computa-
tional capabilities like greater radio range and more computational power. The
discussion of gateway nodes is outside the scope of this work.

In a conventional network, such as cellular phone or local wireless networks,
communication between computational elements is done through radio base
stations, which represent a communication infrastructure. WSNs usually do
not have such a communication infrastructure. That is why a wireless sensor

Sensor Node

Gateway Node

Base Station

Fig. 1. Wireless sensor network architecture

Designing Wireless Sensor Nodes 101

network is considered as a special type of ad-hoc network, since its topology is
dynamic, due to the fact that sensor nodes can wake-up joining the network,
or go to sleep, leaving the WSN. An important characteristic is that the flow
of data is typically unidirectional. The information flows from source nodes to
gateway nodes.

A key resource of a WSN is the stored energy. Each sensor node is composed of a
small battery, with limited capacity. It is almost unfeasible to recharge all battery
since WSN can be composed of thousands of sensor nodes. Therefore, the WSN
project focus, from hardware design to network protocols, is to save energy. Other
sensor node restrictions include memory capacity and processing power.

A WSN tends to be application-dependent, in other words, the hardware
and software requirements and the operation modes vary according to the
application.

3 Characteristics, Requirements and Components

In this section we discuss some characteristics and requirements of a sensor
node. The first question the designer should answer is if the sensor node will
be a real-life sensor node or a prototype. While in a real product size and cost
are essential requirements, a prototype focus the design in a system ease to
expand with a number of sensors, robust and easy to reprogram. Following is
the design considerations, characteristics and requirements when designing a
prototype sensor node:

Energy-Efficiency. Sensor nodes must be energy efficient. Sensor nodes have
a limited amount of energy that determines their lifetime. Hence, energy is the
key resource, being the primary metric for analysis. Sensor node project should
focus on energy-efficient COTS.

Low-Cost. It is desirable that sensor nodes be cheap since WSN may have
hundreds or thousands of sensor nodes.

Wireless Communication. The sensor node needs to be wireless. In many ap-
plications, the environment being monitored does not have installed infrastruc-
ture for communications. Laying wires may be too difficult or expensive. The
data rate is low, and a short range transceiver in a license free band is sufficient.
The sensor node should receive and transmit, needing a bidirectional communi-
cation channel.

Processing. Each sensor node should be able to process local data, using filter-
ing and data fusion algorithms to collect data from environment and aggregate
this data.

Programmability. Since this node will be a test prototyping, it will be often
reprogrammed for development of communication protocols and applications for
WSN. Hence, the programming should be easy.

102 M.A.M. Vieira, A.B. da Cunha, and D.C. da Silva Jr.

Expansibility. The hardware design must be expandable with a number of
sensors to support a variety of applications. Some projects defined a generic
sensor bus for future expansion.

Size. For demonstration purposes the devices should be reasonable small. But
size is of less importance in our project since it does not need to be as small as
a real-life wireless sensor nodes.

Power-Aware. The hardware should be able to estimate how much energy is
available in order to allow algorithms to adapt themselves to the available power.

4 Sensor Node Functional Components

A sensor node, as shown in Fig. 2, is composed of four major blocks: power
supply, communication, processing unit, and sensors. The power supply block
has the purpose to power the node and usually consists of a battery and a
dc-dc converter. The communication block consists of a bidirectional wireless
communication channel. Most platforms use a short-range radio. Other solu-
tions include laser and infrared media. The processing unit is composed of in-
ternal memory to store data and applications programs, a microcontroller to
process data and an Analog-to-Digital Converter to receive signal from the sens-
ing block. The sensing unit block links the sensor node to the physical world
and has a group of sensors and actuators that depends on the application of the
WSN.

Sensors

A
D

C

Memory

MCU

Communication Processing unit Sensing

Radio

B
at

te
ry

D
C

-D
C

Power supply

 Power
Management

Network
Protocols

Operating
System &
Algorithms

Filtering &

Data fusion

Fig. 2. Sensor node block diagram

Sensor nodes may also have a storage unit or a debugging unit. The storage
unit is an external memory device that works as a secondary memory, keeping a
data log. The debugging interface is used to program and test the sensor node, for
example, programming interface, LEDs, serial interface, JTAG (IEEE 1149.1).
This block can be omitted in a final sensor node product.

Designing Wireless Sensor Nodes 103

5 Processing Unit

Since the sensor node is expected to communicate, process and gather sensor
data, sensor nodes must have processing units. The central processing unit of a
sensor node determines to a large degree both the energy consumption as well as
the computational capabilities of a sensor node. Many different types of CPUs
can be integrated into a sensor node and they are discussed in this work. There
are a large number of commercially available microcontrollers, microprocessors
and programmable logic, which allows great flexibility for CPU implementations.

In general, microcontrollers are microprocessor with additional peripheral or
support devices embedded in a single chip [2]. Microcontrollers include not only
memory and the processor unit, but also non-volatile memory and interfaces such
as UART, USB, SPI and I2C, and peripherals such as A/D Converters (ADCs),
counters and timers. Therefore, a single chip microcontroller can interface to
digital and analog sensors and to communication devices, such as a short-range
radio module, to compose a sensor node.

The sensor node microcontroller needs to be energy-efficient, with different
operating modes, and fast wake-up time. It does not need to have high computing
power as a 32-bit microcontroller. The MCU should have an embedded system
interface to facilitate the programming and debugging phases. An important
feature is the start-up time, since the MCU of a sensor node will usually go to
idle mode, but this feature is not very often divulged.

Static dissipation and dynamic dissipation are the two components that es-
tablish the amount of power dissipated in a CMOS (Complimentary Metal Oxide
Semiconductor) circuit. The most important one is the dynamic dissipation be-
cause it is due to the switching transient current and the charging and discharg-
ing of load capacitances. In this case, the power dissipation is proportional to the
clock frequency of the device and the capacitance of the load and the SQUARE of
the voltage margin between low to high levels. Thus, dynamic power dissipation
may be limited by reducing supply voltage, load capacitance and the frequency
at which the logic is being clocked. That is why, applications should use low clock
frequency for energy conservation and time keeping, but it also should use high
clock frequency for fast reaction to events and fast burst processing. The faster
it finishes processing, the longer it remains at low-power mode. Thus, changing
the operating clock frequency is a much desired capability.

Table 1. Comparison of commercial microcontrollers

Characteristic Bits Flash Power Active

ATMEGA128L 8 128KB 5.5mA @4MHz@3V
MSP430F169 16 60 KB 2mA @4MHz@3V
StrongARM 1100 32 N/A 230mW @133MHz
DragonBall MC9328MX1 32 N/A 120mA @96MHz

104 M.A.M. Vieira, A.B. da Cunha, and D.C. da Silva Jr.

Table 1 shows a comparison of actual microcontrollers. Microcontroller Con-
trol Units (MCUs) have many attributes like word size (number of bits), flash
memory capacity, memory size, number of ADCs and timers, operating voltage,
current consumption and power modes. In the rest of this section we will discuss
some interesting MCUs for WSN.

The Texas Instruments MSP430F169 is a 16-bit, 8 MIPS, and a ultra-low
power CPU. It has 60Kbytes of program memory and 2Kbytes of data memory.
It is equipped with a full set of analog and digital processors. It has embedded
debugging and in-system flash programming through a standard JTAG inter-
face. Texas has developed a new member of this family, the MSP430F1611 with
10Kbytes of RAM.

The ARM family has floating-point computational capabilities, which makes
it suitable for devices demanding more computational power, such as high per-
formance gateways. The Intel SA1100 is a general-purpose, 32-bit RISC mi-
croprocessor based on the ARM architecture rated as the most efficient 32-bit
low-power processor (in MIPS/Watt). The processor has three states: normal,
idle and sleep that can be controlled to manage power consumption. Intel is
upgrading the StrongARM SA-1110 processor-based designs to Intel PXA255
processor or Intel PXA26x processor family-based designs.

The Motorola DragonBall MC9328MX1 is a 32-bit CPU with a Bluetooth
Accelerator radio interface, an Analog Signal Processing (ASP) Module, a Mul-
timedia Accelerator (MMA), and a DPLL Clock and Power Control Module that
provides power management capabilities.

The choice of MCU depends on application scenario. The ideal choice of
microcontroller is the one that matches its performance level with application’s
need. Other factors that affect the selection of the proper microcontroller besides
energy level include word size, peripherals, memory, speed, physical size, price,
availability, personal experience, and vendor support.

The majority of current projects on wireless sensor node are using
ATMEGA128L or MSP430. Projects that need simple microcontroller and the
knowledge of personal experience are using the ATMEGA128L. Projects that
need low-power capability and want to study and apply the Dynamic Voltage
Scaling (DVS) technique and need more computing power are using MSP430
and ARM family CPUs.

It is desirable to know the time when an event happens, like keeping record
when a sensor signal was read. Adding a real-time clock allows the sensor node
to time and date stamp, and create a logbook. It is possible to create a real-
time clock with the microcontroller (using the timer), but at the same time is
also desired to put the microcontroller in the low-power mode to save energy,
which implies in turning off the timer. This solution would make the software
more complex. A simpler approach is to add a real-time clock device, usually
external.

Many algorithms and applications require a large number of data to be stored.
The amount of RAM in the microcontroller is limited. The solution to this
problem is to add an external memory device that will work as secondary storage.

Designing Wireless Sensor Nodes 105

6 Power

The power supply block has the purpose to supply the energy to the node,
and usually consists of a battery, but sometimes a DC-DC converter is used to
boost the battery voltage. A voltage regulator can be added, whose purpose is
to maintain the output voltage at a fixed value.

It might be possible to extend lifetime of a sensor node by extracting energy
from the environment, such as light, vibration and RF. Continuum Control Corp.
[3] has launched the iPower energy harvesters. These devices extract electric
energy from mechanical vibrations, motion, or impact. Amirtharajah et al. [4]
have demonstrated a MEMS system that extracts electric energy from vibrations.

There are two major power saving schemas, Dynamic Power Management
(DPM) [5] and Dynamic Voltage Scaling (DVS) [6]. These techniques can be clas-
sified into static and dynamic. Static techniques are applied at design time, such
as compilation and synthesis for low power. Dynamic techniques are applied at run
time based on the variations in workloads. These techniques are called DPM.

The basic idea behind DPM is to shutdown the devices when not needed
and get them back when needed. Turning off some components providing energy
savings, but in many cases, it is not known beforehand when to turn on or off
a particular device. A solution is a stochastic analysis to predict future events.
An embedded operating system that is able to support DPM is also needed. For
this approach, the devices should have, at least, the states: active, sleep and idle.
Some CPUs offer several levels of active states with varying degrees of compu-
tational power and energy consumption, leading to richer power management
possibilities. However, it is important to consider that moving between these
operating modes involves power and latency overheads.

The main idea behind DVS is to change the power to match the workload,
avoiding idle cycles. DVS reduces the power consumed by a processor by lower-
ing its operating voltage and frequency. By varying the voltage along with the
frequency, it is possible to obtain a quadratic reduction in power consumption.
The problem is the fact that workloads are non-deterministic. For this approach,
the microcontroller should permit to change its voltage supply and clock. Some
approaches uses the StrongARM SA-1100 MCU since it can vary voltage and
frequency from 59MHz/0.79V to 251MHz/1.65V.

7 Communication

Sensor nodes must communicate among themselves and also to a base station
using a wireless communication channel. We explore optical and radio frequency
(RF) channels. The sensor node communication channel needs to be bidirectional
to support different operating modes, to be energy-efficient, allows setting the
output power, and have relatively slow date rate. The range can vary from tens
to about a hundred meters magnitude.

Optical Communication. Two technologies for optical communications are
the laser and infrared. Laser communication has some advantages. It spends less

106 M.A.M. Vieira, A.B. da Cunha, and D.C. da Silva Jr.

energy than radio over larger range; it is secure, since there is no broadcast and
if a channel is intercepted it would interrupt the signal; and there is no need for
antennas. There are some disadvantages. It needs line of sight and the laser beam
must be lined up with the receiver. Lasers are sensitive to atmospheric conditions
and, finally, since the communication is directional and due to the fact that sen-
sor nodes will be deployed randomly, this makes them not an attractive solution.
Infrared communication is also directional. An interesting solution adopted by
PushPin project [7] is to use an optical diffuser made of sandblasted polycar-
bonate tubing to create a more omnidirectional communication range within a
plane. But, the node still needs to be aligned within that plane. PushPin project
adopted the IrDA protocol. Its disadvantage is a short-range of about 1m. The
advantage of infrared is no need for antennas.

Radio-Frequency. RF communication is based on electromagnetic waves. One
of the most important challenges in RF communications devices is the antenna
size. RF communication advantages are its ease of use, integrality, and well es-
tablished in the commercial marketplace, which make it an ideal testing platform
for sensor nodes. Several aspects affect the power consumption of a radio includ-
ing the type of modulation, data rate, and transmission power. In general, radios
can operate in three distinct modes of operation: transmit, receive, idle. Most
radios operating on idle mode results in high power consumption, almost equal
to receive mode, thus, it is important to shutdown the radio.

8 Sensing Devices

The sensing unit is composed of a group of sensors, which are devices that
produce electrical signals to a change in a physical condition. Sensors can be
classified as either analog or digital devices depending on the type of output they
produce. This work does not intend to enumerate all sensor types, but to study
their design trade-offs since many types of sensor exists, such as: magnetometer,
accelerometer, light, temperature, pressure, and humidity. Given the diversity of
sensors, there is no typical power consumption. The type of sensor to be used in
a sensor node will depend on the application.

Besides energy consumption, another important feature of a sensor is its
startup time, in other words, the minimum time after turned on to produce
correct sample data. It is desirable that the startup time be as small as possible
because it is required to turn off the sensors to reduce energy when they are not
being used.

Analog sensors need an Analog-to-Digital Converter (ADC). In general, mi-
crocontrollers have embedded peripherals that include ADCs and sensor boards
do not need dedicated ADCs. The MSP430 family is capable of 200,000 sam-
ples per seconds (ksps) of 12 bits divided in eight channels. For complex sensor
boards that need higher sample rates or a larger channel number, the solution
is to add ADCs to the sensor boards.

Depending on the sensor type, it can change the sensor node design. For
example, an image sensor would need a very high communication bandwidth,

Designing Wireless Sensor Nodes 107

which would require a communication block redesign. When designing a sensor
node, it is desirable to build a sensor block that is easily expandable to support
a variety of applications. Most of the sensor node prototypes define a sensor bus
that works as an expansion connector.

9 The Bean Wireless Sensor Node

BEAN (Brazilian Energy-Efficient Architectural Node) [8] is a sensor node plat-
form designed at the Federal University of Minas Gerais, Brazil. BEAN is the
first sensor node that allows the measurement of power consumption of each
architectural block. To our knowledge BEAN is the first sensor node designed in
Brazil. Fig. 3 shows a picture of a BEAN prototype.

BEAN uses the MSP430F169 microcontroller. An external memory device
was added to work as secondary storage. It is a 4 Mbit (512K x 8) serial flash
memory and can be switched to a low power mode when it is not used. The com-
munication channel uses the Chipcon CC1000 radio transceiver. It was desirable
to design a sensor node that could be expandable to support a variety of appli-
cations. BEAN defines a sensor bus that provides a user interface for additional
sensor boards. Each sensor node has a unique electronic identification. BEAN
provides support for real-time application using an external real-time clock chip.
Finally, for debugging objectives, BEAN has four LEDs, and a JTAG interface
used to program and debug the microprocessor. Since BEAN is a prototype,

JTAG
Interface

Power
Supply

Sensor
Bus

CPU

External
Memory

Real-Time ClockLEDs

Radio
Interface

Fig. 3. BEAN prototype

108 M.A.M. Vieira, A.B. da Cunha, and D.C. da Silva Jr.

it uses an external power supply, and an internal voltage regulator was added.
The power budget for BEAN is about 10.3 μA at the power down state. During
transmission power consumption is about 17 mA.

BEAN also includes software components and provides an Application Pro-
gramming Interface (API). The API is a set of functionalities to control and
configure and also provides services of the hardware components. The API com-
municates with an upper layer that is usually a WSN dedicated microkernel.

10 Conclusions

Wireless sensor networks present fascinating challenges for the application of
distributed signal processing and distributed control. These systems challenge
the applications of appropriate techniques to construct cheap processing units
with sensing nodes considering energy constraints.

We presented the design considerations and components choices, investigat-
ing and analyzing some of the architectural challenges posed by these devices
like computational power, energy consumption, energy sources, communication
channels and sensing capabilities.

This work is a guideline for developers, who want to design a microcontroller
based sensor node platform. We also discussed some architecture issues, design
trade-offs, wireless communication channels, and impact on the WSN protocol
stack.

References

1. L. B. Ruiz, J.M.N., Loureiro, A.A.F.: Manna: A management architecture for wire-
less sensor networks. IEEE Communication Magazine 41 (2003) 116–125

2. Berger, A.S.: Embedded Systems Design, An Introduction to Processes, Tools and
Techniques. (2002)

3. Continuum Control Corporation: ipower. Available on: http://www.
powerofmotion.com (2005)

4. R. Amirtharajah, S.M.: A micropower programmable dsp powered using a mems-
based vibration-to-electric energy converter. In: IEEE Intl. Solid-State Circuits
Conference. (2000) 362–369

5. Wang, A., Chandrakasan, A.: Energy efficient system partitioning for distributed
wireless sensor networks. In: IEEE International Conference on Acoustics, Speech
and Signal Processing. (2001) 905–908

6. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded
operating systems. In: ACM Symposium on Operating Systems Principles. (2001)
99–102

7. Lifton, J., Seetharam, D., Broxton, M., Paradiso, J.: Pushpin computing system
overview: a platform for distributed, embedded, ubiquitous sensor networks. In:
Pervasive Computing Conference - LNCS 2414. (2002) 139–151

8. Vieira, M.A.M.: BEAN: A computational platform for wireless sensor networks (in
portuguese). Master’s thesis, C. S. Dept. - Federal University of Minas Gerais, Belo
Horizonte, Brazil (2004)

Design, Implementation, and Experiments on Outdoor
Deployment of Wireless Sensor Network for

Environmental Monitoring

Jukka Suhonen, Mikko Kohvakka, Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology / Institute of Computer and Digital Systems
{jukka.suhonen, mikko.kohvakka, marko.hannikainen,

timo.d.hamalainen}@tut.fi

Abstract. This paper presents the design, implementation, and practical real
world experiments of an energy optimized multi-hop wireless sensor network
(WSN) targeted at environmental monitoring. The WSN is fully autonomous and
consists of energy-efficient and scalable communication protocols and low-power
hardware platform. Software tools are developed for configuring and analyzing
large scale networks. The network has been deployed in outdoor environment
consisting of 20 nodes covering over 2 km2 area. The results show that the multi-
hop network works autonomously, reacts to environmental changes, and is able to
operate temperatures down to -30 ◦C. The hardware nodes operating on 433 MHz
frequency provide over 1 km communication distances, while still having suffi-
cient throughput and low energy consumption. The deployed nodes had a lifetime
of 6 months with a 1600 mAh battery, while generating 4 packets per minute.

1 Introduction

Wireless sensor network (WSN) is an emerging ad-hoc network technology that may
consist of thousands of sensor nodes combining environment sensing, data processing,
and wireless networking with extremely low energy and cost. Applications for WSN
have been envisioned in home, outdoor, and industrial environments. An environmental
sensor network can be deployed in hostile environments or over large geographical
areas to provide accurate and localized data.

The vast number of sensor nodes introduces several challenges. The network must
be scalable and autonomous, as the reconfiguration of individual nodes is not feasible.
Also, since recharging or changing power sources is not practical or possible, the net-
work must be extremely energy-efficient to allow a lifetime of even several years [1].
Still, the network must have adequate throughput and delay for the target application.

Few environmental monitoring applications utilizing WSN have been published. In
NIMS [2], PC104 based devices use suspension cables to obtain low interference links
to sensors deployed on the ground. Sensors perform complex data processing and ag-
gregation, but the network itself is not suitable for large scale deployments. The imple-
mentation in [3] has wireless nodes that are inserted in glaciers. The network activity is
low as sensors transmits readings to a base station once per day, which allows successful
use of solar panels. [4] presents results with 25 multi-hop PicoNodes that utilize Blue-
tooth physical layer with a custom data link layer and energy aware routing scheme [5].

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 109–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

110 J. Suhonen et al.

While the results in office environment show less than 4% packet loss, nodes have only
few months lifetime with two 1400 mAh batteries. Implementations that are based on
Mica II motes [6] have been published in [7], [8], and [9]. [7] introduces a multihop
network that measures temperature in a vineyard consisting of 65 nodes. [8] presents a
WSN for bird observation during four month deployment with 150 nodes. [9] describes
a surveillance system for moving vehicles and consists of 70 nodes. Although the Mica
platform provides adequate processing and sensor capabilities for most sensor applica-
tions, its energy consumption is too large to allow lifetime of years with low-capacity
batteries. In general, the problem with the presented proposals is that the network has
either too short lifetime, or the usage is limited to certain applications.

This paper presents a measurement network that uses our WSN, referred to as Tam-
pere University of Technology WSN (TUTWSN). The network has been developed to
address the challenges on WSNs, gather experiences on applying a WSN for practical
purposes, and to create tools and methods for analyzing a large scale network. Fur-
thermore, the network addresses how to cover large area with long-range multi-hop
communications, while still having low energy consumption. The measurement net-
work is presented in Fig. 1. Our ultra-low power hardware nodes utilize a long-range
433 MHz radio. A node has an energy-efficient and scalable TUTWSN protocol stack
containing embedded sensor applications, TUTWSN routing protocol (TUTWSNR),
and a TDMA-based Medium Access Control (MAC). The developed sensor applica-
tions provide control access to node configuration, gather temperature readings, and
collect WSN self-diagnostics for network analyzation purposes. A sensor node referred
to as sink collects data from other nodes by injecting interests into the network. An
interest defines gathered data and collection intervals. A configuration software run on
a PC is used to set the interests without tedious reprogramming. A gateway computer
receives data from the sink and forwards it to a specifically designed remote database
over TCP/IP through a IPSec/VPN tunnel. An easy-to-use web software has been im-
plemented for viewing measurements and network status.

TUTWSN is the first WSN to provide extensive tool set for network analyzation and
simulation. Cross-layer design has been used in network protocols to achieve energy-
efficiency and scalability. Although TUTWSN is used to receive temperature and self-
diagnostics packets in this paper, the network itself is bidirectional and symmetric, and
can be used to transfer any data. Unlike other published environmental monitoring

Fig. 1. Measurement network consisting of TUTWSN and network analyzation facilities. Proto-
col stack in sensor nodes contains communication protocols and sensor applications.

Design, Implementation, and Experiments on Outdoor Deployment of WSN 111

WSNs, TUTWSN has a long lifetime, while not being limited to a specific applica-
tion. Also, the network can be implemented on nodes having very low memory and
processing capabilities. The network is verified by an extensive deployment in outdoor
environment. In our measurements, we use interests that instruct each node to send
both its temperature and diagnostics information twice per minute. It should be noted
that TUTWSN is autonomous, and does not need any user software or a connection to
backbone networks to operate.

The rest of the paper is organized as follows. TUTWSN protocol stack is presented
in Section 2. Section 3 presents data visualization and network analyzation software.
The prototype hardware is presented in Section 4. Section 5 presents the deployment
and discusses the obtained results. Section 6 concludes the paper.

2 TUTWSN Protocol Stack

The TUTWSN protocol stack contains MAC, routing, and application layers. TUT-
WSN uses clustered mesh topology. A cluster consists of a cluster head and subnodes
as shown in Fig. 2. A cluster head can receive and transmit data to any node within
communication range, while subnodes save energy by communicating only with the
cluster head. A sensor node can change its role between cluster head and subnode.

2.1 MAC Layer

TUTWSN MAC uses TDMA-based channel access, where each cluster operates on its
own frequency (cluster channel). In addition, a common network channel is used to
advertise and detect clusters. A cluster head maintains a periodic data exchange struc-
ture (access cycle) on its cluster channel as shown in Fig. 3. An access cycle consists
of active and idle periods. Active period begins with a cluster beacon (CB) that is fol-
lowed by a super frame. A super frame consists of two type of communication slots,
reserved and ALOHA slots. Data is exchanged in reserved slots that provide collision
free communication. Contention based ALOHA slots are used when joining a cluster
and requesting a reservation. Cluster beacons signal cluster information, time sched-
ules, and slot allocations within current the active period. The communication between
cluster head and subnodes takes place in the active period. During the idle period cluster
head sleeps, communicates with other clusters, and sends/receives periodically network
beacons (NB) in the common network channel. A network beacon contains cluster tim-
ing and channel information that is required for other nodes to gain sync to the cluster.

The access cycle length and the number of ALOHA and reserved slots are adjustable
parameters. The optimal access cycle length depends on the amount of the network
traffic, because it causes a trade-off between delay, throughput, and energy consump-
tion. Current implementation has 4 ALOHA slots, 8 reserved slots, and 2 s access cycle
length. The parameters are selected by the expected traffic on the network.

2.2 Network Layer

In TUTWSNR, each node maintains a routing table to known sinks. A node selects the
neighbor that minimizes cost to the sink as its next hop. The cost is calculated from

112 J. Suhonen et al.

Fig. 2. TUTWSN clustered mesh network
topology

Fig. 3. TDMA-based channel access in TUT-
WSN MAC

the number of hops to the sink, remaining energy, link reliability, and thetransmission
power required to reach the next hop cluster. Sender decided unicast transmissions is
used to communicate with the next hop nodes. A node joins its next hop cluster in MAC
layer, thus becoming a member of that cluster.

The routing begins with a setup phase. Initially, the sink sends routeadvertisement to its
neighbors. When a cluster head receives new advertisement, it calculates a new cost to the
sink based on the cost-field included in the packet and the cost that is required to reach the
nexthopcluster.Ifthecostdecreases,thenodechangesitsnexthopandsendsadvertisement
with updated cost to its neighbors. Eventually, all nodes have a route to the sink.

Sink asks data from nodes by declaring an interest that defines the type of data that
the sink is interested in and reply generation interval (once, on change, or period). Fur-
thermore, an interest can be limited to a certain group of sensor nodes by defining an
area code or time-to-live field (hops from sink) into the interest. The interest is broad-
cast in the reverse direction of established gradients. When a node does not have a
connection to the sink, it performs periodic network scans. After the node has detected
its neighbors, the node request them for routes and interests. In this way, a node that is
not part of the network establishes a route to the sink, when it is brought in the commu-
nication range of a connected cluster. After the routes have been established, extensive
network scans are not needed.

2.3 Embedded Sensor Applications

Sensor nodes have three embedded sensor applications, sensor control, temperature, and
WSN self-diagnostics. A light-weight operating system (OS) provides timer services
and message passing between application layer and network stack. A sensor control
application handles received control messages, thus allowing remote configuration of a
node. Temperature and self-diagnostics applications generate packets, if the node has
received an interest requesting for that data. Temperature application performs sensing
on a digital sensor or reads value from analog-to-digital converter (ADC). The sens-
ing interval is set in the related interest. Also, the interest includes measurement range
that defines the values that cause generation of a reply packet to the sink that defined
the interest. WSN self-diagnostics application maintains statistics of sensor voltage,
buffer state, performed network scans, a list of known neighbor nodes, and transmit-
ted/received traffic counters.

Design, Implementation, and Experiments on Outdoor Deployment of WSN 113

3 TUTWSN Prototype Hardware

The hardware architecture of the prototype is presented in Fig. 4. Arctic operating con-
ditions set high requirements for components and batteries. Thus, all the components
have extended temperature range (−40 ◦C). The operation of the TUTWSN node is
controlled by a Microchip PIC18LF4620 MCU. Available 64 kB program memory and
4 kB data memory are sufficient for TUTWSN protocol stack and application algo-
rithms. 1 kB EEPROM is used for non-volatile configuration data, such as node ad-
dress and node status log. The controller has high energy-efficiency and versatile power
saving modes. Utilized clock frequency is 4 MHz resulting 1 MIPS performance. An
internal 10-bit ADC is utilized for monitoring battery energy status.

Nordic Semiconductor nRF905 operating at 433 MHz license-free frequency band
is used as radio transceiver. Totally 9 non-overlapping frequency channels are available
between 433.050 MHz and 434.790 MHz. Radio data rate is 50 kbps, which is adequate
for low data rate WSN applications. Internal transmission and reception buffers and
Cyclic Redundancy Check (CRC) error detection reduce MCU loading. The radio has
−100 dBm sensitivity and adjustable transmission power from −10 dBm to +10 dBm
enabling long transmission range with efficient antennae. A folded dipole antenna is
implemented directly on a printed circuit board. The antenna is selected due to a small
size and low directivity. Antenna impedance is also near to the transceiver output im-
pedance requiring only a minimum impedance matching. In addition, the antenna fits
well in a slim tube enclosure selected for the nodes.

Temperature sensing is implemented by a Dallas Semiconductor DS620 sensor in-
terfaced with a digital I2C bus. The sensor has ±0.5 ◦C accuracy from 0 to +70◦C and
an operating temperature range of −55 ◦C to +125 ◦C. A CR123A primary lithium
battery specified with 3 V / 1600 mAh capacity and from −40 ◦C to +60 ◦C operat-
ing temperature is selected as power source. Battery voltage is converted to 2.25 V
supply voltage by a MAX1725 linear regulator. According to our measurements, lin-
ear regulators suit well for the WSN node current profile, which consists of very short
and high current bursts, while around 99% of the time node is in low power
sleep mode.

The implemented long-range TUTWSN prototype is presented in Fig. 5. The pro-
totype is 255 mm x 21 mm sized, and encapsulated in a waterproof plastic enclosure.

Fig. 4. TUTWSN prototype hardware archi-
tecture

Fig. 5. Long-range TUTWSN prototype

114 J. Suhonen et al.

The prototype consists of two separate boards, one for MCU, radio, voltage regulation
and temperature sensor, and other extension board for battery, push button, LED and
I/O connector. Also, other types of sensors and energy scavenging circuits can be easily
implemented in the extension board increasing flexibility for various applications.

3.1 Measured Static Power Consumption and Radio Range

The measured minimum power consumption of a prototype node at 3.0 V supply voltage
is 31 μW , when all components are in sleep mode. The static power consumptions
of individual components in active mode are presented in Table 1. According to the
measurements, transceiver consumes significantly more power than the rest of prototype
components. Transceiver in reception mode consumes 11.8 times the power of MCU.
Data transmission at 10 dBm transmission power consumes 29.4 times the power of
MCU. Thus, the transmission of 1 bit of data at 50 kbps data rate consumes energy
equivalent to the execution of 647 instructions on MCU. For energy efficiency, both the
transmission and reception time should be minimized.

Radio transmission ranges with four power levels are measured outdoors in an open
space and line-of-sight conditions. One prototype is placed 1.5 m above a snowy ground
and configured to periodically transmit beacons with the four possible power levels,
while another node is moved away from the transmitter around 2 m above the ground,
and is receiving beacons. The measured power levels with minimum and maximum

Table 1. The power consumption of the TUTWSN prototype components at 3.0 V supply voltage

Component Power (mW) Energy
MCU 3.14 3.14 nJ / instruction
ADC 0.51 29.6 nJ / sample
Temperature sensor 2.23 55.8 μJ / sample
Radio RX 37.4 844 nJ / bit (∗

Radio TX@-10 dBm 27.0 609 nJ / bit (∗

Radio TX@+10 dBm 90.0 2.03 μJ / bit (∗

∗) 256 bit packet, includes start-up trancient, MCU in sleep mode

-10

-5

 0

 5

 10

 0 100 200 300 400

R
eq

ui
re

d
TX

 p
ow

er
 (d

B
m

)

Distance (m)

Maximum antenna gain
Minimum antenna gain

Out of
range

Fig. 6. Measured radio range versus transmission power

Design, Implementation, and Experiments on Outdoor Deployment of WSN 115

antenna gains are shown in Fig. 6. In an open space, a path loss increases quitepropor-
tionally to the distance. At maximum gain, beacons transmitted at −10 dBm, −2 dBm,
6 dBm, and 10 dBm power levels are received until 58 m, 150 m, 250 m and 375 m dis-
tances, respectively. At minimum gain, the distances are 42 m, 83 m, 117 m and 240 m,
respectively. A measured antenna directivity is around 2 dBi.

4 User Software for Network Analyzation

The configuration software communicates with a TUTWSN sink via a serial port in-
terface. The software defines interests and writes them to the sink, which propagates

Fig. 7. Configuration software showing the real-time status and active routes in the network. A
dialog for setting interests is presented on right.

Fig. 8. Web software for local residents showing measurement history

116 J. Suhonen et al.

interests to the network. Also, the software can configure a node by sending/receiving
packets to the node through the sink. The adjustable node parameters contain descrip-
tion, area code used to select nodes in interests, sensor role (subnode/cluster head),
and network wide configuration parameters that have a trade-off between performance
and energy-usage (e.g. access cycle length). The configuration software connects to
a database for storing received data, and analyzing earlier measurements and WSN
self-diagnostics history. The self-diagnostics history allows to detect bottlenecks on
network, find erroneous nodes, and predict the lifetime of a node based on a battery
voltage usage history. Figure 7 shows the capture of the software on GNU/Linux desk-
top environment.

The web software is targeted at end-users and can be used with any device hav-
ing a Web browser. The data is processed completely on server side with Java Servlets,
which eases the requirements of the device using the service. The shown diagnostics in-
formation contain variables that affect the reliability of measured values, such as packet
reception interval and the time of the last received measurement. The service starts
with a selection of deployment area. Next, the map of the area containing sensors and
last measured values is presented. A user can examine the measurement history of an
individual sensor or a group of sensors, as shown in Fig. 8.

5 Outdoor Deployment and Measurement Results

The outdoor deployment consists of 19 nodes covering 2 km2 area. The nodes do not
generally have line of sight and are located over 1 m above the ground, typically bound
in a tree as shown in Fig. 9. So far, the nodes have been deployedover 4 months from
November 2005 to March 2006. Because the TUTWSN protocol stack is under develop-
ment, few different revisions of the protocols have been used. Therefore, the presented
results measured with current version are obtained since January 2006. Two of the nodes
are subnodes, while the rest of the nodes act as cluster heads.

(a) (b)

Fig. 9. The typical deployment of nodes in trees

Design, Implementation, and Experiments on Outdoor Deployment of WSN 117

5.1 Distribution of Traffic

Geographic locations of deployed sensor nodes (identified with numbers 1-18) and
the distribution of transmitted traffic on selected nodes is shown in Fig. 10. Average
successfully transmitted traffic per node is presented in Fig. 11. The bandwidth usage
between temperature and self-diagnostics data was equal. Control traffic (route adver-
tisements and interests) used less than 1% of bandwidth. Since nodes originate the
same amount of traffic, the difference in traffic volumes is caused by forwarded data.
The nodes located in the edge of the network transmit less data, since routing algorithm
tries to minimize required energy and hops, thus preferring routes through centrally
located nodes. The nodes 17 and 18 do not forward data, because they were config-
ured as subnodes. Node 6 experienced high link error rates due to bad location, which
resulted into low traffic. A significant portion of the traffic to the sink is forwarded
via node 2. Node 2 sent 91% of its traffic (8.7 bit/s) to the sink, which corresponds to
over 1/3 of the traffic received by the sink (17.8 bit/s). Although node 2 is located rel-
atively close to the sink, other nodes have a to the sink through it because the sink is
inside a building while the node 2 is outside. Thus, nodes have better connection to the
node 2.

15

250 m0 m

Lake

4

5
10

6

8

12

2

1

9

7
13

11 14

3

18

17

72%
9%

18%

6%

14%
17%15%

4%

91%

5%

3%

20%63%

5%
11%

1%

34%66%

1%

1%

Sink / gateway
Node

44%

Fig. 10. Geographic locations of deployed sensor nodes and the distribution of transmitted traffic
in selected nodes (node 16 is outside the picture, 250 m north of node 4)

A node had only one active next hop route at a time. Route changes are caused by
a broken next hop link due to communication errors, or changes in network conditions
that caused routing to change next hop node. An average time between route changes

118 J. Suhonen et al.

Fig. 11. Average transmitted traffic per node

-30

-20

-10

 0

 10

27-Feb01-Feb06-Jan11-Dec16-Nov

Te
m

pe
ra

tu
re

 (C
)

Date

Min
Average
Max

Fig. 12. Measured minimum, maximum, and
average day temperatures

was 30 minutes, caused typically by routing algorithm balancing the network load.
Typical hop count from a node to the sink was 4, while the maximum count was 8.

The longest link is 1.1 km from node 3 to node 15. This is notably more than the mea-
sured communication ranges presented in Fig. 6. The difference is caused by reflections
from the ground and buildings. The measured values were obtained in an opens space,
while the deployment environment contains cliffs, icy surface of the lake, and other
elements of terrain that can enhance the radio wave propagation.

5.2 Temperatures

Day temperatures during the measurement period are shown in Fig. 12. The tempera-
tures are averaged over readings from all sensor nodes. The temperature changes sig-
nificantly and often radiply. For example, on January 23, 2006 the lowest temperature
was −21.8 ◦C, while the highest temperature on the next day was −5.2 ◦C. The rapid
changes can be seen in Fig. 13 that shows temperature per hour on a selected sensor.

Temperature changes introduce challenges to the equipment and protocols. As the
temperature alternates between below zero and above zero, the casing must be compact
to prevent water damage. The MAC protocol must compensate clock drift, since the

-20

-10

 0

 10

27-Feb26-Feb25-Feb24-Feb23-Feb

Te
m

pe
ra

tu
re

 (C
)

Date

Fig. 13. Rapid environmental temperature
changes on a selected sensor (node 8)

-30

-20

-10

 0

 10

Feb-28Feb-20Feb-12Feb-4Jan-27
 2.7

 2.8

 2.9

 3

Te
m

pe
ra

tu
re

 (o C
)

V
ol

ta
ge

 (V
)

Time

Temperature
Voltage

Fig. 14. The effect of temperature to voltage
(node 8)

Design, Implementation, and Experiments on Outdoor Deployment of WSN 119

oscillating frequency of crystals depends slightly on temperature. On the deployment
region, temperature does not change evenly and some nodes might be inside buildings.

5.3 Energy Consumption

A node measured its battery voltage with ADC. The voltage information was send to
the sink in diagnostics packets. The energy consumption is calculated with drop in
battery voltage. However, a short term development on voltage level cannot be used, as
temperature affects the level. The effect is seen on Fig. 14 that shows temperatures and
voltages measured on a selected node. Figure 15 presents voltages of two sensor nodes
(2 and 8) and average voltage drop. The average voltage drop is calculated with linear
regression, because the battery discharge rate is near linear between voltages 2.9 V and
2.6 V with presented temperatures and light load. The steeper voltage drop on node
2 is caused by heavy traffic. Figure 16 presents the voltages and incremental sum of
transmitted and received packets on both nodes. The result indicates that it is beneficial
to add a new node near a highly loaded node. In this way, the traffic between them
averages and the network lifetime increases.

5.4 Discussion

The experiments are providing vast amount of information about the real operation
of WSN nodes and radio links in forested, low temperature outdoor environment. Ac-
cording to the experiments, a forest attenuates radio wave propagation significantly.
Achieved radio range in a forest has been below 100 meters, while the longest mea-
sured range has been near 1.5 km. An edge of the forest seems to operate as a reflector
causing notable gain in antenna radiation pattern. Also, radio wave propagation has
been notably affected by snowfall, rain, humidity, temperature, and the frost and snow
in trees, ground, and around the nodes. Hence, the quality of radio links and the network
topology changes dynamically although nodes are stationary.

Dynamic network topology affects significantly on the routing protocol operation.
The experiments depict that the entire route to a sink must be considered in the route
selection. As the difference between link qualities is very high, examining only next hop

 2.6

 2.7

 2.8

 2.9

 3

Feb-28Feb-21Feb-15Feb-8Feb-2Jan-27

V
ol

ta
ge

 (V
)

Time

Measured voltage (node 8)
Measured voltage (node 2)
Average voltage (node 8)
Average voltage (node 2)

Fig. 15. Decrease in the battery voltage of two
selected sensors

 2.6

 2.7

 2.8

 2.9

 3

Feb-28Feb-21Feb-15Feb-8Feb-2Jan-27

3.0

2.5

2.0

1.5

1.0

0.5

0.0

V
ol

ta
ge

 (V
)

R
x/

tx
 p

ac
ke

ts
 (1

06)

Time

Packets (node 8)
Packets (node 2)
Voltage (node 8)
Voltage (node 2)

Fig. 16. Voltage decrease and transmitted/
received packets in sensors

120 J. Suhonen et al.

quality when determining a route leads to unsatisfactory performance. Since the envi-
ronment affects radio wave propagation significantly, cost-effective routing paths do
not typically follow geometrically reasonable routes. The utilized cost-gradient based
routing seems to work well in outdoor multi-hop networks without line-of-sight.

The outdoor temperatures until March 2006 ranged from −31.5 ◦C to 12.0 ◦C. The
high temperature variation reduced significantly the accuracy of crystals and thus, the
accuracy of time synchronization. In the worst case scenario some nodes were inside
buildings and other in outdoors resulting nearly 50 degrees difference in the operation
temperature. The implemented hardware prototypes performed well during the whole
test period. In some locations, nodes were not able to associate with the network for
long periods of time. This was caused by poor radio link quality, not the hardware
prototype itself. According to the reduction of battery voltages during the test period,
an expected network lifetime is around 6 months. It should be noted that the network
traffic consisted not only of temperature measurements but also diagnostics information,
which increased load and decreased lifetime.

Although the expected lifetime is satisfactory, some improvements for the energy
efficiency will be made. The high variation in temperature decreased significantly the
accuracy of TDMA synchronization, therefore increasing idle listening time prior to
beacon receptions. A significant energy save is achieved by an algorithm that dynami-
cally compensates the crystal drift. A further energy save is achieved by an algorithm,
which adjusts the access cycle lengths for each cluster head according to traffic con-
ditions. According to our energy analysis, these improvements will decrease network
energy consumption to a quarter, thus increasing expected network lifetime to around 2
years. For comparison, this equals to 3.5 years with 2xAA batteries.

6 Conclusions

This paper presents a complete measurement network based on a fully featured au-
tonomous wireless sensor network. The network combines small energy consumption
with adjustable network performance. The network protocols and hardware platform
are energy-efficient, giving a node the lifetime of 6 months with a 1600 mAh battery
during deployment in harsh outdoor environment. The future work will focus on im-
plementing different services, such as positioning into sensor networks. The presented
network allows fast implementation and testing of new ideas in practice.

References

1. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40 (2002) 102–114

2. M. A. Batalin et al: Call and response: Experiments in sampling the environment. In: Pro-
ceedings of the 2nd international conference on Embedded Networked Sensor Systems. (2004)
25–38

3. Martinez, K., Hart, J.K., Ong, R.: Environmental sensor networks. Computer 37 (2004) 50–56
4. Reason, J.M., Rabaey, J.M.: A study of energy consumption and reliability in a multi-hop

sensor network. Mobile Computing and Communications Review 8 (2004) 84–97

Design, Implementation, and Experiments on Outdoor Deployment of WSN 121

5. Shah, R.C., Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor networks. In:
Wireless Communications and Networking Conference. (2002) 350–355

6. Hill, J.L., Culler, D.E.: Mica: a wireless platform for deeply embedded networks. IEEE Micro
22 (2002) 12–24

7. Beckwith, R., Teibel, D., Bowen, P.: Report from the field: Results from an agricultural wire-
less sensor network. In: Local Computer Networks. (2004) 471–478

8. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large
scale habitat monitorin application. In: Proceedings of the 2nd international conference on
Embedded Networked Sensor Systems. (2004) 214–226

9. T. He et al: Energy-efficient surveillance system using wireless sensor networks. In: Proceed-
ings of the 2nd international conference on Mobile system. (2004) 270–283

LATONA: An Advanced Server Architecture
for Ubiquitous Sensor Network

Chi-Hoon Shin1, Soo-Cheol Oh2, Dae-Won Kim2, Sun-Wook Kim2,
Kyoung Park2, and Sung-Woon Kim2

1 Department of Computer & Software Engineering, University of Science
and Technology, 52, Eoeun-dong, Yuseong-gu, Daejeon, 305-333, Korea

cshin@etri.re.kr
2 Server Platform Research Team, Electronics and Telecommunications Research

Institute (ETRI), 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Korea
{ponylife, won22, swkim99, kyoung, ksw}@etri.re.kr

Abstract. The emerging Ubiquitous Sensor Network (USN) makes con-
nection less datagrams and short event packets get popular. A large num-
ber of short term event packets of USN can cause serious problems, such
as interrupt handling overhead and context switching overhead. Further-
more, heavy load of the packet security methods needs enough processing
power. Then, the more USN develops, the more network overheads would
be loaded into host CPU. To solve the problems, we propose a special
server component including TOE (TCP/IP Offloading Engine) and H/W
IPSec (IP Layer Security) for USN.

1 Introduction

In the last decade, there have been significant evolutions in the network envi-
ronment [2,4,3,1,6]. Nowadays, the dominating packet type of network traffic is
moving from the connection-oriented datagram to the connection-less datagram.
This alteration is triggered by a popularization of the connection-less oriented
applications such as Ubiquitous Sensor Network (USN) and multimedia stream-
ing. In USN, integrated low power sensing devices will allow users to monitor
remote objects Also, it can be used in many different contexts: in the field (ve-
hicles, equipment, personnel), the office building (furniture, books, people), the
hospital ward (syringes, bandages) and the factory floor (motors, small robotic
devices) [23]. Then, enormous amount of the devices deployed in the various
fields will produce a large number of short term event packets [16]. The large
numbers event packets can cause serious problems, such as interrupt handling
overhead and context switching overhead, on network servers.

To catch up with the performance demands of sensor network, servers need
another device which is capable of offloading sensor packet processing from them-
selves. Nowadays, the wire communication speed has been getting fast three
times a year. However, processor speed which has been getting fast only 1.8
times a year [5,2,3,6]. So, CPU has no margin to do other jobs [5,3,6]. The de-
vice should cover short term event packet and their security. Simultaneously, it is

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 122–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

LATONA: An Advanced Server Architecture for Ubiquitous Sensor Network 123

good for the server that the device can offload high speed network burden from
host CPU, since the CPU could get freedom for doing other works of server.

The Other bottleneck for servers is the security overhead. The packet commu-
nications without protection from a security method are vulnerable to various
malfunction attacks. However, guarantee of the security of a large number of
sensing devices will aggravate the server’s performance degradation caused by
the interrupt and context switching.Furthermore, the connection less datagram
packets can not be protected by the widely used methods such as SSL (Secure
Socket Layer) and TLS (Transport Layer Security) because those methods focus
on over the transport layer. More lower lever security methods, like as IPSec and
MAC layer security, can cover the problem [7,8].

As a solution, we propose a server component specialized for USN which in-
cludes a TOE (TCP/IP Offloading Engine) and an IPSec (IP Layer Security). We
developed a network accelerator card - Leading Architecture for TCP Offloading
& Network Acceleration (LATONA) - which can fully offload host network bur-
den, accelerate processing of USN packets, and perfectly guarantee the security
of the packets. In the remainder of this paper, we’ll consider related works, show
some basic knowledge for understanding of our approach, and describe our so-
lution. Finally this paper shows the result data of some experiments comparing
the performance differences between alternatives.

2 Related Works and Contribution

Most of the efforts towards improving the efficiency of the TOE have been tar-
geted at addressing performance issues in area of the internet based storage such
as ISCSI [2,4,3,1,6]. Also, most of the security researches have a bias towards
VPN for the storage [17]. Various companies offer commercial security processor
ICs to improve the performance of the storage VPN [20,19,18]. On the other
hand, various organizations are actively involved in designing systems for USN.
However, none of them have a method for connection between sensor node and
server [23,21,22,24]. For example, Intel has a sensor network solution including
sensors, gateways, and a server [21]. Nevertheless they do not consider server
technology for handling the sensor traffic of real world.

Therefore, as far as we know, LATONA is first work to implement a server
component specialized USN. If not, at least, it is certain that our work is first
solution to adopt a full offloading hardware TOE and a hardware IPSec processor
for processing USN packets.

3 Backgrounds

3.1 Transport Offload Engine (TOE)

The basic idea of a TOE is to offload the processing of TCP/IP protocols from
the host processor to the hardware. The TOE can eliminate the delay caused
by interrupt overhead, memory transfer, and etc. As depicted in figure 1, TOE

124 C.-H. Shin et al.

TOE adapter

Application

Operating System

Hardware

Traditional NIC

Upper-level protocols

TCP

IP

MAC

PHY

TCP

IP

MAC

PHY

Upper-level protocols

Standard TCP/IP stack TOE TCP/IP stack

Fig. 1. Transport Offload Engine (TOE): comparison between Standard TCI/IP stack
and TOE TCP/IP stack

processor can offload network burden from host using H/W network stack. This
architecture makes host CPU free from network overhead, so that host CPU can
concentrate with local processing without any of delay [4,3,6].

3.2 IP Layer Security (IPSec) Overview

IPSec is a fundamental security method for the network dominated by datagram.
IPSec provides data confidentiality, data integrity, and replay protection for the
whole IP datagram. It uses a symmetric key algorithm (like 3DES-CBC or AES-
CBC) to encrypt the data. As described in figure 2, IPSec has ability to apply
security with upper transport header directly. So it doesn’t mind which transport
protocol come onto network layer [7,8,17,9].

IP Header IPSec Header PAYLOAD

Encrypted

IPSec Tail

TCP/UDP Header Data

Fig. 2. IPSec Packet: IPSec encrypt or authenticate the payload including TCP/UDP
header and data. There are IPSec header and IPSec tail (optional).

4 Implementation of LATONA Including H/W IPSec

Electronics & Telecommunications Research Institute (ETRI) developed an ad-
vanced TOE, the Leading Architecture for TCP Offloading & Network Acceler-
ation (LATONA) with Hifn 8300 inline IPSec processor [12]. Though TOE has

LATONA: An Advanced Server Architecture for Ubiquitous Sensor Network 125

many advantages, previous TOEs are not suitable for optimal solution of USN.
Most of the TOEs are focused on the Storage Market. They only consider large
packet and use their own protocol stack, so that they could not guarantee the
responsibility with event packet based applications [6].

4.1 Resource Management Architecture

The block diagram Figure 3 Shows the resource management architecture of
LATONA. It is important how to manage connections (sockets) for processing
of large number of event packets. As the figure shows, implementing connection
manager using h/w pool and adopting tree mechanism for management of sockets
can solve this problem. And LATONA reduce the overhead occurred by kernel
data copies through zero copy technology where a data can directly pass between
user buffer and TOE. These resource mechanisms are controlled by h/w doorbell.
This doorbell includes an advanced interrupt mechanism for diminishing the
interrupt overhead of event packets.

DMA

Socket Pool

IPSec / MAC-PHY I/F

Hifn 8300 IPSec MAC/PHY

Host system
Kernel area

Host system
User area

LATONA

User Buffer User Buffer User Buffer User Buffer

Socket Socket Socket Socket

Socket
struct

Socket I/F

Driver I/F

Socket
struct

...
Socket
struct

Socket
struct

Socket
struct

...
Socket
struct

DMA

Send
Cmd

Receive
Cmd

IP
processing

IP
processing

Fig. 3. Block diagram of resource management

4.2 Choice of H/W IPSec on LATONA

The S/W IPSec processing speed is very slow, because the IPSec is naturally
computation oriented protocol. Then, the IPSec can cause serious bottleneck
on network service because host normally has another burdens related with

126 C.-H. Shin et al.

LATONA

MA
C

IP

PHY

outbound

inbound

With kernel

Hifn 8150 IPsec
Processor

Inbound IPsec

Policy/Security
Association

Outbound IPsec

Forwa-
rding

Engine

Packet
Classi-

fier

TCP/
UDP

CPU

BUS

1. Packet classification whether it
 needs IPSec
2. Packet transfer to CPU via bus
3. Packet transfer to Hifn via CPU
4. Processing IPSec using Hifn
5. Deliver the packet to CPU
6. Deliver the packet to TOE
7. Packet forwarding

1

2

3

4

5

6

7

Fig. 4. Architecture of Look-aside IPSec LATONA: a view from high level block and
operation sequence in the order of named in upper box of figure

LATONA

Hifn 8300 IPsec
Processor

MA
C

TCP/UDP/IP

PHYTCP/
UDP IP

Packet
De/Assembly

Policy/Security
Association

Authentication /
Encryption

outbound

inbound

With kernel

1. TCP/UDP/IP/MAC path of
 packet processing
2. Disassembly of the Packet
3. Classification of IPSec apply
4. Apply IPSec with packet
 if it is needed
5. Assembly of the Packet
6. Forwarding of the Packet

1 2

3

4

5

6

Fig. 5. Architecture of Inline IPSec LATONA: a view from high level block and oper-
ation sequence in the order of named in left box of figure

the security like firewall and virus protection. Therefore the IPSec has to be
implemented by H/W design [11,9]. The combined system (H/W IPSec and
TOE) can guarantee the security of datagram networks while preserving the
bandwidth of gigabit networks. This system can be real as two types respectively,
that are look-aside and inline architecture [9].

The look-aside IPSec processor implements partial functions (related with
IPSec cryptography) of IPSec as H/W. The Figure 4 shows the architecture
and outbound packet processing of look-aside system. The system consists of
a LATONA and a Look-aside IPSec Processor (Hifn 8150) outside LATONA.
And they communicate through the host bus. In this scheme, if there is a packet
which needs IPSec service, the packet is sent out after IPSec processing and
with bus transaction cost. More detail sequence is in a box upper Figure 4. It’s
evident that the system has better performance than the S/W IPSec system
because it has an H/W cryptography engine. However it has some drawbacks
such as difficult design and bus overhead.

The inline system completely offloads the host CPU from whole IPSec loads,
providing significant additional cost saving compared to the look-aside system.
The figure 5 shows the architecture and the outbound packet processing of the

LATONA: An Advanced Server Architecture for Ubiquitous Sensor Network 127

Manager

Doorbell

User
Space

Kernel
Space

LATONA

TOE
BypassTCP/ UDP/IP

Hifn IPsec processor

Doorbell

Hifn
Initialize

PPCI Generator

SAD
Control

SPD
Control

H/ W
Bypass

PPCI
Catcher

Status value
Return

Error processing

5

Function call with parameters 1. Call a function from Manager
2. Generate setting information and
send to a PPCI Generator
3. Generate PPCI type MAC packet
header and PPCI header
4. Generate payload
5. Generate PPCI packet and send to
LATONA TOE
6. Bypass PPCI packet to Hifn
7. Return a result after processing
for a PPCI packet
8. PPCI catcher receive the result
and pass to the function

1

2

3 4

6

7

8

Fig. 6. S/w Architecture of LATONA for Inline IPSec: a view from high level block
and operation sequence in the order of named in right box of figure

inline IPSec. The system consists of LATONA and a hifn 8300 inline IPSec
Processor inside LATONA. And they are directly connected with wired interface.
In this scheme, if there is a packet which needs IPSec service, the packet is
sent out after IPSec processing and without bus transaction cost. More detail
sequence is in a box upper Figure 5. This architecture can eliminate the bus
overhead and bottleneck. Also it has the simple interface, so that designers are
allowed to save the design cost.

There should be a Control Program to control Hifn processor. This pro-
gram run initialization code and set tables for Hifn Processor operation such
as Firmware download and GMAC interface initialization. More detail sequence
is in a box upper Figure 6.

4.3 Specifications of LATONA

Here are simple specifications of LATONA.

• TCP/IPprotocolfulloffloadingH/W (onXilinxV irtex − IIProFPGA)
• StandardPCI − Expressbusinterface(onAlteraStratix − GXFPGA)
• LSIGMAC&MarvellGPHY

Fig. 7. LATONA TOE: FPGA version LATONA 2.0 with Hifn 8300

128 C.-H. Shin et al.

Fig. 8. Throughput of S/W, look-aside, and inline TOE IPSec system: measurement
of throughput while sending speed of packet is increasing with a static packet size

As the security core of LATONA, Hifn8300 inline processor is adopted. As
depicted in figure 7, Hifn8300 is located between PHY (Physical Layer) and
MAC (Media Access Control Layer) of LATONA TOE. Hifn 8300 has 2 Gbps
IPSec processing performance (full-duplex) and supports algorithms such as AES
(CBC & CTR), DES/3DES, SHA-1, MD5, and AES-XCBC.

5 Some Experiments for IPSec

This paper shows the result data of some experiments comparing the perfor-
mance among S/W only, H/W IPSec systems (look-aside and inline). The table 1
shows the condition of experiments. And the result is analyzed using the GTX
protocol analyzer of Finisar[15].

Table 1. Condition of experiment: distinguished by the kinds of cores, traffics, and
IPSec Modes

A. Measurement of the throughput of the IPSec TOE systems: We
measure the throughput while interval time between each packet delay increases
for the same packet size. As shown in the figure 8, for a fixed packet size, the
inline system has outstanding performance. The throughput of the H/W system
gradually increases as the sending speed increase whereas throughput increase
rate of the S/W stack is getting weak. This overhead might seem to be caused
by S/W computational overhead.

B. Measurement of the throughput while packet size increases: In
the second experiment, we measure the changes of throughput during packet

LATONA: An Advanced Server Architecture for Ubiquitous Sensor Network 129

Fig. 9. Overhead of S/W, look-aside, and inline TOE IPSec system: measurement of
throughput while packet size is increasing with a static sending speed

size is increasing for the same packet delay. As depicted in the figure 9, for a
fixed sending speed, the throughput decrease rate of look-aside system gradually
increase as the packet size increase. This overhead might seem to be caused by
look-aside specific bus processing.

C. Approximation of the packet processing overhead: Through the above
experiments, we can derive the main cause of the packet overhead. We estimate
the overhead cost by some calculations. As figure 5 depicts, there are approx-
imately 4 times of bus transfer between TOE and look-aside IPSec processor.
Given that the packet size (1051 byte) and the bus (32bit, 133Mz), an approxi-
mation of packet processing overhead is possible.

Where Bpacket is packet size, Cbuspacket is additional bus overhead,Sbuspacket

is transmit time per packet, and S1Gpacket is processing time per packet on 1G
network. As equation (3) of the above approximation, we can expect that look-
aside TOE IPSec packet sending speed is two times slower than inline system
speed. It’s because the IPSec bus operation of look-aside spends same time as
time which is necessary for packet processing with gigabit network stack. And
we can know that the S/W IPSec packet cryptography cost is about 7 times
more expensive than inline system. The overall result from the experiments is
as follows in Table 2.

130 C.-H. Shin et al.

Table 2. Comparison among the systems: the S/W only, look-aside, and inline IPSec

6 Concluding Remarks

In this paper, we designed and implemented a server component (LATONA)
for USN event packet service. It includes full TOE and hardware IPSec. Our
approach can alleviate sensor network packet overheads as well as high speed
network burden, so that host CPU can do other jobs. Also we classified which
architecture is more suitable for the USN environment. Throughout some ex-
periments and analysis of implementations, it was proven that the TOE system
including the inline IPSec is an appropriated solution. The TOE system includ-
ing the inline IPSec shows us the stable performance regardless of sending speed
and packet size.

As a future work, we have a plan to expand the research area into the sensor
security. The focus of the research is an implementation of key distribution pro-
tocol based on the IPSec TOE system. It is particularly challenging providing
security in sensor networks due to the resource limitations of sensor nodes. The
constrained energy budget of sensor nodes makes key distribute protocols such
as IKE and Kerberos [17] developed for conventional wired networks impractical
in large-scale sensor networks. We are interested in an implementation of a novel
security key distribution protocol which is appropriate for the security between
sensor node and the server based on the IPSec TOE.

References

1. G. Regnier et. al: TCP Onloading for Data Center Server. IEEE Computer, Vol.
37, Issue 11, Nov. 2004, pp 48-58

2. Renato John Recio: Server I/O Networks Past, Present, and Future”, Proc.ACM
SIGCOMM 2003 Workshop, Aug. 2003, pp. 164-178

3. Andy Currid: TCP Offloading to the Rescue”, Queue, Vol. 2, No. 2, Issue 3, May
2004, pp. 58-65

4. ”Intel I/O Acceleration Technology”, http://www.intel.com
5. J. Mogul: TCP Offloading Is a Dumb Idea Whose Time Has Come. Proc. 9th

Workshop on Hot Topics in Operating Systems, Usenix Assoc, 2003
6. Kyoung Park: Network I/O Acceleration Technologies. Summer Workshop, KISS,

2005

LATONA: An Advanced Server Architecture for Ubiquitous Sensor Network 131

7. R.Oppliger: Internet and Intranet Security. Artech House, Norwood, Mass., 1998
8. R.Oppliger: Security at the internet layer. IEEE, 1998
9. Robert Friend: Making the gigabit IPSec VPN architecture secure. IEEE Com-

puter, vol 37, pp. 54-60, 2004
10. A.P. Foong et al: TCP Performance Re-Visited. ISPASS, 2003
11. O.Elkeelany: Performance Analysis of IPSec protocol - encryption and authentica-

tion. ICC 2002
12. ”Hifn IPSec Processors”, http://www.hifn.com
13. ”packETH”, http://packeth.sourceforge.net
14. ”IPSec-Tools”, http://ipsec-tools.sourceforge.net
15. ”Finisar GTX analyzer”, http://www.finisar.com
16. Deepak Ganesan: Networking issues in wireless sensor networks. July 2004, Journal

of Parallel and Distributed Computing
17. Srivaths Ravi et. al: System Design Methodologies for a Wireless Security Process-

ing Platform. DAC2002, June 10-14, 2002
18. ”Intel Corp., Enhancing Security Performance through IA-64 Architecture”,

http://developer.intel.com/design/security/rsa2000/itanium.pdf
19. K. Kant, R. Iyer, and P. Mohapatra: Architectural Impact of Secure Sockets Layer

on Internet Servers. in Proc. Int. Conf. Computer Design, pp. 7-14, 2000
20. A. Goldberg, R. Buff, and A. Schmitt: Secure Server Performance Dramatically Im-

proved by Caching SSL Session Keys. in ACM Wksp. Internet Server Performance,
June 1998

21. ”Intel Mote Reserch project website”, www.intel.com
22. M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks: An ultra low

power system architecture for sensor network applications. In International Sym-
posium on Com-puter Architecture, 2005

23. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister: Sys-
tem architec-ture directions for networked sensors. In Architectural Support for
Programming Lan-guages and Operating Systems, pages 93-104, 2000

24. L. Nazhandali, B. Zhai, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
T. Austin, and D. Blaauw: Energy optimization of subthreshold-voltage sensor
network processors. International Symposium on Computer Architecture, 2005

An Approach for the Reduction of Power
Consumption in Sensor Nodes of Wireless
Sensor Networks: Case Analysis of Mica2

Adriano B. da Cunha and Diógenes C. da Silva Jr.

Dept. of Electrical Engineering, Federal University of Minas Gerais,
Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil

{adborges, diogenes}@cpdee.ufmg.br

Abstract. This paper presents a novel solution for the effective reduc-
tion of power consumption in sensor nodes of wireless sensor networks.
Possible alternatives to reduce the power consumption in generic sensor
nodes are presented. After, these alternatives are evaluated for a spe-
cific sensor node, the Crossbow Mica2. The case analysis for this sensor
node showed that, among the possible alternatives to reduce the power
consumption, the radio communication channel presented the best op-
portunity. A novel solution that integrates the transmitted signal power
control with the received information quality is presented in a dynamic
mechanism called Maximal Survival Capacity.

1 Introduction

A Wireless Sensor Network (WSN) is composed of many autonomous and com-
pact devices called sensor nodes. The objective of this network is to collect data.
The availability of integrated low-power sensing devices, embedded processors,
wireless communication kits, and power equipment are enabling the design of
sensor nodes. WSN has the potential for many applications from monitoring
large metropolis traffic density to road conditions; in a forest for fire detection;
in precision agriculture; in condition based maintenance devices like powerplants;
in biomedicine. Other applications include managing complex physical systems
like airplane wings and complex ecosystems, and animal tracking.

A sensor node is composed of a power unit, processing unit, sensing unit, and
communication unit. The power unit has the purpose to supply energy to the
node. The processing unit collects and processes signals captured from sensors
and transmit them to the network. Sensors devices are devices that produce a
measurable response to a change in a physical condition like temperature and
pressure. The wireless communication channel enables a medium to transfer sig-
nals from sensors to exterior world (provided by a gateway), and also an internal
mechanism of communication to establish and maintain the WSN. Sensor nodes
of WSN have limited resources, such as computational capacity, memory, com-
munication and energy. In most applications, WSN will have large quantities of

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 132–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Approach for the Reduction of Power Consumption 133

distributed sensor nodes in remote or inhospitable places. That’s why batteries
are their main source of energy. Network lifetime depends on quantity of energy
available and sensor nodes should balance their limited resources to increase the
lifetime of the network.

The objective of this work is to present a novel approach to reduce the power
consumption in sensor nodes. Several alternatives to reduce the power consump-
tion are presented and analyzed. The case study focus at the Crossbow commer-
cial sensor node called Mica2 Mote.

The Maximal Survival Capacity (MSC) is the ability of a WSN node to in-
crease its operational lifetime. MSC is based on the amount of internal energy
(supplied by its batteries) and the processing of the Maximal Survival Algo-
rithm (MSA) which is based on the control of the node transmitted power and
the quality of the received data at the base station.

2 Power Consumption in Sensor Nodes

To maximize the sensor node’s lifetime after its deployment, aspects such as cir-
cuits, architecture, algorithms and protocols have to be energy efficient [1]. Once
the system has been designed, it becomes necessary to identify how the power con-
sumption is distributed among hardware components in the sensor node in order
to obtain additional energy savings using Dynamic Power Management (DPM).
The majority of the hardware components used, such as, microcontrollers, mem-
ories, and transceivers have at least two power management modes. Traditional
PowerConsumption reduction techniquesuseDPMandStaticPowerManagement
(SPM) which involves the control of power supply voltages and frequency of opera-
tion. In the case of WSN most used techniques are the Power Supply scaling, CPU
Power states and peripheral Power Supply Control(on and off).

Microcontroller: Processing is effected by the microcontroller unit (MCU) of
the sensor node. The MCU is composed by a central processing unit (CPU), a
small internal program memory and, in general, a large data memory (usually
non-volatile), and a set of peripherals such as timers, I/O modules and inter-
faces, and analog to digital converters. To increase the data memory capacity,
an external is added and acts as a secondary memory not addressed in the
CPU memory space. The MCU is responsible for the control of the sensors and
execution of the communication protocols and algorithms of signal processing,
applied to the data collected from the sensors. The StrongARM microprocessors
from the Intel [2], microcontrollers AVR from the Atmel [3] and microcontrollers
MSP430 of the Texas [4] are the MCUs often used in sensor nodes for WSN.
DPM implemented in CPU makes possible the reduction of the power consump-
tion in idle or sleep states. These modes permit that the application turn off
modules not used. For example, the ATMEGA128L has six sleep modes, each
one with a different set of internal modules turned on. There are also techniques
that make possible the reduction of the power consumption in the active state
of the MCU, such as DVS/DFS (Dynamic Voltage Scaling/Dynamic Frequency

134 A.B. da Cunha and D. da Silva Jr.

Scaling) [5,6,7,8]. It should be noticed that the reduction of the voltage implies
in a reduction of the operating frequency [5]. DVS is a technique used for power
management in active states of the MCU, in which the power supply and the
clock frequency are varied, depending on the processing demand [7]. The power
supply is scaled for the application by means of the operational system and con-
trolled at the physical layer with a DC-DC converter with variable voltage [5,7].
However, the hardware of the MCU must provide this type of functionality, as
it is the case of the MCUs Intel StrongARM and the Crusoe, from Transmeta
[9]. There are two types of power management supplied by CPUs in idle states.
A mechanism of SPM, that is set in motion by the user and does not depend
on the activities of the CPU. An example of a static mechanism is the power
down mode. This mode is a way to reduce the unnecessary power dissipation
and generally is implemented by the execution of a specific instruction. Exit of
this mode occurs by means of an interruption or another event, not being pos-
sible to leave by means of the execution of another instruction. A mechanism
of DPM [1,10,11] implements actions to control the power dissipation based in
the dynamic activity of the CPU. For example, the CPU can disconnect some
of its modules when the instructions that are being executed do not need them.
To enter to, specially to exit from lower-power modes CPU consumes time and
energy (without processing), and needs to adequately control its internal logic
to avoid program and data corruption.

Transceiver: Wireless communication is carried by means of a radio frequency
transceiver. This makes possible the communication of the sensor node with its
neighbors and the external world. The characteristics that affect the consumption
of energy of a transceiver include the type of modulation, transmission rate,
transmission power and operational duty cycle [5,12]. The Chipcon CC1000 [13]
and the CC2420 [14] are the transceivers often used in available commercial
WSN platforms. An opportunity to reduce the consumption of the transceiver
energy is to control the transmit power, since it can have an impact on the
remaining battery capacity [15,16,17]. Several researchers have proposed simple
modifications of IEEE 802.11 standard to incorporate power control. The main
idea of these power control schemes is to use different power levels for RTS-CTS
and data-ack. Specially, maximum transmit power is used for RTS-CTS, and the
minimum required transmit power is used for data-ack transmissions in order
to save energy [18]. Jung and Vaidya [19] have proposed a power control MAC
protocol that periodically increases the transmit power to a maximum during the
data packet transmission. With this change, nodes that can potentially interfere
with the ack reception at the sender will periodically sense the channel as busy,
and defer their own transmission. However, WSN differs from Ad Hoc Networks
in two aspects: unidirectional data flow and a strong energy restriction. Thus,
other questions and scenarios should be considered.

Power Supply: Usually, a battery is the energy source, but there are other
energy sources that can be used, such as solar cells, ultra capacitors, vibrations
cells, fuel micron-cells, etc [20].

An Approach for the Reduction of Power Consumption 135

Sensors: Sensors are responsible for the monitoring of interest phenomena, such
as: temperature, pressure, luminosity, humidity, etc. They translate physical phe-
nomena into electric signals and can be classified as analogical or digital devices,
depending on the type of output they produce. The sources of energy consump-
tion in sensors include sampling of the signal and the conversion of the physical
signal for the electric signal, signal conditioning and analog to digital conversion.

3 Maximum Survival Capacity

Before implementing any technique of hardware for the reduction of the power
consumption for the Mica Motes platform sensor node, a survey of the con-
sumption for each hardware components is presented. The microcontroller used
in this platform only makes possible the power management of sleep states, and
no DVS mechanism is possible. Table 1 shows the consumption of the main
hardware components.

It can be observed that the consumption is critical for the external memory
and the transceiver. In the first case, the only alternative is to keep it in the
standby mode. For the transceiver, besides the power down mode option, it has
adjustable transmission power [13].

While focusing on the Mica2 platform, this technique can be applied to any
WSN node. Mica2’s CPU has a very simple low power facilities. MSC will not
focus on CPU power savings since it varies from CPU to CPU. As shown below,
the communication unit has the largest power budget in the node, and this value
is much larger than the CPU (6mA versus 25.4 mA). MSC focus on the power
consumption of the communication unit, controlling the Tx power, since Rx
power is fixed.

In a real application, it will be necessary to configure the transmission power
of the sensor node for a high value so that it can, effectively establish commu-
nication and to guarantee its survival. The direct consequence of a raised power

Table 1. Power consumption for the Mica2 node

Consumption Table

MODE CURRENT
ATMEGA128L
Run 6mA
Sleep 10μA
External Memory (AT45DB041B)
Write 15mA
Read 4mA
Stanby 2μA
CC1000 Transceiver
Rx 8mA
Tx (5 dBm) 25.4mA
Power Down 0.2μA

136 A.B. da Cunha and D. da Silva Jr.

Fig. 1. Sensor node transmission power range and neighborhood interference [15]

transmission, for all sensor nodes or part of them, it is the interference that
will occur between neighbors. Considering Fig. 1, if node N1 is configured with
a transmission power of 30 mW, it will produce interference in node N4. This
factor makes the dynamic adjustment of the transmission power essential, but,
as it will be seen ahead, not satisfactory.

Once the power transmission has been adjusted for its minimum value neces-
sary to establish communication with the base, an increase of the noise power in
the transmission channel can occur and the base station starts to discard packets
received from the sensor node. The problem is that such losses are not notified
to the sender, i.e., all packets sent would be discarded until a reduction of the
noise level occurs. Our proposal is to provide the sensor node with the Maximum
Survival Capacity, whose characteristic is to integrate the control of the power
of the transmitted signal and the quality of the information in a dynamic mech-
anism. Thus, beyond maximizing the probability of survival of the node, there
will be reduction of the power consumption of the node quite effective while
maintaining data communication. At least two reasonable justifications can be
given for the necessity of maximizing the probability of survival of nodes: cost
of commercial sensor nodes still high and the energy cost for network reorgani-
zation process, due to the deployment of new sensor nodes for the substitution
of failed nodes. More clearly, the proposal is based on the following scenarios:

1. Launched node cannot communicate. The initial power is adjusted to the
maximum value. Thus, the success in the establishment of the communica-
tion is maximized.

2. Launched node communicates and the packet received at base station does
not contain error. The transmission power can be reduced.

3. Problems in the communication channel. After the transmission power is
adjusted for the minimum value, the node stops communicating or occurs
loss of packet in the base station. The transmission power must be increased.

Once these procedures are implemented, power consumption is effectively re-
duced, and the survival of the nodes after their launching is guaranteed even with

An Approach for the Reduction of Power Consumption 137

the occurrence of problems in the communication channel. With the current RSSI
level (Received Signal Strength Indicator) and the receiver sensitivity, these two
values can be compared and the correct transmission power level determined by
solving a control problem. The following variables must be determined: RSSI
level, receiver sensitivity, proper action of control and number of lost packets of
the base station.

Data formatting used is Manchester encoding and the signalling rate is 38.4
kbauds. The table supplied by the manufacturer [13] is used to obtain the receiver
sensitivity. Based on this table, the sensitivity of the receiver was set to -97 dBm.

In the classic theory of control there are three basic control actions: propor-
tional (P), integral (I) and derivative (D). Moreover, a combination of these
basic actions of control can be made, such as PI, PD and PID. In the problem of
control presented here, the action of control compares the value measured (RSSI
+ lost packets) with the desired value (reference) and acts in way to annulate
the existing difference between them. In a WSN scenario, the action of ideal
control to be implemented must be simple as possible, such that the power con-
sumption for its processing is minimum and fast enough, so that the transceiver
uses the minimum possible time at high transmission power levels. Another com-
ment is that oscillations for the control action are highly undesirable, since it
can represent an increase of the power consumption.

3.1 Maximum Survival Algorithm (MSA)

The Maximum survival algorithm (MSA), depicted in Fig. 2, behaves as follows:
After launching of node, a process is initiated, called calibration phase: the base

Fig. 2. The Maximum Survival Algorithm

138 A.B. da Cunha and D. da Silva Jr.

station sends a message to the sensor node, that in turn, initiates the adjustment
of its transmission power until it reaches the value of enough minimum power so
that it can communicate with the base with quality: the amount of lost packets
the base station is inferior to the established limit (through this experiment it was
stipulated as three). Once that the ideal transmission power has been reached,
it will only have new adjustment if there is loss of packet above the established
limit. The monitoring of lost packets at the base verifies the occurrence of CRC
errors, then a message is sent to the sensor node to obtain a new RSSI. MSA can
be implemented in plain and hierarchical WSN, since it requires little computing
power, thus incurring in a small amount of energy.

4 Experiments and Results

The base station was kept at a fixed position in the laboratory, while that the
Mica2 node moved from the base station in multiples of the wavelength (λ).
The frequency configured in the sensor node was of 914.077 MHz. The following
sequence of distances based on the wavelength was used: λ/10, 1λ, 2λ, 3λ, 4λ,
5λ, 6λ and 7λ. The node started at the λ/10 position and was moved to next
mark after ten minutes, totalizing 300 samples of voltage and current for each
distance and for each one of the phases of experiments. In the first phase of
the experiment, the node was configured with the maximum power transmis-
sion value (5 dBm). In second phase the node was configured using the MSA
(maximum survival algorithm).

Fig. 3 shows the results of phase 1. In this phase Tx Power is fixed at 5
dBm. The maximum distance obtained was 7λ, since with a greater distance the

Fig. 3. Phase 1 experiment (5 dBm Fixed Tx Power)

An Approach for the Reduction of Power Consumption 139

Fig. 4. Phase 2 with the Maximum Survival Algorithm

Fig. 5. MSA Power Consumption Reduction

communication was lost. The upper line in shows the number of lost packets and
the bottom line the fixed value of the Tx power.

In the second phase the MSA was used with the same distance steps used in
the first phase, see Fig. 4.

Reduction of the power consumption can be computed from the following
data: voltage and current (at the output supply to the node) for each packet
sent and the corresponding RSSI level for that packet at the receiver. This cor-

140 A.B. da Cunha and D. da Silva Jr.

responds to the power used to transmit the packet. With data gathered from the
two phases of the experiment, the difference between these values represents how
much power consumption reduction was obtained using MSA. Fig. 5 shows the
Phase 2 power savings. The gray area represents the energy saved under MSA.
The upper line(5 dBm) is the maximum Tx power (Phase 1) and the second line
is Tx power used in Phase 2. The third line is the RSSI level and the fourth line
the set point for the minimum RSSI level (-97 dBm).

5 Conclusions

This work presented an effective solution that allows for the reduction of the
power consumption in sensor node of a Wireless Sensor Network. Among the
possible alternatives that had been studied, it was noticed that the performance
in the transmission power of the transceiver presented the biggest gain in terms
of consumption reduction. Thus, a solution was presented that integrates the
adjustment of the power of the transmitted signal and the quality of the informa-
tion in a dynamic mechanism, which was called Maximum Survival Algorithm.
As a consequence, besides obtaining to maximal probability of node survival,
a reduction of energy consumption was also obtained. The Maximum Survival
Algorithm obtained an energy economy of 39.5% for the Mica2.

Acknowledgment

This work was supported by grants from Fapemig EDT 205/05 and CNPq
Sensornet.

References

1. Sinhá, A., Chandrakasan, A.: Dynamic power management in wireless sensor net-
works. IEEE Design and Test of Computers 19 (2001) 62–74

2. Intel Corporation: Strongarm microprocessors. Available on:
http://www.intel.com (2005)

3. Atmel Corporation: Avr 8-bit risc. Available on: http://www.atmel.com (2005)
4. Texas Instruments: Msp430 microcontrollers. Available on: http://www.ti.com

(2005)
5. Srivastava, M.B.: Energy-aware wireless microsensor networks. IEEE Signal

Processing Magazine 19 (2002) 40–50
6. P. Pillai, K.G.S.: Real-time dynamic voltage scaling for low-power embedded oper-

ating systems. In: Eighteenth ACM symposium on Operating systems principles.
(2001) 89–102

7. Chandrakasan, A.: Power aware wireless microsensor systems. In: European Solid-
State Circuits Conference (ESSCIRC). (2002) 47–54

8. Simunic, T., Benini, L., Acquaviva, A., Glynn, P., Micheli, G.D.: Dynamic voltage
scaling and power management for portable systems. In: DAC ’01: Proceedings of
the 38th conference on Design automation, ACM Press (2001) 524–529

An Approach for the Reduction of Power Consumption 141

9. Transmeta Corporation: Crusoe microprocessor. Available on:
http://www.transmeta.com (2005)

10. Simunic, T., Benini, L., Glynn, P., Micheli, G.D.: Event-driven power management.
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems
20 (2001) 840–857

11. L. Benini, A.B., Micheli, G.D.: A survey of design techniques for system-level
dynamic power management. IEEE Transactions on VLSI Systems 8 (2000)
299–316

12. Schurgers, C., Aberthorne, O., Srivastava, M.: Modulation scaling for energy aware
communication systems. In: ISLPED ’01: Proceedings of the 2001 international
symposium on Low power electronics and design, ACM Press (2001) 96–99

13. Chipcon: Cc1000. Available on: http://www.chipcon.com (2005)
14. Chipcon: Cc2420. Available on: http://www.chipcon.com/ (2005)
15. Narayanaswamy, S., Kawadia, V., Sreenivas, R., Kumar, P.: Power control in ad-

hoc networks: Theory, architecture, algorithm and implementation of the compow
protocol. In: European Wireless, 2002. Next Generation Wireless Networks: Tech-
nologies, Protocols, Services and Applications. (2002) 156–162

16. Su, N.M., Park, H., Bostrom, E., Burke, J., Srivastava, M.B., Estrin, D.: Aug-
menting film and video footage with sensor data. In: PERCOM ’04: Proceedings
of the Second IEEE International Conference on Pervasive Computing and Com-
munications (PerCom’04), IEEE Computer Society (2004) 3

17. Srivastava, A., Eustace, A.: Atom: A system for building customized program
analysis tools. ACM SIGPLAN 39 (2004) 528–539

18. Agarwal, S., Krishnamurthy, S., Katz, R.H., Dao, S.K.: Distributed power control
in ad-hoc wireless networks. In: Personal and Indoor Mobile Radio Communication
(PIMRC01). (2001) F59–66

19. Jung, E.S., Vaidya, N.H.: A power control mac protocol for ad hoc networks. In:
MobiCom ’02: Proceedings of the 8th annual international conference on Mobile
computing and networking. (2002) 36–47

20. Power Sources Review: Power sources for wireless sensor networks. Available on:
http://www.eureka.gme.usherb.ca/memslab/docs/PowerReview-2.pdf (2005)

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 142 – 154, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Energy-Driven Partitioning of Signal Processing
Algorithms in Sensor Networks

Dong-Ik Ko, Chung-Ching Shen, Shuvra S. Bhattacharyya, and Neil Goldsman

Department of Electrical and Computer Engineering, and Institute for Advanced Computer
Studies,University of Maryland, College Park MD 20742, USA

{dik, ccshen, ssb, neil}@eng.umd.edu

Abstract. In a sensor network, as we increase the number of nodes, the
requirements on network lifetime, and the volume of data traffic across the
network, it is often efficient to move towards hierarchical network architectures
(e.g., see [5]). In such hierarchical networks, sensor nodes are clustered into
groups, and their roles are divided into master and slave nodes for more
efficient structuring of network traffic. The operational complexity of each
sensor node and the amount of data to be transmitted across sensor nodes
strongly influence the energy consumption of the nodes, which ultimately
determines the network lifetime. This paper provides a new way of reducing
data traffic across nodes by determining and exploiting the lowest data token
delivery points within an application graph that is distributed across a network.
The technique divides an application graph into two sub-graphs and then
distributes each divided subgraph over a master node and its associated slave
nodes. The buffer costs of the graph edges over the cutting line corresponds to
the amount of data to be transmitted between nodes after allocating the two
partial subgraphs such that one subgraph executes on a master node, and the
other subgraph is distributed across the associated slave nodes. Since the energy
consumption on each node is dominated by the transceiver, the reduced data
traffic allows for reducing the turn-on time of the transceivers, and thereby
leads to high energy savings. This technique also distributes the workload of
sensor nodes in a systematic manner. The more balanced workload also
contributes to efficient battery usage, and also improves the latency for
processing the data frames captured by the sensor nodes.

1 Introduction and Related Work

The energy consumption of the nodes in a wireless sensor network must be carefully
optimized to increase network lifetime. This paper develops an overall minimization
of an energy consumption of a sensor network, and provides an efficient trade-off
between latency and network lifetime by balancing the workload of the sensor nodes,
and carefully determining the points in the application that must communicate across
nodes so that the turn-on time of transceivers is minimized.

Many useful approaches have been suggested previously to reduce the energy
consumption of sensor nodes. Shih et al. have distributed the FFT function over a
master node and slave nodes to reduce energy consumption by moving the function

 Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks 143

from a cluster head node to slave nodes [11]. Kumar, Tsiatsis, and Srivastava [8]
explore energy and latency trade-offs by considering different computational
capabilities for master and slave nodes. Other researchers have suggested a
hierarchical, physical layer driven sensor network design to reduce data traffic and
energy consumption of a sensor node in connection with the physical-layer network
functions [10, 12]. In these latter approaches, the node optimization needs to be
performed carefully in conjunction with the underlying protocol characteristics.

The technique that we develop in this paper is novel in that it analyzes the pattern
of internal data exchange rates within an application to minimize the overall energy
consumption of a sensor network, while also taking into account changes in latency
due to distributed mapping, and application of a hierarchically clustered sensor
network organization. The approach is especially suited for multirate signal
processing applications, which exhibit complex and nonuniform patterns of data
exchange across functional modules of the application.

Many sensor network applications or important application subsystems can be
modeled efficiently with dataflow semantics. By analyzing a well-designed dataflow
graph model of an application, operational efficiency can be effectively estimated and
optimized at a coarse grain level for various kinds of target architectures (e.g., see [2,
3, 6]). Parameterized dataflow [1] is a form of dataflow that is especially well-suited
to sensor network signal processing applications due to its integrated support for
adaptation and reconfiguration at various layers of abstraction. Parameterized
dataflow allows for dynamic change of variables and configuration settings that can
be mapped to module- or subsystem-level parameters of an application.

This paper employs the DGT (dynamic graph topology) [7] method for modeling
applications. DGT is a form of parameterized dataflow that emphasizes support for
run-time flexibility by allowing for efficient, dynamic changes in application graph
topologies based on run-time requests. In DGT semantics, the connections (dataflow
edges) between actors (functional modules), as well as the amount of data produced
and consumed by the actors can be changed, with the changes expressed in terms of
dynamic parameters of the application. In the context of sensor network optimization,
this feature can be used to integrate modeling of master/slave node relationships in a
clustered network, and also modeling of dynamically changing application graph
topologies that execute on sensor nodes.

2 DGT (Dynamic Graph Topology) Specifications

The DGT model allows for dynamic change of graph topologies through schedules
that are pre-computed at a compile time. DGT is based on PSDF semantics [1], but is
significantly more flexible than PSDF in that it allows graph actors and edges to be
treated as dynamic parameters as well as the more standard types of parameters sup-
ported in the dynamic reconfiguration capabilities of PSDF. In DGT, as in PSDF, the
data transfer rate of a port of an actor (i.e., the number of data values produced or
consumed with respect to the incident edge) can be determined by a special subgraph,
called the init graph. In this way, the consumption rate and production rate of selected
ports can be determined dynamically, just before the invocation of the associated
DGT graph. Additionally, in DGT, the subinit graph s can control the behavior of

144 D.-I. Ko et al.

the associated body graph by dynamically changing the topology (interconnections
between actors) of the associated body graph before each invocation (graph iteration)
of the body graph. The set of possible graph topologies is predicted at compile time.

Figure 1 shows how a subinit graph can extract appropriate header information and
set up parameters (X:param) with the required information for the associated body
graph. An appropriate graph is selected from a set of possible graphs(G , G , G by

the subinit graph with (X:param). This mechanism is effective because many data
streams for modern DSP applications are delivered in the form of frames, where each
frame has a header part and a payload part, and the header part can be parsed to deter-
mine the appropriate graph topology.

Here, we classify actors and ports into two categories based on whether or not their
behavior changes dynamically. Actors and ports that are not changed in the graph
topology are called fixed actors (a

f
) and fixed ports (p

f
), respectively, while actors

and ports having potential dynamic changes are named as varying actors (a
v

) and

varying ports (p
v

). Here, one point that requires careful consideration is that a fixed

actor(a
f
) can have a varying port (p

v
) since a fixed actor (a

f
) can appear with differ-

ent types of ports.
The subinit graph s dynamically sets up varying actors and varying ports based

on data being delivered and produces an appropriate graph topology for the associated
body graph. Deadlock-free operation and bounded memory requirements for each
possible set of graph topologies are verified at compile time. At runtime, the subinit
graph s sets up an appropriate graph topology for the associated body graph and
selects an appropriate pre-computed schedule that also contains code and buffer size
that is minimized for the configured graph. Code and buffer size minimization is
obtained by a scheduling technique appropriately chosen depending on graph
characteristics. In DGT, verification of validity of schedules can be performed at
compile time and valid schedules can be guaranteed and can be ready to use at
runtime without the overhead of fully dynamic scheduling. At runtime, the subinit
graph s looks up pre-computed schedules in a table with the active set of parameter
values.

3 Energy Consumption Optimization by Distribution of an
Application

3.1 Application Cutting in a Sensor Network

In a clustered sensor network, each sensor node captures data from its set of one or
more sensors. The captured data can be sent to the associated master node immedi-
ately, or the data can be processed to some degree within the slave node before it is
sent to the master node. For the data processing functionality, each edge within the
application dataflow graph may have different data transfer characteristics. It is useful
to consider these characteristics carefully when dividing a dataflow graph for process-
ing across a master- and slave-node pair.

 Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks 145

s u b in i t

Id e n t if ie rs
G 1 , G 2 o r G 3

b o d y

e x t ra c t
h e a d e r

X :p a ra m
X :p a ra m

d o m a in (X) = {G 1 , G 2 ,G 3 }

s u b in i t

Id e n t if ie rs
G 1 , G 2 o r G 3

b o d y

e x t ra c t
h e a d e r

X :p a ra m
X :p a ra m

d o m a in (X) = {G 1 , G 2 ,G 3 }

Fig. 1. Illustration of DGT semantics

Dividing an application graph in this manner generally allows us to reduce the
amount of data that must be transmitted between the nodes, and it also allows us to
balancing the workloads of sensor nodes. The amount of data that must be transmitted
directly influences the turn-on time of the sensor node transceivers, which are major
sources of energy consumption. Similarly, distributing the workload of an application
for balanced processing increases network lifetime through balanced battery usage
across the sensor nodes. Therefore, it is useful to partition dataflow graphs across sen-
sor nodes with joint consideration of data transfer volume and workload balance.

Synchronous dataflow (SDF) is an especially useful model, due to its predictability
and formal properties, for representing many signal processing applications [2, 9]. In
SDF, the number of data values (tokens) produced and consumed by each actor is
constant. As a result of this restriction, graphs can be scheduled statically based on the
so-called repetition vector

R
), which is a vector that is indexed by the actors in the

graph, and gives the number of times that each actor needs to be invoked in a static
schedule for the graph. Such a schedule can be repeated indefinitely with bounded
memory requirements to process the indefinite-length data streams that are
characteristic in the signal processing domain.

The number of tokens that are transferred across an edge in the dataflow graph in
each schedule iteration can be obtained from the repetitions vector R and the number

of tokens produced by the source actor of the edge. Given a partition of the dataflow
graph into two parts, the total number of tokens that must be transferred (buf

tr
) across

the partition can be obtained by summing up the token transfer volumes of the edges
that cross the partition.

The repetitions vector can be obtained through (1) and (2) [9]:

T e v

prd e

cns e–=

(1)

T R = (2)

In (1), prd(e) is the number of tokens produced onto edge e by each execution of
src(e), which denotes the source actor of e . Similarly, cns(e) is the number of tokens
consumed from e by each execution of snk(e), which is the sink actor of e.

The total number of tokens buf
tr

 that cross a given partition in a schedule iteration

can then be expressed as

146 D.-I. Ko et al.

buftr R ni prd ej ni

j =

Edgeni

i =

Nc

=

(3)

where N
c

 is the number of actors whose outgoing edges cross the partition;

(n n n
N c

) is an ordering of the actors whose outgoing edges cross the partition;

Edge n i
 is the number of outgoing edges of actor n i that cross the partition; and ej(ni)is

the j th outgoing edge of n
i
that crosses the partition, based on some ordering of the

outgoing edges.
Figure 2(a) illustrates how data transmission requirements can change depending

the selection of a partition. Figure 2(a) provides four possible candidates for a
“cutting line” to determine the partition. The edges that cross the cutting line
determine the network data transfer volume that must be incurred on each graph
iteration due to the associated application partition. The number shown inside each
actor represents the processing complexity in terms of the actor execution time. The
number on the left side of an edge represents the number of tokens produced by the
source actor, and the number on the right side represents the number of tokens
consumed by the sink actor.

In Figure 2, there are four edges, . Figure 2(b) shows the
repetition vector for Figure 2(a), and Figure 2(c) shows buf

tr
for each cutting line

candidate C -C .
After a cutting line is determined for a graph, the graph is effectively divided into

“left” and “right” subgraphs, where the left subgraph represents preprocessing of sensor

2 2 4 2213

-> 6 -> 4 -> 16 - > 16

e0e0 e1e1 e2e2 e3e3
A C DB

2 2 4 2213

-> 6 -> 4 -> 16 - > 16

e0e0 e1e1 e2e2 e3e3
A C DB

84 , 2 ,3 ,R
0

0

0

R

R

R

R

2 -4 , 0 , 0 ,

01 , 2 ,0 ,

0 0 ,3 ,2 ,

e 2

e 1

e 0

D C B A

4

3

2

1

84 , 2 ,3 ,R
0

0

0

R

R

R

R

2 -4 , 0 , 0 ,

01 , 2 ,0 ,

0 0 ,3 ,2 ,

e 2

e 1

e 0

D C B A

4

3

2

1

1628

1644

422

623

3

2

1

0

))((

))((

))((

))((

Aebuf

Aebuf

Aebuf

Aebuf

p

p

p

p

Dc3tr,

Cc2tr,

Bc1tr,

Ac0tr,

RBuf

RBuf

RBuf

RBuf

 a) cutting line candidates

 b) Repetition vector

 c) s for each cutting linebuftr

Fig. 2. An illustration of partitioning (cutting line) trade-offs

 Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks 147

signals and the right subgraph represents postprocessing. Accordingly, the left subgraph
is allocated to the associated slave node, and the right subgraph is allocated to a master
node.

Each cutting line in general leads to different workload distributions of an appli-
cation graph, as well as different values of buf

tr
. Intuitively,C0 leads to increased

workload for the master node, since the master node is in charge of most of the data
processing functionality. That value of buf

tr
for C0 is 6 tokens. Similarly, C3 increases

the workload of the slave node, while alleviating the workload of the master node;
however, buf

tr
for C3 increases to 16 tokens. As an alternative to C0 and C3 , C1

allows for lower data transmission and more balanced workload distribution.

3.2 Cutting Algorithm

Cutting an application dataflow graph is an NP hard problem. However, in many sensor
network applications, particularly those involving very simple, ultra-low cost/ power
sensor node processing, the application graphs are of limited size, and are manageable by
exact techniques. This paper uses an exhaustive search method for finding the best
cutting line to target such applications and to demonstrate the potential of high-level,
dataflow graph analysis for coordinating the processing across senor nodes.

More precisely, given an application dataflow graph , our objective is to partition
 into two subgraphs and . In this partitioning, we would like to minimize

(4)buftr ci
subject to

 and (5)n n

(6)t t–
Here, t(X) is the execution time of subgraph X , assuming that the subgraph is

assigned to the same sensor node, and processing resources across the nodes are
homogeneous. The formulation can easily be extended to handle heterogeneous
processing resources, but for clarity and conciseness, we focus here on the
homogeneous case. The subgraph execution time is obtained by adding the execution
time estimates for the individual actors in the subgraph. Also, (X) represents
the set of actors in subgraph X, and given an actor n , (n) represents the
set of immediate graph successors of n . The constraint in (5) is necessary to avoid
cyclic dependencies (potential deadlock) between the master and slave node.

The parameter is a coefficient that affects the load balancing aspect of the
optimization. An appropriate choice for can be estimated by experimentation, or one
can run the optimization multiple times for different values of and take the most
attractive result. As the value of is increased, the workload of the master node is
decreased, and the latency of the application is also generally decreased since the
workload of the application is more distributed over slave nodes. The symbol
represents a tolerance for workload imbalance in conjunction with .

148 D.-I. Ko et al.

3.3 Effect on Energy Consumption

The total energy of a sensor node E can be divided into two parts:Eradio

 and Emc ,

where Eradio represents the energy consumed by the transceiver, and Emc

represents the

energy consumed by the microcontroller and the associated peripherals, such as the
memory, UART, and ADC, apart from the transceiver. Thus,

E = Eradio + Emc (7)

The transceiver energy Eradio

 is usually dominant in the total energy consumption of a

sensor node, and in the context of dataflow processing, this energy is proportional to
the number of tokens that must be communicated. An optimal cutting of an
application graph in terms of token transfer minimization across the cutting line there-
fore results in optimal streamlining of transceiver turn on time. In other words, by
reducing buftr

,Eradio can be minimized under the workload balance constraints.

Each partitioned subgraph is mapped to a slave node or a master node. The
operations of a subgraph apart from its transceiver-related operations are modeled by
Emc . Through a minor abuse of notation, we represent the energy consumption for
data processing in an application appl as Emc appl). By distributing the application
over a master node and a slave node, Emc appl) can be divided into two sub energy
consumption components:Emc,s appl) and Emc,m appl), corresponding respectively to
the slave and master nodes. Thus, we have

E appl)= E appl)+ E appl) (8)

In a sensor network cluster that consists of a single master node and slave nodes,
the master node iterates times to process data frames from all of its slave nodes.
Then E is the total energy consumption for microcontroller-related functions by
the master node during its iterations of right-side-subgraph processing of data
frames received from the slave nodes. The relationships among E , E appl),
and E appl) can be summarized as

 and (9)E E appl
E appl E appl–

=
=

(10)E E appl=

E , which is the total energy consumption for microcontroller-related functions of
a single slave node, is equal to E appl) since data frames for an application graph
are transmitted from a slave node to a master node, and for a single data frame, one
iteration of a left-side (slave node) sub-graph is activated. Here, E is
proportional to since the transceiver of the master node should be turned on during
the entire reception of data frames from the slave nodes.

The total energy consumed by the master node can be expressed as

(11)Em E E+ E E+= =
where is a coefficient that relates E and E . Since typically » , the
master node has significantly more energy consumption compared to the slave nodes.
To reduce the overall energy consumption, the number of tokens that must be

 Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks 149

transmitted across the nodes should be minimized under the given workload
distribution constraints.

3.4 Effect on Latency

The latency for processing a single data frame of a given application depends on the
number of slaves in the network cluster, the network topology, and the volume of data
contained in each data frame. For a cluster that consists of a single master node and
slave nodes, the latency L(app) for processing a single application data frame can be
expressed by (12), independent of the underlying transmission protocol

(12)L app Lm app Ls app
Ltr app

+
+

=

where Lm, (app) is the latency of master node (right-side subgraph) processing for
a single data frame, and L (app) is the corresponding latency of slave node
processing. In total, a latency of L (app) is induced on the master node to
process the data from all of the slave nodes. The slave nodes, however, can operate in
parallel, and thus, the latency required for slave node processing is independent of the
number of slave nodes within the network cluster.

L(app) also depends on the network delay for transmitting data frames across
nodes. Ltr app) thus denotes the latency for transmitting a single data frame from
a slave node to the master node. The total transmission latency for delivering data
frames from the slave nodes becomes Ltr app).

Clearly, Ltr, app)depends on the data frame size. In particular,Ltr, app) is
proportional to buftr .

Figure 3 shows three different cases of cutting line selection for an application
example that involves maximum entropy spectrum computation. This application is
based on an example in the Ptolemy II design environment [4]. The application can be
divided into two subgraphs, which are allocated to master and slave nodes as illus-
trated in the figure. The dotted lines represent cutting line candidates. The application
is characterized by a parameter n , called the order of the spectrum computation.

In Figure 3(a), the slave nodes capture raw data frames and send them directly to
the master node, where the maximum entropy spectrum processing is performed.

Here, buftr

 between a single slave node and the master node is

n + 1
. Therefore, the

total data transmission for each data frame from the 5 slave nodes is ×
n + 1

.
In Figure 3(b), each slave node fully processes a data frame before sending to the

master node. This is a fully distributed approach, which minimizes the workload of

the master node. In this approach, each slave node sends
n

 tokens to the master

node. Thus, the total data transmission from the 5 slave nodes is ×
n
.

In Figure 3(c), on the other hand, the application graph is divided more evenly into
two subgraphs A and B . A copy of subgraph A is assigned to each slave node, and B
is allocated to the master node. The carefully-constructed cutting line between A and
B reduces buftr to (n + , which results in total slave-to-master data transmission of

n + .

150 D.-I. Ko et al.

B a s e s t a t io nB a s e s t a t io n

M a st e rM a st e r

A D C

12 n

A D C A D C A D C A D C

12 n 12 n 12 n 2 n

5 x M E P S

A D C

12 n

A D C A D C A D C A D C

12 n 12 n 12 n 2 n

5 x M E P S

11

A D C

P u ls e

M u lt ip ly

A C L

L e v D

A r r a y E le m e n t

R e p e a t

C o n st A r r a y A p p e n d

C h o p F F T

A b s o lu t e V a lu e

S q u a r e M u lt ip ly

D B

12 n
trb u f

A D C

P u ls e

M u lt ip ly

A C L

L e v D

A r r a y E le m e n t

R e p e a t

C o n st A r r a y A p p e n d

C h o p F F T

A b s o lu t e V a lu e

S q u a r e M u lt ip ly

D B

12 n
trb u f

M E P S : M a x im u m - E n t r o p y - P o w e r - S p e c t r u mM E P S : M a x im u m - E n t r o p y - P o w e r - S p e c t r u m

S la v e S la v e S la v e S la v e S la v e A C L : A u t o c o r r e la t io nS la v e S la v e S la v e S la v e S la v e A C L : A u t o c o r r e la t io n
L e v D : L e v in s o n D u r b inL e v D : L e v in s o n D u r b in

a) case 1

B a s e s t a t io nB a s e s t a t io n

M a s t e r

n2 n2 n2 n2 n2

M E P SM E P S

A D C

P u l s e

M u l t ip ly

A C L

L e v D

A r r a y E le m e n t

R e p e a t

C o n s t
A r r a y A p p e n d

C h o p F F T

A b s o lu t e V a lu e

S q u a r e M u l t ip ly

D B
n

trb u f 2

M E P SM E P S M E P SM E P S M E P SM E P S M E P SM E P S

M a s t e r

n2 n2 n2 n2 n2

M E P SM E P S

A D C

P u ls e

M u lt ip ly

A C L

L e v D

A r r a y E le m e n t

R e p e a t

C o n s t
A r r a y A p p e n d

C h o p F F T

A b s o lu t e V a lu e

S q u a r e M u lt ip ly

D B
n

trb u f 2

M E P SM E P S M E P SM E P S M E P SM E P S M E P SM E P S

S la v e S la v e S la v e S la v e S la v eS la v e S la v e S la v e S la v e S la v e

 b) case 2

B a se s t a t io nB a se s t a t io n

M a st e r

1n 1n1n 1n1n
s u bs u b

g r a p h 1g r a p h 1

2g r a p hs u b5
A D C

P u ls e M u lt ip ly

A C L

L e v D A r r a y E le m e n t R e p e a t

C o n st

A r r a y A p p e n d

C h o p F F T

A b s o lu t e V a lu e

S q u a r e

M u lt ip ly D B

1nb u ftr

su bs u b
g r a p h 1g r a p h 1

su bs u b
g r a p h 1g r a p h 1

s u bs u b
g r a p h 1g r a p h 1

s u bs u b
g r a p h 1g r a p h 1

M a st e r

1n 1n1n 1n1n
s u bs u b

g r a p h 1g r a p h 1

2g r a p hs u b5
A D C

P u ls e M u lt ip ly

A C L

L e v D A r r a y E le m e n t R e p e a t

C o n st

A r r a y A p p e n d

C h o p F F T

A b s o lu t e V a lu e

S q u a r e

M u lt ip ly D B

1nb u ftr

su bs u b
g r a p h 1g r a p h 1

su bs u b
g r a p h 1g r a p h 1

s u bs u b
g r a p h 1g r a p h 1

s u bs u b
g r a p h 1g r a p h 1

S la v e S la v e S la v e S la v e S la v eS la v e S la v e S la v e S la v e S la v e

c) case 3

Fig. 3. Application mapping over sensor nodes

Without consideration of Ltr app), the application latencies (L (app)) of the

three cases in Figure 3 are related as (L > L > L . Case 2 provides the
maximal workload distribution by allowing raw data frames to be fully processed in
the slave nodes. However, the greatly-reducedLtr, app) of Case 3 offsets the

 Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks 151

increase in Lm (app) due to the increased workload of the master, while allowing
reduced energy consumption because of reduced transceiver demands.

In summary, the example of Figure 3 illustrates the trade-offs that we can
explore among processor workload balancing, latency cost, and transceiver
requirements when considering different cutting lines for a multirate signal
processing application.

3.5 Cutting Algorithm Under DGT Semantics

Each sensor node in a sensor network can be configured to execute different dataflow
graphs depending on any changes in the network’s functionality. This requirement
leads naturally to a separate dataflow topology for each possible application
configuration. As described in Section 2, DGT allows for modeling and software
synthesis of a dataflow graph with alternative graph topologies under a single
dataflow model. Under DGT semantics, the suggested cutting algorithm can be
applied to each graph configuration to generate distributed subgraphs for each
possible graph topology.

For example, suppose graph G can be configured into three different cases of graph
topologies (or) depending on changes in sensor network functionality.
Our cutting technique is then iteratively applied at compile time to generate a
corresponding set of graph partitions ((G , G),(

G , G) and (G ,

G)) for (or), respectively. Under DGT semantics, GN is
configured as a slave node at runtime, while its counterpart subgraph GN is set up
for a master node. Thus, the suggested technique is applied to each possible graph
topology at compile time to obtain an optimal dataflow graph distribution over the
network. The compile time partitions derived by our integrated DGT/ graph-cutting
techniqe are used at run time along with other relevant scheduling information to
achieve a power efficient, adaptive operation of the network.

4 Experimental Results

We have developed experimental prototype platforms (Figure 4) for master and slave
nodes using reconfigurable off-the-shelf components, including the Texas Instruments
MSP430 microcontroller, the LINX Technologies 916MHz wireless transceiver, and a
microphone sensor. The MSP430 provides a 16-bit processor core, along with a 12-bit
ADC, 16-bit hardware timer, UART, 48kB program memory, and 10kB data memory.

Figure 5 and Figure 6 show experimental results where we measured the current
consumption from our prototype platforms as they were running different
partitionings of the maximum entropy spectrum application. In these experiments, we
used TDMA operations for wireless communication. For the TDMA operations, we
used 10 time slots per frame, and 250ms per time slot to guarantee that transmission
and relevant computations can be completed within each slot.

Figure 5 shows experimental results for current consumption comparison in three
different application mapping cases involving a single master node and three slave
nodes when n = is the application order. The amounts of data (in bytes) that must be

152 D.-I. Ko et al.

transmitted and received between nodes in each slot under cases 1, 2, and 3 are,
respectively, 512(), 256(.) and 9(8+1).

Figure 5 shows that sensor node platforms consume much more current when the
nodes are transmitting or receiving data compared to when the nodes are in their idle
modes. Also, transceiver operation dominates the overall current consumption when
data is being transmitted or received.

Fig. 4. MSP430-based sensor node platforms

 a) case 1(512B)

 b) case 2(256B)

 c) case 3(9B)

5 1 2 b y t e s

0
0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5
0 . 0 3

0 . 0 3 5

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

T i m e (m s)

C
u

rr
en

t c
o

ns
u

m
pt

io
n

 (A
)

2 5 6 b y t e s

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

T i m e (m s)

C
ur

re
nt

 c
on

su
m

pt
io

n
(A

)

9 b y t e s

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

T i m e (m s)

C
ur

re
nt

 c
on

su
m

pt
io

n
(A

)

Fig. 5. Current consumption comparison of three application mapping

 Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks 153

According to the results in Figure 5, we observe that case 3 of the suggested
application cutting technique consumes 70.5% less energy than case 1 and 56.5% less
than case 2. Here, the current and voltage for each sensor node are obtained by a
digital storage oscilloscope. The power consumption for a time frame is obtained
according to the sampling points for current and voltage values. The energy
consumption within a TDMA time frame is calculated by integrating the power
consumption over the time frame. Because the TDMA operations provide a periodic
way to generate similar modes of operations for consecutive time frames, we calculate
energy consumption results for several time frames and compute average values from
these results.

Figure 6 shows how energy comparison varies as the application order parametern
is changed. For each order number, we measured current consumption and voltage on
our prototype platforms, and calculated the average energy consumption based on the
TDMA time frames. According to the results in Figure 6, we observe that as the order
number is increased, the disparities between different application mapping cases
become more prominent.

Table 1. Latency comparison for different values of order

order 3 4 5 6 7 8

case1 180ms 254ms 404ms 721ms 1364ms 2699ms

case2 64ms 92ms 150ms 270ms 515ms 1021ms

case3 146ms 191ms 280ms 474ms 864ms 1683ms

0

0 . 0 1

0 . 0 2

0 . 0 3

3 4 5 6 7 8

O r d e r

E
n

e
rg

y
(J

)

c a s e 1
c a s e 2
c a s e 3

Fig. 6. Energy consumption comparison for different order values

Table 1 shows that as the application order increases, which results in increased
data transmission, the relative latency gap between case 2 (best latency) and case 3
(best energy consumption) decreases. For any order, case 1, which is the conventional
master-node-centric mapping, generates the worst latency and energy consumption
pattern for our benchmark applications.

5 Summary

In this paper, we have developed a technique to partition an application graph into
subgraphs to optimize the workload distribution and data transmission when mapping

154 D.-I. Ko et al.

the application onto a hierarchical sensor network. The technique allows the overall
energy consumption of a sensor network to be minimized without considerable loss of
latency. In our future work, we will explore the integration of error correction into our
partitioning framework to provide further savings in energy consumption.

References

[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP
systems. IEEE Transactions on Signal Processing, 49(10):2408-2421, 2001.

[2] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Software Synthesis from Dataflow Graphs,
Kluwer Academic Publishers, 1996.

[3] J. T. Buck, E. A. Lee, “Scheduling Dynamic Dataflow Graphs with Bounded Memory
using the Token Flow Model”, Proc. ICASSP, April, 1993.

[4] J. Eker et al., Taming heterogeneity — the Ptolemy approach. Proceedings of the IEEE,
January 2003.

[5] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In Proceedings of the Hawaii International
Conference on System Sciences, 2000

[6] A. Kalavade and P. A. Subrahmanyam, "Hardware / Software Partitioning for Multi-
function Systems", Proc. International Conference on Computer Aided Design, pp. 516-
521, Nov. 1997.

[7] D. Ko and S. S. Bhattacharyya. Dynamic configuration of dataflow graph topology for
DSP system design. In Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, pages V-69-V-72, Philadelphia, Pennsylvania, March 2005.

[8] R. Kumar, V. Tsiatsis, and M. B. Srivastava, Computation Hierarchy for In-network
Processing, the 2nd ACM international conference on Wireless sensor networks and
applications, pp. 68.77, 2003.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE,
75(9):1235-1245, September 1987.

[10] S. Lindsey, C. Raghavendra, and K. Sivalingam, Data Gathering in Sensor Networks
using the Energy Delay Metric. IEEE Transactions on Parallel and Distributive Systems,
special issue on Mobile Computing, pp. 924-935, April 2002

[11] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan, "Physical
layer driven protocol and algorithm design for energy-efficient wireless sensor
networks", in Proc. ACM MOBICOM'01, July 2001.

[12] M. Singh and V. K. Prasanna, System-Level Energy Tradeoffs for Collaborative
Computation in Wireless Networks Norwell, MA: Kluwer, 2002.

Preamble Sense Multiple Access (PSMA) for Impulse
Radio Ultra Wideband Sensor Networks

Jussi Haapola, Leonardo Goratti, Isameldin Suliman, and Alberto Rabbachin

Centre for Wireless Coomunications (CWC), University of Oulu, P.O. Box 4500 FIN-90014,
Oulu, Finland

{jhaapola, goratti, isam, rabalb}@ee.oulu.fi

Abstract. In this paper we propose preamble sense multiple access (PSMA), a
random access MAC protocol capable of clear channel assessment in impulse
radio-ultra wideband environment. Full compatibility with IEEE 802.15.4a con-
tention access period is the key design criteria of PSMA, and the goal is to provide
an alternative approach to the 802.15.4a envisioned slotted ALOHA and periodic
preamble segment transmission schemes. The evaluation of PSMA consists of a
traditional throughput analysis as well as energy consumption and delay analysis
that takes into account the special features of impulse radio ultra wideband ap-
proach. From the analysis we can claim that PSMA has a very good energy and
delay performance in addition to satisfactory throughput when the offered traffic
to the channel is from low to moderate.

1 Introduction

Ultra Wideband (UWB) is a promising physical layer technology which potentially
enables low power, low cost devices with applications for Wireless Personal Area Net-
works (WPAN) and for Wireless Body Area Networks (WBAN). UWB is a technology
already exploited in radar systems for military applications since the 1960s. In the last
few years UWB technology attracted renewed attention as a physical layer (PHY) for
a wide range of applications like positioning and tracking, monitoring, and multimedia
services. In 2002, the Federal Communications Commission (FCC) in the United States
came out with the first regulatory on UWB allowing the use of the frequency spec-
trum between 3.1-10.6 GHz with emission limits of -41.25 dBm for outdoor hand-held
systems [1].

Currently UWB is divided into two main physical layer technology branches: im-
pulse radio-ultra wideband (IR-UWB) [2] using one very wide band for communica-
tions and multi-band, i.e., orthogonal frequency division multiplexing-ultra wideband
(OFDM-UWB) [3] sponsored by the multi-band OFDM alliance (MBOA) and using
several ultra wide OFDM channels for communcation. In this paper we limit ourselves
to the IR-UWB that is the technology behind the current IEEE 802.15.4a draft [4].

IR-UWB utilizes extremely short pulses with correspondingly very wide bandwidths
and very low emitted power. Because of these features, IR-UWB offers significant ro-
bustness against multipath fading [5] which makes UWB a suitable technology can-
didate for indoor applications, especially where power consumption and interference

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 155–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

156 J. Haapola et al.

levels are tightly constrained. With the IR-UWB approach, there are two main meth-
ods to generate the UWB signal: time-hopping (TH) and direct sequence (DS). These
two systems offer the advantages of simple implementation due to their carrier-less na-
ture and high processing gain. For the TH-UWB, which is used in this study, the most
known modulation schemes are: pulse amplitude modulation (PAM) where the infor-
mation modulates the amplitude of the signal and pulse position modulation (PPM),
where the bit decision is made based on the pulses relative position in a slot [6].

For IR-UWB being a carrier-less signal, a medium access control (MAC) protocol
based on carrier sensing (CS) is not well suited. The power of the clear channel assess-
ment (CCA) done by the CS is clearly illustrated by superior throughput performance
when comparing for example carrier sense multiple access (CSMA) [7] and ALOHA.
For IR-UWB other, usually centrally coordinated or purely interference based, MAC
approaches have been taken. Central coordination examples are the high data rate IEEE
Std 802.15.3 [8] and the low data rate IEEE Std 802.15.4 [9] WPANs, and interference
based approach example is (UWB)2 [10], where the communication relies on the re-
silience of time hopping (TH) codes, the IR-UWB processing gain, and multi-channel
access. The 802.15.4a draft proposal [4] has two options for IR-UWB contention access
part: slotted ALOHA and an optional preamble segment detection (CCA) mode.

The Idea behind the optional CCA mode is the following. To enable CCA of IR-
UWB signal at any time, a regular structure is introduced into the data portion of the
frame by interleaving preamble segments in the PHY service data unit (PSDU) seg-
ments in time domain. The inserted preamble segments serve as a regular CCA struc-
ture of the frame. Effectively, the transmission of a frame starts with a full preamble
sequence followed by the start-of-frame delimiter, followed by preamble segment and
physical layer header. Then the transmission of the PSDU is a series of alternating
preamble segment — PSDU segment portions starting and finishing in a preamble seg-
ment. When an another node is ready to send data it performs a CCA that is long enough
to catch a preamble segment if there are any. If no segments are found transmission
commences, otherwise a backoff is made and the process is repeated later.

In this paper, we propose a novel alternative method of utilizing CCA in IR-UWB
environment, called the preamble sense multiple access (PSMA). The PSMA MAC
protocol has been designed to provide a CSMA-like channel access for IR-UWB envi-
ronment. Its salient features include the requirement of only one CCA before channel
access, which saves time and energy because the IR-UWB preamble is long, unhindered
communication on the channel for a duration of 2 time slots upon channel access, and
low listening duty cycle even without any power saving mechanisms. To the authors’
knowledge, the PSMA and the IEEE 802.15.4a optional preamble segment method are
currently the only MAC protocols utilizing a CCA in IR-UWB sensor networks. The
special properties of the IR-UWB channel are taken into account by using the IEEE
802.15.4a channel model [11] in MatLab simulator to derive two important parameters,
probability of detection and probability of false alarm with respect to signal-to-noise ra-
tio (SNR). These parameters are then taken into account in the energy and delay analysis
of PSMA.

The PSMA and the IEEE 802.15.4a optional CCA method differ quite significantly
from each other. The former has been designed to provide CCA functionality in

PSMA for Impulse Radio Ultra Wideband Sensor Networks 157

slotted environment with a small preamble overhead and fixed (2 time slot) collision
free communication time. The latter works in both slotted and un-slotted environment
and provides CCA detection anywhere in the transmission, but the preamble overhead
and CCA detection times easily become prohibitively expensive from the energy con-
sumption point-of-view.

The rest of the paper is organised as follows. Section II describes how the IR-UWB
characteristics are derived and taken into account. In section III the PSMA protocol is
described, whereas its throughput, delay, and energy consumption are modelled in sec-
tion IV. Section V presents the results and Section VI concludes the paper and describes
future work.

2 Modelling IR-UWB to Probabilities

This investigation relies on IR-UWB employing pulse position modulation (PPM)
where in each chip the signal is binary phase shift key (BPSK) modulated. Fig. 1
shows the signal structure. As one can observe the pulse can assume values of the phase
(1, −1) in each PPM slot. As described in the literature [2] these types of signals are
carrier-less.

The original IEEE Std 802.15.4 standard was not designed for IR-UWB, therefore
the carrier-less signals make conventional carrier sensing techniques practically im-
possible to use to detect the channel state. Recently, the task group TG4a took charge
in order to provide an adaptation for IR-UWB and recently delivered PHY specifica-
tions [4]. A feasible alternative to regular carrier sensing consists of an approach based
on the collection of the energy travelling through the channel that arrives at the receiv-
ing antenna.

The energy approach consists of integration, for a certain amount of time, of the
signal present at the receiving antenna. The signal is integrated for a time window
duration and based on the energy collected the decision, whether a useful signal is
present on channel is made. Therefore, the integration time is a parameter affecting the
performance of the energy collection and it will be taken into account in the MatLab
simulations.

The access method proposed in this paper is based on preamble sensing. The IEEE
Std 802.15.4 provides the feature to support slotted and un-slotted super frames (SF).

time

UWB pulses with
phase +1 and -1

respectively

Fig. 1. The IEEE 802.15.4a UWB signal representation is a PPM-BPSK combination

158 J. Haapola et al.

When the SF is slotted, a node can start to sense the channel only at the commence of a
boundary. In preamble sense access method, a node is able to detect only the presence
of the preamble on the channel and cannot sense the channel busy in the middle of a
communication in which the preamble is not present.

The capability of a device to detect the preamble is strictly related to the chan-
nel conditions. In fact, for the purpose of this investigation, several channel models
are considered. The IEEE Std 802.15.4a PHY specifications indicate the following
channels:

– CM1, home 7-23m LoS,
– CM2, home 7-23m NLoS,
– CM3, office 3-28m LoS, and
– CM4, office 3-28m NLoS,

where LoS indicates line-of-sight and NLoS non-line-of-sight. Depending on the chan-
nel conditions the efficiency of the energy collection approach method varies.

Based on the previous considerations, there exists a non-zero probability that the
device may detect the presence of the preamble on the radio even when there is no
preamble. This probability, called probability of false alarm Pfa, states for the proba-
bility that the channel may be sensed busy even when is not. On the other hand, it is
possible to derive the probability of miss-detection, Pmd, which represents the proba-
bility that a device misses the preamble even when it is present on the channel. The
two probabilities have a different impact on the energy consumption and the system
throughput. In fact the probability of false alarm indicates a waste of resources from
the device because the channel is free and no transmissions occur. The probability of
miss-detection instead, indicates a possible collision because the channel is sensed free
when is already busy.

To define Pfa and probability of detection, Pd (Pd = (1 − Pmd)), it is necessary to
define the following input parameters: the bandwidth W , the integration time T , the
number of pulses per symbol Np, the number of symbols in the preamble Ls, the noise
variance σ0

2, and the threshold ε. The W we have taken from [4] and use the mandatory
channel with center frequency 3952 MHz. The T we have chosen to be 40 ns, a good
compromise between the channel models and Eb/N0. The Np is chosen based on the [4]
draft to be 15, and the values of 16 and 64 for Ls can be found from the same draft. With
the parameters the probability of false alarm and the probability of miss-detection can
be formulated to be

Pfa = Q

(
ε√

TWNpLsσ0
4

)
(1)

Pmd = Q

(
ε√

TWNpLsσ0
4 + 2LsEb

)
, (2)

where σ0 is the variance of the additive white gaussian noise (AWGN) and ε is set based
on the wanted probability of false alarm as defined below

ε =
[
ε : F

(
x|TWNpLsσ0

2,
√

TWNpLsσ4
)

= Pfa

]
.

PSMA for Impulse Radio Ultra Wideband Sensor Networks 159

Here ε is the threshold to decide whether, on the receiving antenna, there is a useful
signal or not. In the expression of ε, F(x) is the cumulative density function of the
random variable x and Eb is the energy carried by a bit. The energy is accumulated
over NpLs pulses.

The approach in this paper is to fix the probability of false alarm and assume a certain
range of values for the preamble length Ls. Thus, by the mean of Eq. 1 it is possible to
determine the threshold ε inverting the Q function. In order to have at least a probability
of detection of 95 %, it is possible to derive, with MatLab, a set of curves varying the
integration time T and the preamble length Ls. The curves are derived for the channel
model CM1 and CM2. From the resulting graphs it is possible to derive the minimum
preamble length that satisfies, for both channel models, the fixed constraint on Pd. The
value of the preamble length must satisfy both channel models because from the MAC
perspective there is no knowledge of the channel and therefore, a suitable preamble to
minimize Pfa and Pmd must be chosen. Table 1 presents the Pd for both CM1 and CM2
with varying SNR and fixed Pfa. It can be seen that Pd > 0.95 is difficult to get with
CM2 when the typical SNR is between 15 dB and 30 dB. Therefore, in the later analysis
we relax the criteria for Pd > 0.95 and see how lower values of Pd impact the energy
consumption and the delay.

Table 1. Probability of detection Pd with varying SNR and preamble length, Pfa = 0.05

Preamble length (symbols),
Channel model

SNR = 15dB SNR = 20dB SNR = 25dB SNR = 30dB

16, CM1 0.9460 0.9992 1.0 1.0
32 0.9773 1.0 1.0 1.0
64 0.9926 1.0 1.0 1.0
16, CM2 0.6946 0.8472 0.9001 0.9360
32 0.7654 0.8690 0.9118 0.9443
64 0.8103 0.8852 0.9236 0.9530

3 Preamble Sense Multiple Access

Performing a CCA in IR-UWB environment is a difficult process; it requires a relatively
good synchronisation and the knowledge of what is supposed to be detected. Therefore,
a CCA done during another node’s mid-transmission is not likely to detect the trans-
mission. A predefined sequence of symbols can be detected even by using IR-UWB
however, and it is exploited in the preamble sense multiple access (PSMA) MAC pro-
tocol as well as in the IEEE 802.15.4a draft.

In 802.15.4 type piconets, there is a piconet coordinator (PNC) which periodically
transmits a beacon frame. This frame has an importance in providing information on
the channel usage as well as providing for a rough periodic re-synchronisation of the
piconet’s nodes.

The principle of channel access method for PSMA can be found from Fig. 2. When
a node has a higher layer arrival, it chooses an initial backoff from a set of allowed
values. When the backoff timer fires, the node performs a preamble detection (CCA)

160 J. Haapola et al.

Channel

Node 1

Node 2

Node 3

Sense
free

Preamble +
Transmit

Sense busy
+ backoff

Sense
free

Successful transmissions Collision

Sense busy
+ backoff

Successful
transmission

Sense not
allowed

Sense
free

Preamble +
Transmit

Preamble +
Transmit

Preamble +
Transmit

Sense
free

Sense
free

Preamble +
Transmit

Sense
free

Beacon

Listen for
Beacon

Listen for
Beacon

Super frame period

Time slot

Fig. 2. Communication and channel access of the PSMA in 802.15.4a type piconet contention
access period (CAP). Each super frame has 16 time slots and in the analysis all of them are used
for CAP.

in the beginning of a backoff boundary. The PSMA and the 802.15.4a optional CCA
method are almost identical up to here. Notice that a backoff boundary in the PSMA
is the same as the time slot boundary whereas in 802.15.4a each time slot is divided
into several (minimum 3) backoff boundaries. The PSMA and the 802.15.4a deviate
from this point and we follow the PSMA approach. If no preamble is detected, the node
begins transmission in the beginning of the next backoff slot boundary with a preamble
immediately followed by the data. The data transmission and the acknowledgement
have to be completed within two time slots. If the CCA indicated a detected preamble,
the node makes a backoff according to the binary exponential backoff (BEB) rules and
tries again later. The mechanism ensures that once a transmission has started, it can
continue for a duration of two consecutive time slots without a collision. A collision
can occur only if two or more nodes make a clear preamble detection CCA in exactly
the same backoff boundary.

In PSMA the nodes have to refrain from performing a CCA in the second last backoff
boundary of a super frame and refrain from starting transmission in the last time slot
of a super frame. The limitations are valid only if we assume a data exchange of the
whole PDSU size. Otherwise, communication that fits into one time slot still implicitly
reserves two time slots and channel utilisation is wasted. Note that in the IEEE 802.15.4
optional mode the CCA is considerably longer because the assessment can begin at any
backoff boundary and it has to be able to detect at least one valid preamble, i.e., the
duration of 2 complete preamble segment lengths and the PSDU segment in between.

In IR-UWB, another collision is possible. in PSMA, if a node makes a preamble
miss-detection it can begin transmission in the second time slot of an ongoing trans-
mission. On the other hand, there is a possibility that a false alarm causes a node to

PSMA for Impulse Radio Ultra Wideband Sensor Networks 161

backoff when the channel was free and prevent a collision of two nodes that schedule
transmission in the same time slot. These misbehaviours also affect the IEEE 802.15.4
performance.

4 Throughput, Delay, and Energy Consumption

In the evaluation we assume the parameters presented in Table 2. Notice that in trans-
mission, the actual transmitted power based on the FCC ruling on the Table 2 center
frequency is approximately 37 μW. The powers in the table take into account the elec-
tronics of the transceiver and MRX = kMTX, where k = 6 [12].

In the analysis we consider a Poisson arrival rate g with infinite population and
achieve the minimum worst-case performance. We use 2Ts to normalise the traffic,
where 2Ts is the length of two time slots, i.e., the duration of a successful data transfer.

Table 2. Physical layer and MAC parameters used in evaluation of PSMA

Attribute Value Attribute Value

Bandwidth (BW), 802.15.4a Channel 2 494 MHz PSDU 127 bytes
Center Frequency 3952 MHz Min Backoff exponent 2
Data Rate 0.842 Mbps Max Backoff exponent 5
Transmitter Power Consumption, MTX 20 mW Beacon length 17 bytes
Receiver Power Consumption, MRX 120 mW Acknowledgement length 5 bytes
Sleep Power Consumption, MSlp 0.2 mW Preamble length 16,32,64 bytes

4.1 Throughput

In this section we derive the traditional, normalised throughput of PSMA without taking
into account the effect of BEB, Pfa, or Pd. The throughput, S, follows the traditional
formula of S = U/(B + I), where U , B, and I are the average useful, busy, and idle
periods, respectively. Average idle, busy, and useful periods are

I =
Ts

1 − e−gTs
, B =

2Ts

e−gTs − e−2gTs + e−3gTs

U =
CB

2Ts
Ps, where Ps =

gTse
−gTs

1 − e−gTs
, (3)

and Ps denotes the probability of no collision. In the above C is the communicated data
within 2Ts. With normalisation a = C/(2Ts), b = Ts/(2Ts) = 1/2, and G = 2gTs the
throughput S then becomes

S =
aGe−bG

2(1 − e−bG) + (e−bG − e−2bG + e−3bG)
. (4)

162 J. Haapola et al.

4.2 Energy Consumption and Delay

The energy analysis follows largely the model proposed in [13] and the models are
depicted in Fig. 3. Here we take into account the CCA misbehaviour probabilities Pfa

and Pd. The probability of sensing the channel busy on CCA is Pb = B/(B + I). The
general solution for the transmit energy, ETX, model is

ETX =EArrive + Pprob1(E(A) + T1) + (1 − Pprob1)(E(BO) + T2), (5)

E(A) =Pprob2ESuccess + (1 − Pprob2)(E(BO) + T3), (6)

E(BO) =Pprob3(E(A) + T4) + (1 − Pprob3)(E(BO) + T5), (7)

where PprobX are different probabilities (i.e., Pprob1 = (1 − Pfa − PbPd + PbPdPfa),
Pprob2 = PdPs(1 − Pb), and Pprob1 = Pprob3 in this case), EArrive is the expected energy
consumption when coming to Arrive state, ESuccess is the expected energy consumption
on reaching the Success state, and T1, T2, T3, T4, and T5 are delays in the transition
spent in a combination of transceiver nodes. For example, T2 is equal to going to back-
off, which consists of the transceiver spending the average first backoff delay in sleep
mode and waking up to receive and performing a CCA in receive mode. E(A) and
E(BO) represent the average energy consumed when arriving to Attempt and Backoff
states, respectively. The general solution for reception energy, ERX, model follows a
similar approach.

The delay, D, is actually simple to derive from the above model by removing the
effect of transceiver modes and only calculating the delay elements.

Arrive

Backoff Attempt Success

(1-Pfa-PbPd+PbPdPfa)*
(Transmit data)

(1-PdPs+PdPsPb)*(Timeout
and then backoff and then

perform CCA)

(Pfa+PbPd-PbPdPfa)*
(Backoff and then

perform CCA)

(1-Pfa-PbPd+PbPdPfa)*
(Transmit data)

(PdPs(1-Pb))*
(Receive Acknowledgement)

Backoff, turn RX on, and perform CCA(Pfa+PbPd-PbPdPfa)*
(Backoff and then

perform CCA)

(a) Transmit

Idle
(1-Ps)(Pd(1-Pfa)+Pfa)*
(Attempt Reception,

but timeout)

Reply

Received

(Ps(Pd+Pfa)-PsPdPfa)*
(Receive data)(0)

(1)(Send ACK)

(1-Pd)(1-Pfa)*(Stay Idle)

(b) Receive

Fig. 3. PSMA energy consumption models for transmission and reception. Pfa, Pd, Ps, and Pb are
the probabilities of false alarm, detection, no collision, and busy when sensed, respectively.

5 Results

Fig. 4 illustrates the theoretical throughput of PSMA without the effect of Pfa, Pd, or
BEB. As a comparison an ideal MAC is presented as the solid, non-symbol line in-
dicating the theoretical maximum throughput any MAC protocol can have. Based on
the figure the PSMA has a decent throughput when the offered traffic to the channel
is small to moderate. When offered traffic reaches close to channel capacity (G = 1),

PSMA for Impulse Radio Ultra Wideband Sensor Networks 163

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalised (to 2T
s
) Offered Traffic G

A
ve

ra
ge

 T
hr

ou
gh

pu
t S

PSMA, 16 symbol preamble
PSMA, 32 symbol preamble
PSMA, 64 symbol Preamble
Ideal MAC

Fig. 4. PSMA throughput as a function of normalised offered traffic. Ideal MAC is a fictional one
with maximum theoretical performance.

10
−3

10
−2

10
−1

10
0

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
−7

Normalised (to 2T
s
) Offered Traffic G(Erlang)

A
bs

ol
ut

e
E

ne
rg

y
C

on
su

m
pt

io
n

on
 T

ra
ns

m
is

si
on

 p
er

 U
se

fu
l B

it
E

(J
/b

it)

CM1, SNR=15dB, PSMA, 16 symbol preamble
CM1, SNR=15dB, PSMA, 32 symbol preamble
CM1, SNR=15dB, PSMA, 64 symbol Preamble
CM2, SNR=15dB, PSMA, 16 symbol Preamble
CM2, SNR=15dB, PSMA, 32 symbol Preamble
CM2, SNR=15dB, PSMA, 64 symbol Preamble

Fig. 5. PSMA Absolute energy consumption on transmission for channel models CM1 (LoS) and
CM2 (NLoS) as a function of normalised offered traffic

there will be often several arrivals per time slot causing collisions, the effect of BEB
would mitigate this effect as would choosing the initial backoff window exponent of 2
or 3. The traditional throughput (max. 37 % at G = 1) of slotted ALOHA also applies
to the IEEE 802.15.4a case. If we compare the PSMA to that, a significant improvement
is shown.

164 J. Haapola et al.

10
−3

10
−2

10
−1

10
0

10
1

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

x 10
−7

Normalised (to 2T
s
) Offered Traffic G(Erlang)

A
bs

ol
ut

e
E

ne
rg

y
C

on
su

m
pt

io
n

on
 R

ec
ep

tio
n

pe
r

U
se

fu
l B

it
E

(J
/b

it)
CM1, SNR=15dB, PSMA, 16 symbol preamble
CM1, SNR=15dB, PSMA, 32 symbol preamble
CM1, SNR=15dB, PSMA, 64 symbol Preamble
CM2, SNR=15dB, PSMA, 16 symbol Preamble
CM2, SNR=15dB, PSMA, 32 symbol Preamble
CM2, SNR=15dB, PSMA, 64 symbol Preamble

Fig. 6. PSMA Absolute energy consumption on reception for channel models CM1 (LoS) and
CM2 (NLoS) as a function of normalised offered traffic

The absolute energy consumption per useful transmitted bit (J/bit) is depicted in
Fig. 5. The term, useful, implies that only the protocol communication bits are benefi-
cial, the rest is overhead. Overall, the energy per bit performance of the PSMA is very
good, even until G = 1 where the energy consumption with any preamble length and
any channel model is approximately 10 times more than with lower G. Also, the effect
of channel model and the length of the preamble has a significant impact. For example,
the energy consumption difference between the 16 symbol preamble and the 64 sym-
bol preamble with CM1 is approximately 30 %. As the channel becomes more difficult
(CM2) causing the Pd to decrease, we can see that the difference between 16 symbol
and 32 symbol preambles is nullified.

In addition to the initial preamble the IEEE 802.15.4a optional CCA mode transmits
preamble segments between the PSDU segments. If we consider a 64 symbol preamble
and 16 symbol preamble segments, and a PSDU segment of 127 symbols (1/8 of PSDU)
in order not to make the CCA too long, the total preamble overhead of 802.15.4a is
(64 + 10 ∗ 16 = 224 symbols). This is 22 % of the PSDU length and 3.5 times the
length of the PSMA total preamble.

In reception of Fig. 6 an interesting peculiarity can be observed. As the traffic on
the channel increases, the amount of collisions increase. Having Pd lower is actually
beneficial in this case since less colliding preambles will be detected and less time will
be spent in unproductive receive.

Fig. 7 illustrates the delay behaviour as a function of G. As expected, the delay
increases with longer preambles and more difficult channel models. The fractional dif-
ference between highest and lowest delays with low G is around 15 %. When G ap-
proaches 1, the delay rapidly grows to very high values.

PSMA for Impulse Radio Ultra Wideband Sensor Networks 165

10
−3

10
−2

10
−1

10
0

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Normalised (to 2T
s
) Offered Traffic G(Erlang)

F
ra

m
e

T
ra

ns
m

is
si

on
 D

el
ay

 D
(s

)
CM1, SNR=15dB, PSMA, 16 symbol preamble
CM1, SNR=15dB, PSMA, 32 symbol preamble
CM1, SNR=15dB, PSMA, 64 symbol Preamble
CM2, SNR=15dB, PSMA, 16 symbol Preamble
CM2, SNR=15dB, PSMA, 32 symbol Preamble
CM2, SNR=15dB, PSMA, 64 symbol Preamble

Fig. 7. PSMA delay (s) on transmission for channel models CM1 (LoS) and CM2 (NLoS) as a
function of normalised offered traffic

6 Conclusions and Future Work

In this paper we have proposed preamble sense multiple access (PSMA), a random
access MAC protocol capable of clear channel assessment in impulse radio-ultra wide-
band environment. The PSMA is compatible with the IEEE 802.15.4a contention access
period, but only 1 CCA is required to ensure channel vacancy. The PSMA provides
an alternative approach to the 805.15.4a slotted ALOHA and periodic preamble seg-
ment transmission schemes by offering higher throughput than slotted ALOHA, but
lower preamble transmission requirements than the optional periodic preamble seg-
ment method. The PSMA was evaluated by a traditional throughput analysis and by
an energy consumption and delay analysis that takes into account the special features
of IR-UWB. The IR-UWB provides the probability of detection and the probability
of false alarm, both of which have an impact on the MAC protocol performance. The
analysis results show the PSMA to have a very good energy and delay performance as
well as satisfactory throughput when the offered traffic to the channel is from low to
moderate.

As future work, a Markov chain analysis is required to observe the impact of detec-
tion and false alarm probabilities on the throughput. In addition, the binary exponential
backoff algorithm can be taken into account. A similar analysis will be made for the
IEEE 802.15.4a optional preamble segment detection and ALOHA protocols. It is ex-
pected that based on these evaluations a number of significant conclusions on the usage
of CCA methods in IR-UWB can be made.

166 J. Haapola et al.

References

1. FCC: Revision of Part 15: FIRST REPORT AND ORDER. Technical report, Federal Com-
munications Commission (2002)

2. Win, M., Scholtz, R.: Ultra-wide Bandwidth Time-hopping Spread-spectrum Impulse Radio
for Wireless Multiple-access Communications. IEEE Transactions on Communications 48,
No. 4 (2000) 679–689

3. Batra, A., Balakrishnan, J., Aiello, G.R., Foerster, J.R., Dabak, A.: Design of a Multiband
OFDM System for realistic UWB Channel Environments. IEEE TRANSCTION ON MI-
CROWAVE THEORY AND TECNIQUE 52, No. 9 (2004)

4. P802.15.4a, I.: TG4a Drafting. Technical report, IEEE P802.15 Working Group for Wireless
Personal Area Networks (WPANs) (2005) This document has been prepared to assist the
IEEE P802.15.

5. Ramirez-Mireles, F.: On the Performance of Ultra-Wide-Band Signals in Gaussian Noise and
dense Multipath. IEEE Transactions on Vehicular Technology Volume 50, Issue 1 (2001)
244–249

6. Iacobucci, M., Di Benedetto, M.: Multiple access design for impulse radio communication
systems. In: Proc. of IEEE International Symposium on Communications ICC. (2002)

7. Kleinrock, L., Tobagi, F.A.: Packet Radio in Radio Channels, Part 1: Carrier Sense Mul-
tiple Access modes and their throughput-delay characteristics. In: IEEE Transactions on
Communications. IEEE (1975) 23(12): 1400–1416

8. IEEE-802.15.3: Part15.3: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for High Data Rate Wireless Personal Area Networks. Technical re-
port, The Institute of Electrical and Electronics Engineers, Inc. (2003) Draft P802.15.3/D17.

9. IEEE-802.15.4: Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). Tech-
nical report, The Institute of Electrical and Electronics Engineers, Inc. (2003) IEEE Std
802.15.4-2003.

10. Benedetto, M., Nardis, L., Junk, M., Giancola, G.: (UWB)2: Uncoordinated, Wireless, Base-
born Medium Access for UWB Communication Networks. Mobile Networks and Applica-
tions, Springer Science 10 (2005) 663–674

11. Molisch, A.F., Balakrishnan, K., Chong, C.C., Emami, S., Fort, A., Karedal, J., Kunisch,
J., Schantz, H., Schuster, U., Siwiak, K.: Ieee 802.15.4a channel model — final report.
Technical report, IEEE (2004) (Available online) http://www.ieee802.org/15/pub/TG4a.html.

12. Stoica, L., Tiuraniemi, S., Oppermann, I.: An Ultra Wideband Impulse Radio Low Complex-
ity Transceiver Architecture for Sensor Networks. In: Proc. of IEEE International Conference
on Ultra-Wideband (ICU) 2005. (2005)

13. Haapola, J., Shelby, Z., Pomalaza-Rez, C., Mähönen, P.: Multihop Medium Access Control
for WSNs: An Energy Analysis Model. EURASIP Journal on Wireless Communications and
Networking, Special Issue on Wireles Sensor Networks 2005 (2005) 523–540

Security in Wireless Sensor Networks:
Considerations and Experiments

Panu Hämäläinen, Mauri Kuorilehto, Timo Alho,
Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems
P.O. Box 553 (Korkeakoulunkatu 1), FI-33101 Tampere, Finland

panu.hamalainen@tut.fi, mauri.kuorilehto@tut.fi, timo.a.alho@tut.fi,
marko.hannikainen@tut.fi, timo.d.hamalainen@tut.fi

http://www.tkt.cs.tut.fi/research/daci

Abstract. Wireless Sensor Networks (WSN) are seen as attractive solutions for
various monitoring and controlling applications, a large part of which require
protection. Due to the special characteristics of WSNs, e.g. low processing and
energy resources and ad hoc networking, developing a reliable security solution
becomes a challenging task. In this paper we survey various security aspects of
WSNs, consisting of threats, attacks, and proposed solutions. We also present
experiments with our own WSN technology (TUTWSN), concentrating on a cen-
tralized key distribution and authentication service. Our experiments suggest that
a centralized scheme can be a feasible solution in certain WSN configurations.

1 Introduction

Wireless Sensor Networks (WSN), consisting of small, independent, collaborating
wireless devices (nodes), have recently aroused considerable interest in industry and
academic research communities [1]. WSNs are envisioned as cost-effective and intelli-
gent solutions for various applications in automation, healthcare, environmental mon-
itoring, safety, and security. For example, HVAC management, surveillance and alarm
systems, and patient monitoring are among the expected WSN applications. The appli-
cation tasks of the low-power and low-cost WSN nodes include sensing, processing,
and exchanging data as well as acting according to the content of the collected data.

A large part of WSN applications require protection for the data transfer as well as
for the nodes themselves [2]. For instance, unauthorized parties should not be able to
access private patient information, suppress burglar alarms, or tamper with heating sys-
tems. Compared to other wireless technologies, such as Wireless Local Area Networks
(WLAN), processing resources and power supplies are significantly more stringent in
WSNs. This calls for very efficient security designs and implementations. Furthermore,
ad hoc networking, multihop routing as well as node capturing and Denial-of-Service
(DoS) threats place new challenges on the security of WSNs, specifically on key man-
agement, authentication, routing, and physical protection.

In this paper we survey various security aspects of WSNs—their security threats
and proposed solutions. After the survey we present experiments with our own WSN

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 167–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 P. Hämäläinen et al.

technology, called TUTWSN [3]. Our security experiments concentrate on an authenti-
cation service suited for centralized access control and key distribution in WSNs.

The paper is organized as follows. Section 2 introduces the various security threats
inherent in WSNs. Section 3 reviews security architectures developed for WSNs. Key
distribution is discussed in Section 4 and our experiments presented in Section 5. Fi-
nally, Section 6 concludes the paper.

2 Threats to WSN Security

WSNs share the security threats of other communication networks, consisting of mes-
sage interception, modification, and fabrication as well as interruption of communica-
tions and operation (DoS) [4], illustrated in Fig. 1. However, the threats are specifically
inherent in WSNs due their special characteristics which enable new forms and combi-
nations of attacks.

Even though WSNs themselves have limited capabilities, an attacker can possess
powerful tools, e.g. a laptop and a sensitive antenna, for making attacking more effective
[5]. Attackers can be divided to outsiders and malicious insiders [5][6]. Whereas an
outsider is not an authorized participant of a WSN, an insider may have the knowledge
of all the secret parameters of a WSN, such as cryptographic keys, and thus is able to
perform more severe attacks. An outsider can become an insider by compromising a
WSN node. It is desired that a secure WSN blocks outsider attacks and that security
only gracefully degrades (or, is resilient) in case of insider attacks [6].

2.1 Passive Attacks

Interception attacks, carried out by eavesdropping on transmissions, form the group of
passive attacks on WSNs. A passive attack can either result in the disclosure of message
contents or successful traffic analysis [4]. In traffic analysis an attacker finds out useful
information through analyzing message headers, message sizes, and traffic patterns.
In WSNs interception attacks can be performed by gathering information exchanged
between nodes, particularly at data aggregation points [2]. Besides regular data transfer,
routing information can be exploited for traffic analysis [2].

Discovering message contents, including exchanged routing tables, can be thwarted
by encrypting transmissions, as long as encryption keys remain unknown to attackers.
Analysis of traffic patterns can classically be deterred by maintaining a constant flow of
encrypted traffic, even when there is nothing to transmit [2]. The solution is not suited

(a) (b) (c) (d)

Fig. 1. Security threats in WSN communications: (a) interception, (b) modification, (c) fabrica-
tion, and (d) interruption

Security in Wireless Sensor Networks: Considerations and Experiments 169

for WSNs as they should minimize the radio usage for power conservation. Another
solution for hindering traffic analysis is to tunnel messages so that their final destina-
tions addresses are encrypted.

2.2 Active Attacks

Active attacks on WSNs consists of modification and fabrication of information and
DoS in its various forms [4]. Impersonation and message replay are two instances
of fabrication. Modification includes changing, delaying, and reordering messages or
stored data. Various modifications and fabrications can be prevented with cryptographic
procedures. However, instead of directly tampering with data itself, in some WSN ap-
plications modifications can also be performed by affecting the sensed phenomenon,
which cannot be restrained by using cryptography. For example, in a temperature mon-
itoring application a sensor node can be relocated and heated, implying false readings.
Of the methods for performing active attacks, WSNs are particularly vulnerable to node
capturing, resource exhaustion, and tampered routing information.

Node Capturing. As WSN nodes are often deployed to publicly accessible locations,
they are susceptible to capturing attacks [7]. After capturing a node, the attacker can
attempt to discover its cryptographic keys or other sensitive information, to destroy it,
or to reverse-engineer and modify its functionalities [8]. Compromising a single node
can jeopardize even the whole WSN by allowing insider attacks. Regular node failures
can also randomly cause similar effects as capturing attacks [2][6][8].

The countermeasures against node capturing consist of physical protection of nodes
and applying compromise-tolerant and resilient security mechanisms, e.g. for key dis-
tribution. Proper physical protection is often considered too costly for WSNs. However,
when the components of a node are integrated into a single chip, physical attacks are
more difficult to perform. Also, the integration of smart card technologies with WSNs
and mechanisms for wiping out sensitive information in case of physical tampering are
potential solutions.

Resource Exhaustion. The capacity limitations of WSNs make them vulnerable to
resource exhaustion attacks which can result in DoS. For example, battery draining can
be realized by transmitting meaningless data to a node, keeping it active and possibly
performing cryptographic message integrity verifications. As countermeasures, WSN
security designs and implementations should be carefully tuned for high performance
at low energy consumption and communication overhead. The transmission rates and
number of connections for a node can also be limited for restricting attacks [8].

Routing Attacks. Despite that routing is an important aspect in WSNs, their routing
protocols are often simple, and thus more susceptible to attacks than general-purpose
ac hoc routing protocols [5]. A number of routing attacks for realizing DoS, performing
selective forwarding of advantageous messages, and attracting traffic to a malicious des-
tination for interception have been identified for WSNs [5]. The methods include rout-
ing information modifications, HELLO flooding, acknowledgement spoofing, as well
as sinkhole, Sybil, and wormhole attacks. Routing information modifications can be
used for creating routing loops, luring traffic, extending routes, and partitioning WSNs.

170 P. Hämäläinen et al.

HELLO flooding and spoofed acknowledgements allow advertising non-existent or
weak links. Sinkhole, Sybil, and wormhole attacks facilitate attracting traffic to a com-
promised node or to chosen parts of a WSN.

The countermeasures against routing attacks include link layer encryption and au-
thentication for unicast, multicast, and broadcast transmissions, multipath routing, bidi-
rectional link verification, and geographical routing [5]. Bidirectional link verification
ensures that a link can equally be used for both directions. Geographical routing inte-
grates location information to routing decisions.

3 Security Architectures for WSNs

As discussed, a large part of the attacks on WSNs can be prevented by means of cryptog-
raphy. In this section we review selected cryptographic security architectures designed
for WSNs, namely TinySec [9], SPINS [10], IEEE 802.15.4 [11], and ZigBee [12].

3.1 TinySec

TinySec [9] is a security architecture for protecting the link layer of WSNs. The de-
sign goal has been to provide adequate level of security with the limited resources of
WSNs. TinySec provides services for data authentication by protecting transmissions
with Message Authentication Codes (MAC) and confidentiality by encrypting transmis-
sions. Encryption is performed with a block cipher in the Cipher Block Chaining (CBC)
mode and MACs are computed with the cipher in the CBC-MAC mode. Applications
can configure TinySec to apply only MACs or both MACs and encryption to transmis-
sions. Freshness protection of messages is consciously excluded as it is consider too
resource-demanding. Key distribution or entity authentication schemes have not been
specified.

3.2 SPINS

SPINS [10] is a suite of WSN security protocols. It consists of two main compo-
nents, Secure Network Encryption Protocol (SNEP) and μTESLA. Whereas SNEP pro-
vides services for data authentication and confidentiality of two-party communications,
μTESLA is a protocol for the data authentication of broadcast messages. SPINS sup-
ports centralized key distribution, discussed in Section 4.

SNEP encrypts messages and protects them with MACs. Different keys, derived
from a shared master key between the two communicating nodes, are used for each dif-
ferent purpose and communication direction. A counter value is included into messages
for freshness. Encryption is performed with a block cipher in the counter (CTR) mode
and data authentication in the CBC-MAC mode.

Instead of computationally expensive public-key algorithms, μTESLA uses
symmetric-key cryptography. A broadcast message is protected with a MAC, for which
the sender discloses the verification key at a pre-determined time instant. In order to
work, it is required that the clocks of nodes are loosely synchronized and the sender has
enough space for storing the chain of verification keys.

Security in Wireless Sensor Networks: Considerations and Experiments 171

3.3 IEEE 802.15.4 and ZigBee

IEEE 802.15.4 [11] and ZigBee [12] are envisioned to be the first technologies en-
abling large-scale utilization of WSN-type solutions. The 802.15.4 standard defines
optional cryptographic suites for providing either confidentiality, data authentication,
or both. Confidentiality is achieved through encryption using Advanced Encryption
Standard (AES) [13] in the CTR mode and data authentication through MACs in the
CBC-MAC mode. The combination is offered with AES in the CTR with CBC-MAC
mode (CCM). Freshness can also be provided. Each node can store keys for pairwise
and group communications. The standard does not define key distribution or entity au-
thentication mechanisms.

The ZigBee specification [12] builds on the security design of 802.15.4 by slightly
modifying it and specifying services for key management and entity authentication.
It uses separate keys for pairwise and network-wide communications. The keys can
be either dynamically distributed or pre-installed into nodes. Protected distribution re-
quires that nodes share a key with a Trust Center (TC), which is a device coordinating
the network. Authentication is carried out with a challenge-response scheme. Instead
of supporting the separate MAC and CTR suites of 802.15.4, ZigBee specifies a new
mode of operation called CCM*. Also CCM* uses AES but in addition to the standard
CCM operation, it offers encryption-only and MAC-only configurations.

4 Key Distribution in WSNs

Due to the multihop communications, large number of nodes, ac hoc networking, and
resource constraints, distribution of secret keys becomes one of the most challenging
security components of WSNs. In order to be applicable and secure, each of the security
architectures described above requires a key distribution method. There exists various
distribution solutions and keying mechanisms, suited for different WSN applications
and deployment scenarios.

4.1 Public-Key Cryptography

Public-key cryptography is commonly used for key distribution in traditional computer
systems, e.g. on the Internet. For WSNs the benefits of public-key mechanisms are
the resiliency against node capturing, the possibility to revoke compromised keys, and
scalability [14]. However, public-key algorithms are computationally intensive and
public-key protocols require exchanging large messages, consisting of keys and their
certificates. Therefore, the mechanisms are often considered poorly suited for WSNs.
For example, the expensive computations and message exchanges can be exploited for
DoS. Nevertheless, according to the recent research results [15][16][17], Elliptic Curve
Cryptography (ECC) can be a feasible solution for some WSN applications. Still, as
Section 5 will show, symmetric-key algorithms can be computed considerably more
efficiently than ECC algorithms in typical WSN nodes.

172 P. Hämäläinen et al.

4.2 Pre-distributed Keys

The simplest keying mechanism is to use a single, pre-installed symmetric key for the
whole WSN. The solution results in the lowest resource and management requirements
as well as enables nodes to create protected connections with all the other nodes in the
network [9][14]. A drawback is that when a single node is compromised, the security of
the whole WSN is lost. The solution also allows full-scale insider attacks. The effects
of node compromises can be decreased e.g. by using the network-wide key only for
setting up pairwise keys during the establishment of the WSN, erasing it afterwards
[14]. However, this solution prevents adding nodes after the initial WSN deployment.

The other extreme is to pre-distribute unique keys for each pair of nodes [14]. The
technique is resilient to node capturing as only the keys of compromised nodes are
leaked. Also, key revocation can be supported [14]. The drawbacks are poor scalability
and high storage requirements since in a WSN of n nodes each node has to store n − 1
keys, totalling n(n − 1)/2 keys for the network.

A solution between the network-wide and pairwise keys is to use group keying
[9]. In this scheme a node shares a symmetric key with its neighbors. A group key
compromise allows only accessing the communications within the group.

Depending on the WSN application and available resources, the described keying
mechanisms can also be combined [18]. Each node maintains a certain number of pair-
wise and group keys and a network-wide key, which facilitate protected pairwise and
group communications as well as local and global broadcasts.

Random Key Pre-distribution. WSN key distribution based on randomly chosen
pools of symmetric keys has aroused interest in the research community. In the orig-
inal scheme [19] a large set of keys is generated and distributed to nodes during the
WSN setup. Each node is allocate a subset of the generated keys such that with a cer-
tain probability each pair of nodes end up sharing at least one key. After the allocation
nodes perform key discovery in order to find out which of their neighbors they share
keys with. The links protected with the discovered keys can be further used for agreeing
on new keys, called path-keys, which enable direct communications with neighbors the
nodes initially did not share a key with. The scheme has been further developed to be
better resilient to node capturing e.g. by requiring larger number of overlapping keys
[14] and exploiting WSN deployment information in advance [20].

The benefit of the random key pre-distribution over unique pairwise keys is the
decreased amount of key storage and over network-wide keys the resiliency to node
capturing. The mechanism also supports key revocation and re-keying [19]. However,
in order to be applicable, the node density has to be high and uniform in the scheme. A
drawback of the basic scheme [19] is that the randomly shared keys cannot unambigu-
ously be used for entity authentication as the same keys can be shared by more than a
single pair of nodes [14].

4.3 Centralized Key Distribution

Along with public-key cryptography, Key Distribution Centers (KDC) are utilized for
providing authentication and key distribution services in communication systems, e.g.
in WLANs. A KDC can be used in WSNs as well [10][14]. Nodes authenticate to a

Security in Wireless Sensor Networks: Considerations and Experiments 173

KDC, which generates a symmetric key and securely communicates it to the nodes. For
example, the TC of a ZigBee network operates as a KDC. It is required that nodes can
establish secure channels to the KDC, e.g. through pre-shared symmetric keys, and that
the KDC is trusted and has capacity for storing the channel establishment information
of all nodes.

The storage requirements in WSN nodes are low as each node has to store perma-
nently only a single key (node–KDC). Furthermore, since authentications and key es-
tablishments of a WSN are controlled in a centralized location, the scheme is resilient
to node capturing, supports simple node revocation, and protects against node replica-
tion attacks [14]. The drawbacks of the scheme are that nodes establishing a connection
must always first communicate with the KDC and that the KDC becomes an appealing
target of attacks [14]. If the KDC is accessed through multiple hops, the authentication
latencies increase, the energy consumption of the nodes close to the KDC grows, and
they also become targets of DoS attacks. The situation can be alleviated by locating
the KDC outside the hostile operation environment of the rest of the WSN [14] and
distributing and/or replicating its functionalities.

5 Security Experiments with TUTWSN

A large part of WSN security research seems to have concentrated on the probabilistic
key pre-distribution techniques as well as on the efficient implementation of crypto-
graphic algorithms. In order to extend the evaluation of KDC-based solutions, we have
developed a centralized WSN authentication service using our TUTWSN technology.
The service can be used for both network access control and key distribution using only
symmetric-key cryptography.

5.1 TUTWSN Overview

The main design goals for TUTWSN have been energy-efficiency and scalability [3].
TUTWSN uses a clustered topology, illustrated in Fig. 2(a). A cluster consists of a
headnode and several subnodes. Special gateway nodes can be used for extending
WSNs with other networking technologies (e.g. for locating a KDC in safe premises).
The energy-efficiency derives from the medium access control protocol that uses Time
Division Multiple Access (TDMA) for intra-cluster communications and Frequency Di-
vision Multiple Access (FDMA) for interleaving clusters. TUTWSN utilizes gradient-
based multihop routing. The protocol stack is freely configurable for different
application purposes. For more details, including the channel access mechanism, we
refer to [3].

Several prototype platforms have been fabricated for TUTWSN. In the experiments
of this paper we used the prototype presented in Fig. 2(b). It contains a PIC18F4620
nanowatt series Micro-Controller Unit (MCU) with 64 KB of code memory and 3986
B of data memory. The radio interface is a 2.4 GHz transceiver with 1 Mbit/s data rate.
For our security experiments the payload size in a network packet is 22 B in the used
TUTWSN configuration. The maximum payload data rate for a link is 1.4 kbit/s in both
directions.

174 P. Hämäläinen et al.

SubnodeHeadnode Gateway ClusterSubnodeHeadnode Gateway ClusterSubnodeHeadnode Gateway Cluster

(a) (b)

Fig. 2. (a) TUTWSN topology and (b) a prototype node

5.2 KDC-Based Key Distribution and Authentication Scheme

Our experimental key distribution and authentication scheme uses a similar authentica-
tion architecture and a same type of a protocol as Kerberos [21]. In contrast to Kerberos,
the freshness of messages is ensured with nonces instead of timing information. Hence,
nodes do not have to maintain clock synchronization but they require a random number
generator.

The scheme is based on the KDC proposal of [10], which does not report an imple-
mentation. Instead of direct communications with the KDC, in our version all messages
are communicated through a headnode, supporting the TUTWSN topology. Also, we
have included authentication with the newly distributed key. The key agreement and
authentication procedure can be performed between a headnode and a subnode or be-
tween two headnodes.

The scheme operates as follows. During the WSN deployment, each node is allo-
cated a symmetric key KX (consisting of an encryption key and a MAC key) which
they share with the KDC (S). For authenticating and establishing a symmetric key KAB

between two nodes, A and a headnode B, the following protocol is applied:

1. A → B : NA | A

2. B → S : NA | NB | A | B | MAC(KB,NA|NB|A|B|S)
3. S → B : A | E(KB,KAB) | T | MAC(KB,A|E(KB,KAB)|T |NB|S|B)
4. B → A : N′

B | S | T | MAC(KAB,NA|N′
B|S|T |B|A)

5. A → B : MAC(KAB,N′
B|A|B)

where T = E(KA,KAB) | MAC(KA,E(KA,KAB)|S|NA|A|B) and | stands for concatenation.
Above NX is a nonce created by X , MAC(K,Y) is a MAC computed with the key K over
the data Y , and E(K,Y) is the encryption of Y with the key K. KAB is chosen by S, which
is trusted by the nodes.

Security in Wireless Sensor Networks: Considerations and Experiments 175

Message 1 of the protocol serves as a challenge from A to B and S. With Message
2, B requests KAB from S, including NB into the message for challenging S to prove its
authenticity in Message 3. With Message 4, B proves A its knowledge of KAB as it has
been able to decrypt the key from Message 3 with KB and compute the MAC over NA.
Finally, A proves B its knowledge of KAB, which it has obtained from T , by transmitting
the MAC computed over N′

B.

5.3 Implementation Experiments

In the experimental implementation of the key distribution scheme we used the AES
cipher [13] with 128-bit keys for encryption as well as for MAC computations. For
efficiency, we chose to carry out the encryption of KAB in the Electronic CodeBook
(ECB) mode. MACs are computed in the CMAC mode [22]. We chose the sizes of the
protocol message fields so that each message fits at maximum into two packets of our
TUTWSN configuration.

The implementation was carried out as software (C language) on the prototype
nodes described in Section 5.1. For AES we utilized the assembly implementation
of [23]. Our experimental implementation supports authentication of nodes that are
at maximum two hops away from the KDC since multihop routing for the protocol
messages is currently not included. For example, for covering the network of Fig. 2(a),
increasing transmission power is required.

With the used TUTWSN configuration the protocol run takes about 2 s, in which
the channel access and communication latencies dominate. For instance, the processing
time for the largest message, Message 3, is below 100 ms in the TUTWSN prototype
node. In networks of large number of hops and key requests, the increase of laten-
cies can be reduced by allocating more processing power to the KDC and accessing it
through uniformly deployed gateway nodes. Furthermore, the distance of nodes from
the KDC (as the number of hops) can be shortened by increasing transmission power.
Also, the KDC approach can be combined with certain amount of pre-distributed pair-
wise keys.

For evaluating symmetric-key and public-key cryptography on WSN nodes, Table 1
presents results for AES in our implementation as well as results from [16], which re-
ports efficient ECC implementations on 8-bit microcontrollers, and from [17], which

Table 1. Evaluation of AES and ECC on WSN node platforms (the used data memory and code
size are reported for MCUs, the gate area for ASICs)

Algorithm Technology Clock Resources Power Exec. time Energy

AES PIC18F4620 4.0 MHz 45 B (data), 3.2 mW 6.5 ms 21 μJ
4400 B (code)

ECC [16] ATmega128 8.0 MHz 282 B (data), 95 mW 810 ms 76 mJ
3682 B (code)

AES [25] 0.13 μm 150 MHz 3100 gates 5.6 mW 1.1 μs 5.9 nJ
ECC [17] 0.13 μm 0.5 MHz 19000 gates 0.39 mW 410 ms 160 μJ

176 P. Hämäläinen et al.

reports results for ECC hardware implementations considering WSNs. We have com-
puted the maximum power for ATmega128 according to the MCU data sheet [24]. We
have also included initial results for our recent—yet unpublished—low-power, 8-bit
AES encryption hardware implementation (standard-cell CMOS, 1.2 V) [25]. Accord-
ing to these results, symmetric-key algorithms have significantly higher performance
both in software and in hardware. In software, the amount of consumed memory can be
at the same level.

6 Conclusions

WSNs are seen as appealing solutions for numerous monitoring and controlling appli-
cations, a large part of which require protection. Due to their special characteristics,
designing a reliable security solution for WSNs becomes a challenging task. Settling
to trade-offs between the level of security and resource requirements is often needed.
Similarly to the design of other aspects of WSNs, instead of attempting to develop
a solution suited for all possible usage scenarios, for cost-efficiency the WSN secu-
rity design should be developed considering the threat model of the target application.
Our experiments with TUTWSN suggest that KDC-based key distribution mechanisms
can be feasible solutions in certain WSN configurations, especially when a centralized,
possibly physically protected location for network access control is desired. The KDC
scheme and its implementation will be further developed and evaluated.

References

1. Stankovic, J.A., Abdelzaher, T.F., Lu, C., Sha, L., Hou, J.C.: Real-time communication and
coordination in embedded sensor networks. Proceedings of the IEEE 91 (2003) 1002–1022

2. Avancha, S., Undercoffer, J., Joshi, A., Pinkston, J.: Security for Wireless Sensor Networks.
[26] 253–275

3. Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Ultra low energy wireless temperature
sensor network implementation. In: Proc. 16th IEEE Int. Symp. Personal Indoor and Mobile
Radio Comm. (PIMRC 2005), Berlin, Germany (2005)

4. Stallings, W.: Network and Internetwork Security: Principles and Practice. Prentice-Hall,
USA (1995)

5. Karloff, C., Wagner, D.: Secure routing in wireless sensor networks: Attacks and counter-
measures. Elsevier Ad Hoc Networks 1 (2003) 293–315

6. Shi, E., Perrig, A.: Designing secure sensor networks. IEEE Wireless Comm. 11 (2004)
38–43

7. Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Communications
of the ACM 47 (2004) 53–57

8. Wood, A., Stankovic, J.A.: Denial of service in sensor networks. IEEE Computer 35 (2002)
54–62

9. Karlof, C., Sastry, N., Wagner, D.: TinySec: A link layer security architecture for wireless
sensor networks. In: Proc. 2nd Int. Conf. Embedded Networked Sensor Systems (SenSys
2004), Baltimore, MD, USA (2004) 162–175

10. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: Security protocols for
sensor networks. Kluwer Wireless Networks (2002) 521–534

11. IEEE: IEEE Std. 802.15.4. (2003)

Security in Wireless Sensor Networks: Considerations and Experiments 177

12. ZigBee Alliance: ZigBee Specification Version 1.0. (2004)
13. NIST: Advanced Encryption Standard (FIPS-197). (2001)
14. Chan, H., Perrig, A., Song, D.: Key Distribution Techniques for Sensor Networks. [26]

277–303
15. Gupta, V., Wurm, M., Zhu, Y., Millard, M., Fung, S., Gura, N., Eberle, H., Shantz, S.C.: Siz-

zle: A standards-based end-to-end security architecture for the embedded internet. Elsevier
Pervasive and Mobile Computing (2005) 425–445

16. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptog-
raphy and RSA on 8-bit CPUs. In Joye, M., Quisquater, J.J., eds.: Lecture Notes in Computer
Science. Volume 3156. Springer (2004) 119–132

17. Gaubatz, G., Kaps, J.P., Öztürk, E., Sunar, B.: State of the art in ultra-low power public key
cryptography for wireless sensor networks. In: Proc. Workshop on Pervasive Computing and
Comm. Security (PerSec’05), Kauai Island, HI, USA (2005) 146–150

18. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient security mechanism for large-scale distrib-
uted sensor networks. In: Proc. 10th ACM Conf. Computer and Comm. Security (CCS’03),
Washington D.C., USA (2003) 62–72

19. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks.
In: Proc. 9th ACM Conf. Computer and Comm. Security (CCS’02), Washington D.C., USA
(2002) 41–47

20. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A key predistribution scheme for sensor net-
works using deployment knowledge. IEEE Trans. Dependable and Secure Computing 3
(2006) 62–77

21. Kohl, J., Neuman, C.: The Kerberos network authentication service (V5). RFC 1510 (1993)
22. Dworkin, M.: Recommendations for Block Cipher Modes of Operation: The CMAC Mode

for Authentication (Special Publication 800–38B). NIST. (2005)
23. Microchip Technology Inc.: Application note 953: Data Encryption Routines for the PIC18.

(2005)
24. Atmel Corporation: 8-bit AVR Microcontroller with 128K Bytes In-System Programmable

Flash – ATmega128 and ATmega128L, Rev. 2467M-AVR-11/04. (2004)
25. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation

of low-area and low-power AES encryption hardware core. Unpublished (2006)
26. Raghavendra, C.S., Sivalingam, K.M., Znati, T., eds.: Wireless Sensor Networks. 1 edn.

Springer (2004)

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 178 – 185, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On Security of PAN Wireless Systems

Ondrej Hyncica, Peter Kacz, Petr Fiedler, Zdenek Bradac,
Pavel Kucera, and Radimir Vrba

Brno University of Technology, Faculty of Electrical Engineering and Communication,
Kolejni 4, 612 00, Brno, Czech Republic

{xhynci00, xkaczp00}@stud.feec.vutbr.cz
{fiedlerp, bradac, kucera, vrbar}@feec.vutbr.cz

http://www.feec.vutbr.cz

Abstract. This paper describes security features of ZigBee and Bluetooth PAN
wireless networks. On examples of those two wireless systems are demon-
strated challenges associated with utilization of present wireless systems for
applications requiring secure data exchange. Recent penetration of wireless
technologies into building and process automation applications even increases
the need to fully understand the limitations of the security concepts used.

1 ZigBee Security

ZigBee technology [1] is intended for low-cost low-power devices based on 8-bit
microcontrollers. The intended ZigBee application areas are home control, building
automation and plant control systems, including security related systems. For this
reason the security mechanisms are significant part of the ZigBee specification.

Security services defined within ZigBee standard comprise methods for frame pro-
tection, device management, encryption key establishment and key transport. The
ZigBee security depends on symmetric cryptographic mechanisms, which requires
that secret keys used for communication encryption are both distributed in a secure
manner and also kept securely within all devices. To reduce complexity of security
architecture within the ZigBee devices there is no cryptographic separation within
different stack layers inside a single device; the different stack layers and an applica-
tion running on the device trust each other. Security is realized on device-to-device
basis and all layers within a device share common cryptographic keys.

Optimization of the security architecture to allow implementation on low power,
low memory CPUs resulted in following design choices:

The layer that originates a frame is responsible for its initial securing;
To prevent malevolent devices to use network services, NWK layer security shall
be used for all frames.
Only source and destination devices have to share a key, so secure data exchange
can be realized without the need to trust the route.

1.1 Security Keys

The security is based on a set of 128 bit encryption keys (network key, master key and
link keys) that are used at the Medium Access Control (MAC) Layer, Network Layer

 On Security of PAN Wireless Systems 179

(NWK) and the Application (APL) Layer. All layers share the same set of keys. The
broadcasted communications are encrypted using the common Network key, while
unicast communications are secured by Link keys. The Network key may be used by
all stack layers, while the link keys and master key are used by the APL layer and its
sub-layers only.

Link keys can be either pre-installed or acquired via network using (key-
establishment and key-transportation mechanisms). To reduce re-use of link keys
across various security services the services use keys derived from the link key by
one-way function. Master key is used during key-establishment process for derivation
of link keys.

Network key is acquired either via key-transport or pre-installation. Master key is
acquired by key-transport or by pre-installation. As the security is based on shared-
secret principles, the security of the network depends on secure initialization and
secure storage of all the keys.

1.2 Layered Security Architecture

Physical and link layers of ZigBee technology is defined by IEEE 802.15.4 standard
[2]. This standard defines CTR encryption, CBC-MAC authentication and a CCM
mode, which combines CTR and CBC-MAC.

However, the ZigBee standard defines modified CCM mode denoted CCM* that
defines also encrypted-only and integrity only modes. The CCM* eliminates the
need to implement CTR algorithm while providing equivalent services. The CCM*
uses AES-128 block cipher [3] and enables to use single key for all CCM* security
levels.

To prevent unauthorized message replay the ZigBee standard defines nonce com-
prising 64 bit source address, 32 bit frame counter and 8 bit security control field. The
nonce is included with all authenticated and/or encrypted frames.

Like the MAC layer the NWK and APL layers use AES-128 and CCM* for au-
thentication and encryption. The NWK layer prefers link keys, however for broad-
casted messages or when the appropriate link key is not available at the device a
network key is used. The APL layer determines the appropriate keys to be used based
on the purpose of the message.

1.3 ZigBee Network Security Modes

For secured networks the ZigBee defines a Trust Center, which is a device trusted by
devices within a network. The Trust Center distributes the keys for purposes of end-
to-end applications and network configuration management. The trust center may be
used to assist during establishment of end-to-end secured connections either by distri-
bution of link keys or by distribution of master keys.

In general two primary security modes for the Trust Center are defined – a Com-
mercial mode (higher security) and Residential mode (lower security). In the residen-
tial mode static keys are used, which leads to reduced security. Network key updates
are not supported in the residential mode. In the Commercial mode the keys are being
updated during network runtime. In secured networks, the devices have to authenti-
cate themselves before joining the network.

180 O. Hyncica et al.

Table 1. ZigBee Security Levels

Security level Security attributes Data encryp-
tion

Frame integrity Integrity code

0 None No No 0 bit
1 MIC-32 No Yes 32 bits
2 MIC-64 No Yes 64 bits
3 MIC-128 No Yes 128 bits
4 ENC Yes No 0 bit
5 ENC+MIC-32 Yes Yes 32 bits
6 ENC+MIC-64 Yes Yes 64 bits
7 ENC+MIC-128 Yes Yes 128 bits

The ZigBee standard defines four security levels for unencrypted communication
and another four security levels for encrypted communication. The high security con-
figuration uses 128 bit message integrity code and AES encryption with 128 bit key.
The available ZigBee security levels are shown in table 1.

1.4 Is the AES-128 Based Security Sufficient?

The AES-128 cipher is considered to be sufficient for most commercial applications
[5]. In June 2003, the US Government announced that AES-128 may be used for

(5)(4)

APP
Header

Security
Cnt

Application
Payload

(1-16)

Application Layer

Network
Layer

MAC
Layer

Data
Payload

(27-42)

Physical
Layer

FCS

(2)(7)

Frame
Length

(1)

SFD

(4)

Preamble

ENCRYPTION

Data
Payload

(16-31)

Integrity

(4)(7)

MAC
Header

FCS

(2)

Application
Data

(10-25)

Integrity

(4)(6)

NWK
Header

(5)(4)

APP
Header

Security
Cnt

Application
Payload

(1-16)

Integrity

(4)

Integrity Check Encrypted Parts

Fig. 1. Application layer encryption within the ZigBee protocol stack

 On Security of PAN Wireless Systems 181

classified information up to the level SECRET. Known AES attacks required either
extremely high number of messages with artificial conditions that are unlikely on a
real systems or execution of code directly on the on the same system that was per-
forming AES encryptions. The NIST expects the AES-128 to be safe at least until the
year 2036 [4].

However, the use of symmetric keys for key-distribution purposes in applications
with hundreds of devices is not fortunate. Moreover it is impossible to predict what
limitations in AES cipher will be found in the future. Utilization of single symmetric
cipher algorithm for both data encryption and key exchange presents possible “single
point of security failure” of the ZigBee security architecture. For this reason it is ex-
pected that ZigBee will be extended by asymmetric encryption methods for key dis-
tribution. Elliptic Curve Cryptography is proposed as a public-key asymmetric
scheme for embedded systems [4] and for ZigBee [6].

2 Bluetooth Security

Bluetooth (BT) technology is intended for wireless connection between human-
oriented devices (PC, keyboard, mouse, headset, mobile phone, PDA, GPS ...) [7].
IEEE approved Bluetooth-based wireless PAN standard in 2002 (IEEE 802.15.1 -
Bluetooth v1.1 specification) [2].

The BT technology provides peer-to-peer communication over relatively close
proximity. Typical application of BT is to create a temporary computer network; it is
usually an ad hoc network. Computers communicate directly with each other; there is
not a wireless access point, which can ensure security control over the network. Thus,
security becomes a major concern because important data are exposed to the other
member of the network not only in the meeting room but also anywhere in the above
mentioned transmission range even not within your sight [10].

2.1 Security Items

In order to provide protection of the communication, the security at the link layer and
application layer is ensured. Every Bluetooth device has four identification items used
for the security features at the link layer [8]:

1. Bluetooth device address (BD_ADDR) - every BT transceiver has a unique 48 bits
address that is derived from the IEEE802 standard. Structure of BD_ADDR is
shown in Figure 2. BD_ADDR of the device is publicly known.

2. Private authentication key, which is always 128 bits random number used by the
authentication algorithm.

3. Private encryption key is derived from the authentication key during the authenti-
cation process. The size of the key may vary between 8-128 bits due to different
requirements imposed on cryptographic algorithms in different countries and due
to the increasing computing power of the attackers.

4. A random number RAND, which can be derived from a random or pseudo-random
process in the BT device. The RAND is always 128 bits and it is changed
frequently.

182 O. Hyncica et al.

BD_ADDR - 48 bits

NAP
16 bits

Non-significant Address Part Upper Address Part

UAP
8 bits

Lower Address Part

LAP
24 bits

LSBMSB

Fig. 2. Structure of the Bluetooth device address

Bluetooth can operate in one of three security models:
Mode 1 - non-security,
Mode 2 - security at the service level, after the communication channel is established,
Mode 3 - security at the link level, before the communication channel is established.
Different security levels for BT devices and services are shown in Figure 3.

Bluetooth Device
Level 1 - trusted
Level 2 - untrusted

Bluetooth Service
Level 1 - authorisation and authentication is required
Level 2 - only authentication is required
Level 3 - open all devices

Fig. 3. Security Levels for devices and services

2.2 Key Management

The encryption key used during communication has a specific size and cannot be set
by the user. The key’s size is set by a factory and the Bluetooth baseband processing
does not accept an encryption key given from higher software layers in order to pre-
vent the user over-riding the permitted key size.

All security transactions between two or more parties are handled by the link key.
The link key is a 128 bits random number which is used in the authentication routine
and during the generation of the encryption key.

 In order to accommodate for different types of applications, four types of link keys
have been defined: the combination key KAB, the unit key KA (KB), the temporary
key Kmaster, the initialization key Kinit.

The combination key KAB and the unit key KA (KB) are functionally indistin-
guishable. The unit key KA (KB) is generated in a single unit A (B). The unit key is
generated once at installation of the Bluetooth unit. The combination key KAB is
derived from information in both units A and B, and is therefore always dependent on
two units. The master key Kmaster is a temporary key, which replaces the current link
key. The initialization key Kinit is used as link key during the initialization process
when there are not yet any unit or combination keys or when a link key has been lost.
The key is derived from a random number, Personal Identification Number (PIN)
code, and a BD_ADDR. This key is only to be used during initialization. The length
of the PIN code used in Bluetooth devices can vary between 1 and 16 bytes.

2.3 Key Generation and Initialization

The link keys have to be generated and distributed among the Bluetooth units in order
to be used in the authentication procedure. The exchange of the keys takes place

 On Security of PAN Wireless Systems 183

during an initialization phase it consist of the following five parts: generation of an
initialization key, generation of link key, link key exchange, authentication, generat-
ing of encryption key in each unit.

After the initialization procedure, the units can proceed to communicate, or the link
can be disconnected. If encryption is implemented, the E0 algorithm is used with the
proper encryption key derived from the current link key.

The initialization key is needed when two devices with no prior engagements need
to communicate. During the initialization process, the PIN code is entered to both
devices. The initialization key itself is generated by the E22 algorithm shown in
Figure 4a, which uses the PIN code, the length of the PIN code L and a 128 bits ran-
dom number IN_RAND generated by the verifier device as inputs.

IN_RAND
E

algorithm
22

128 bits

PIN

8L

L <1;16>

Kinit

Kmaster

IN_RAND
E

algorithm
21

128 bits

BD_ADDR

4 bits8

KA(B)

KAB

 a) b)

Fig. 4. a) Generation of an initialization key, b) Generation of a unit key and combination key

The unit key KA (KB) is generated with the key generating algorithm E21 -
Figure 4b, when the BT device is in operation for the first time; i.e. not during each
initialization. Once created, the unit key is stored in non-volatile memory and is rarely
changed.

The combination key is generated during the initialization process if the devices
have decided to use one. It is generated by both devices at the same time.

The master key is a temporary key of the link keys. It is generated by the master
device by using the key generating algorithm E22 with two 128-bit random numbers
and L=16.

COF 96 bits

IN_RAND E algorithm3128 bits

Link Key 128 bits

KC

128 bits

Fig. 5. a) Generation of an initialization key, b) Generation of a unit key and combination

The encryption key KC is derived by E3 algorithm, Figure 5, from the current link
key, a 96 bits Ciphering OFfset number (COF), and a 128 bits random number. The
COF is determined in one of two ways. If the current link key is a master key, then
COF is derived from the master BD_ADDR. Otherwise the value of COF is set to the

184 O. Hyncica et al.

value of Authenticated Ciphering Offset (ACO), which is generated during the au-
thentication procedure. The encryption key is automatically changed every time the
BT device enters the encryption mode.

2.4 Encryption

The Bluetooth encryption system encrypts the payloads of the packets; the access
code and the packet header are never encrypted. Encryption is done with a stream
cipher E0, which is re-synchronized for every new payload, which disrupt so-called
correlation attacks.

Depending on whether a device uses a semi-permanent link key (i.e. a combination
key or a unit key), or a master key, there are several encryption modes available. If a
unit key or a combination key is used, broadcast traffic is not encrypted. Individually
addressed traffic can be either encrypted or not. If a master key is used, there are three
possible modes: mode 1 - nothing is encrypted, mode 2 - broadcast traffic is not en-
crypted, but the individually addressed traffic is encrypted with the master key and
mode 3 - all traffic is encrypted with the master key.

2.5 Authentication

The Bluetooth authentication scheme uses a challenge response scheme in which a
claimant’s knowledge of a secret key is checked through a 2-move protocol using
symmetric secret keys; a successful authentication is based on the fact that both par-
ticipants share the same key. First, the verifier sends the claimant a random number
AU_RANDA to be authenticated. Then, both participants use the authentication func-
tion E1 with the random number, the claimants BT Device Address BD_ADDRB and
the current link key to get a response. The claimant sends the response SRES to the
verifier, who then makes sure the responses match.

When the authentication attempt fails, a certain waiting interval must pass before
the verifier will initiate a new authentication attempt to the same claimant, or before it
will respond to an authentication attempt initiated by a unit claiming the same identity
as the suspicious unit.

2.6 Problems in the Bluetooth Security

The encryption scheme of BT has some serious weaknesses. The most important is
a fact that E0 algorithm has flaw in the resynchronization mechanism and there
were some investigation of conditional correlations in the Finite State Machine
(FSM) governing the keystream output of E0. The best attack finds the original
encryption key for two level E0 using the first 24 bits of 223.8 frames and with 238
comput-ations [9].

The generation of the initialization key is also a problem. The strength of the ini-
tialization key is based on the used PIN code. The E22 initialization key generation
algorithm derives the key from the PIN code, the length of the PIN code and a ran-
dom number, which is transmitted over the air. When using 4 digit PIN codes there
are only 10.000 different possibilities; in fact most of the PINs are like “1111”.
Thus, the security of the initialization key is quite low.

 On Security of PAN Wireless Systems 185

The unique Bluetooth Device Address introduces another problem. When a con-
nection is made that a certain Bluetooth device belongs to a certain person, it is easy
to track and monitor the behavior of this person. For instance, with the appropriate
equipment (easy accessible) it is possible to track BT devices from more than mile
away [10]. The initial key exchange takes place over an unencrypted link, so it is
especially vulnerable because there is no such thing as a secure location anymore.

Finally the well known Denial of Service (DoS) Attack. This nuisance is very sim-
ple; a constant request for response from a hacker’s Bluetooth enabled computer to
another Bluetooth enabled device such that it causes some temporary battery degrada-
tion in the receiving device. While occupying the Bluetooth link with invalid commu-
nication requests, the hacker can temporarily disable the product’s Bluetooth services.

3 Conclusion

Security aspects are very important for wireless technologies due to easy access of
the attackers to the communication medium. Anyone with the appropriate HW can
scan radio communication, log it and use today’s powerful computer performance
to obtain sensitive information. BT technology has serious vulnerability due to E0
cryptographic algorithm.

ZigBee uses AES-128 algorithm that seems to be secure at present time. Side
channels found in recent time shows vulnerability of this cipher - i.e. Bernstein in
[11] showed attack based on time side channel. This is because of poor implementa-
tion of the algorithm in 32 bits processor. ZigBee technology is primary designed
for devices based on 8 bits microcontrollers where the correct implementation with-
out side channels will be even more challenging. Finally, the DoS attack is a com-
mon problem in wireless communication systems in general.

A security system is only as strong as its weakest link. With the ZigBee the possi-
ble weakness lies in secure key distribution and secure key storage at all the devices.

References

1. ZigBee Specification 1.0, ZigBee Alliance (2004)
2. IEEE 802.15.X, IEEE, http://www.ieee802.org/15/
3. Advanced Encryption Standard AES: http://advanced-encryption-standard.iqnaut.net/
4. Krasner J.: Using Elliptic Curve Cryptography (ECC) for Enhanced Embedded Security,

Embedded Market Forecasters, American Technology International, Inc. (2004)
5. Ferguson N., Schneier B.: Practical cryptography, Wiley (2003)
6. Pereira R.: ZigBee And ECC Secure Wireless Networks, Electronic Design (2004)

www.elecdesign.com
7. Bluetooth Special Interest Group SIG: http://www.bluetooth.com
8. Bluetooth specification Version 1.1, (February 22 2001)
9. Lu Y., Meier W., Vaudenay S.: The Conditional Correlation Attack: A Practical Attack on

Bluetooth Encryption. Crypto'05, Santa Barbara (2005)
10. Ceung H.: How To: Building a BlueSniper Rifle,

http://www.tomsnetworking.com/Sections-article106-page1.php (2005)
11. Bernstein D.: Cache-timing attacks on AES, http://cr.yp.to/antiforgery/cachetiming-

20050414.pdf (2005)

Code Size Reduction by Compiler Tuning

Masayo Haneda1, Peter M.W. Knijnenburg1,2, and Harry A.G. Wijshoff1

1 LIACS, Leiden University,
Niels Bohrweg 1, 2333CA Leiden, The Netherlands
{haneda, peterk, harryw}@liacs.nl

2 University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

peterk@science.uva.nl

Abstract. Code size is a main cost factor for many high volume electronic de-
vices. It is therefore important to reduce the size of the applications in an em-
bedded system. Several methods have been proposed to deal with this problem,
mostly based on compressing the binaries. In this paper, we approach the problem
from a different perspective. We try to exploit the back end code optimizations
present in a production compiler to generate as few assembly instructions as pos-
sible. This approach is based on iterative compilation in which many different
versions of the code are tested. We employ statistical analysis to identify the
compiler options that have the largest effect on code size. We have applied this
technique to gcc 3.3.4 using the MediaBench suite and four target architectures.
We show that in almost all cases we produce shorter codes than the standard set-
ting -Os does which is designed to optimize for size. In some cases, we generate
code that is 30% shorter than -Os.

1 Introduction

Memory is a main cost factor for many high volume electronic devices and constitutes
an increasing portion of the total product cost. Code size reduction therefore may reduce
the direct cost of a product by reducing the size of required memory. On the other hand,
a reduction in code size can also be used to fit more features into the same ROM which
may enhance the value of a product. Many approaches have been proposed to reduce
the code size of an application [1], ranging from code compression by means of, e.g.,
Huffman coding, to specific compiler based techniques like code factoring.

In this paper, we approach the problem from a different perspective. Instead of
proposing yet another technique that may reduce code size, we want to explore the pos-
sibilities standard compiler optimizations can offer to decrease the number of generated
assembly instructions. Although the number of assembly instructions is not directly pro-
portional to the final size of the binary in general, it is a significant factor in the code
compaction process. Moreover, our approach is orthogonal to the approaches mentioned
above and can be used in conjunction with them, possibly leading to smaller compressed
codes. Furthermore, our approach is easy to implement using a simple driver on top of
the compiler. Modern compilers implement many optimizations that often can explicitly
be turned on or off using compiler flags or switches. For example, gcc 3.3.4 has over 60

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 186–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Code Size Reduction by Compiler Tuning 187

switches. Obviously, some optimizations, like loop unrolling or procedure inlining, can
increase code size. Others, like dead code removal or strength reduction, can decrease
code size. While these statements seem obvious, some care needs to be taken since it
has been shown [2] that procedure inlining can actually decrease code size in some
cases. This trivially holds when functions with only one call site are inlined or when the
body of a function is smaller than the code needed to call and return from that function.
However, it is clear that all options in a compiler may change the generated assembly
code and thus may have an effect on code size. Whether they increase or decrease code
size is largely unknown as is their effect on code size if we take into consideration the
interaction of options. To the best of our knowledge, this paper is the first paper that
systematically investigates how an existing production compiler can be tuned in order
to reduce code size using over 50 options. We show that we can obtain a reduction in
the number of assembly instructions in the generated code that can be as high as 30%
over the standard -Os option of gcc that is designed to reduce code size.

Our method is based on statistical analysis of many versions of the code obtained
by using different compiler settings. In previous work, we have used so-called the main
effect of compiler options to tune the compiler for performance [3]. We have shown that
the compiler settings obtained in this way produce faster programs than standard -Ox
settings do. In the present paper, we use an improved statistical technique to optimize
for size, namely, non-parametric inferential statistics.

In this paper, we only optimize for code size. We do not take into consideration
the speed of the resulting code. Therefore, we may end up with a code that is short
but may be too slow to be useful. In future work, we plan to integrate our approaches
to code size and speed optimization. A possible solution is to optimize for size under
speed constraints. In this case, possible candidate settings need to be profiled in order to
check that they do not run too slow. Conversely, we can optimize for speed under code
size constraints. Finally, a third possibility is to optimize for both at the same time by
using a suitable function of both speed and size improvement.

This paper is structured as follows. In Section 2 we discuss related work. In Sec-
tion 3, the statistical framework used in this paper is explained. In Section 4, we present
our iterative algorithm to find a compiler setting. In Section 5, we discuss our experi-
mental environment, and the results are shown in Section 6. In Section 7, we draw some
conclusions.

2 Related Work

There exist some papers that study how the compiler can be used to reduce code size.
One important transformation that is specifically geared toward code size reduction
is code factoring [4]. This transformation can be seen as the inverse to function in-
lining. The assembly code is searched for repeating patterns that are encapsulated in
a new function and the patterns are replaced by a call to this function. Cooper and
McIntosh [5] improved the original idea. The squeeze binary-rewriting tool uses ag-
gressive interprocedural optimization and code factoring [6]. Mathias et. al. [7] employ
genetic algorithms to detect repeating patterns. The transformation reduces code size by

188 M. Haneda, P.M.W. Knijnenburg, and H.A.G. Wijshoff

5 to 10%. As a drawback, code factoring can give rise to longer execution times by
increasing the number of dynamic instructions and cache miss rates [8].

In a paper most related to the present paper, Cooper et. al. [9] propose to use genetic
algorithms to search for short code sizes using a research compiler. However, they only
employ 10 options, in contrast to the present approach which uses 53 options. It is
not immediately clear that such large number of options will not lead to combinatorial
explosion in their approach. Moreover, their compiler allows them to specify the order
in which these optimizations are applied and the same optimization may occur several
times in an optimization sequence. In contrast, we use an existing production compiler
in which this order is fixed as is generally the case for production compilers. Hence, the
technique from [9] is not immediately applicable to production compilers.

3 The Mann-Whitney Test

In this section, we discuss the statistical test we employ. First, we define a null hy-
pothesis which negates the experimental hypothesis. When we want to know about the
effectiveness of compiler option A for application B, the null hypothesis is

Null Hypothesis. Compiler option A is not effective to reduce the size of ap-
plication B.

Second, we conduct an experiment which contains two groups which are called the
control group and the experimental group, respectively. The control group consists of
the experimental runs that do not use compiler option A. The experimental group con-
sists of the experimental runs which use compiler option A. The null hypothesis implies
that the code sizes from these two groups are the same.

We employ Orthogonal Array [10] for the experimental design. Briefly, an Orthogo-
nal Array (OA) is a matrix of zeroes and ones. The rows of an orthogonal array represent
experiments to be performed and the columns of the orthogonal array correspond to the
different factors whose effects are being analyzed. For the purposes of this paper, an
OA has the property that for two arbitrary columns, the patterns, 00, 01, 10, and 11,
occur equally often.

An OA has the property that any option is turned on and off equally often in the
experiments defined by the rows of the OA. Moreover, for the rows that turn a certain
option on, any other option is turned on and off equally often as well. The Orthogonal
Arrays used in the present paper are taken from [11].

Since both experimental and control group consist of experiments where many dif-
ferent options are turned on, the code sizes of the members of each group can differ
considerably. Therefore, taking the average code sizes for each group and comparing
these averages is not accurate. Because of the large variation in each group, a differ-
ence between these averages could well be by pure chance. Non-parametric statistics
are designed to deal with this situation [12]. It is capable of analyzing data without an
underlying distribution by ranking the raw data first and analyzing the rankings.

The Mann-Whitney test is a well known test in inferential non-parametric statis-
tics [12]. The Mann-Whitney test is based on the value of T which is the sum of ranks
of the experimental group. In order to discuss how the test works, assume for simplicity

Code Size Reduction by Compiler Tuning 189

that the two groups both contain N members and that the option to be analyzed is the
only difference between the groups. It has been shown in [12] that if the null hypothesis
is true, then T has a normal distribution although the underlying raw data does not have
such a normal distribution. This distribution has mean

μ =
N(2N + 1)

2
(1)

and standard deviation

σ =

√
N2(2N + 1)

12
(2)

Since T is normally distributed, we can apply ‘ordinary’ statistics on it. The Mann-
Whitney test does not consider T directly but considers the test statistic z instead, which
is given by

z =
T − μ

σ
(3)

That is, z measures how far T lies from the mean expressed in units of standard devia-
tion. Then z is normally distributed also (with mean zero).

If the measured value of T is significantly different from μ, then we may conclude
that the null hypothesis is false because it is highly unlikely that we measure such
a value by chance. In order to decide whether T is significantly different from μ or,
equivalently, whether its corresponding value z is significantly different from zero, we
proceed as follows. Consider the function P (t) given by

P (t) =
(

1 − 2 ·
∫ t

0

1
σ
√

2π
e−

1
2 z2

dz

)
· 100% (4)

Then P (t) expresses the chance to measure a value for z such that either z ≥ t or
z ≤ −t. A standard criterion [12] for “significant difference” is when the chance to
measure a certain value of z is less than 5%. This threshold of 5% is called the critical
value of the test. The corresponding value for t is 1.96. This means that the chance of
measuring a value for z that is larger than 1.96 or smaller than −1.96 when the null
hypothesis is true, is less than 5%1. This essentially means that the probability to reject
the null hypothesis when it is in fact true, is less than 5%.

4 Methodology

This section describes our algorithm to determine a compiler setting for an application
based on the statistical theory discussed in the previous section. The algorithm is given
in Figure 1. It starts with a factor list which includes all compiler options. As explained
in the Introduction, we use the number of assembly instructions in the generated code
to obtain the test statistic for each compiler option. This statistic tells us which options
have a significant effect, and whether they should be turned on or off. The compiler

1 Equivalently, we can check whether |z| > 1.96 but the above formulation is more intuitive.
There exists a simple algorithm to compute P (|z|) from z given in [12].

190 M. Haneda, P.M.W. Knijnenburg, and H.A.G. Wijshoff

– Choose an orthogonal array A from [11]. In our case, we start with 53 options and
hence start with an OA with 56 rows.

– Repeat
• Compile the application with each row from A as compiler setting and mea-

sure the number of assembly instructions generated.
• Compute test statistic z for each compiler option with Equation (3).
• If the test statistic meets P (|z|) < 5%,

∗ If z is negative then the option has a positive effect, and the option is
turned on.

∗ If z is positive then the option has a negative effect, and the option is
turned off.

• Remove the compiler options that have been selected from the factor list and
remove the corresponding columns from A to obtain a smaller OA.

– Until
• All options are set, or
• No option with a significant effect is detected anymore.

– After the above loop, several options may not yet have received a value. We inspect
the results for the last iteration and choose the row from the OA used there that
gives rise to the shortest code to set these remaining options.

Fig. 1. Iterative Selection Algorithm

options whose settings are fixed are removed from the factor list, and the reduced factor
list is used in the next iteration which uses a smaller Orthogonal Array. We obtain this
smaller OA by dropping the columns that correspond to the options selected. It is easy
to see that this procedure gives another Orthogonal Array. We then iteratively repeat
the test to set more options until all options are set or the test fails to set another option
because all P -values are too large. In the latter case, there will be very little variation in
the OA and all different settings give rise to almost the same code size.

The algorithm starts to explore a large search space in which there is much vari-
ation, and it cuts down the search space every iteration, obtaining new small search
spaces.

5 Experimental Environment

We have used gcc version 3.3.4 as our compiler. It contains over 60 options and we
chose a subset of 53 options that are not described as experimental in the manual nor
are options that may violate IEEE floating point standards, like fast-math. The result-
ing list of options is given is Fig 2. Note that in some cases, we have grouped a few
options into one factor since the gcc manual explicitly states that these options should
be turned on together [13]. For example, in factor 14, we have grouped all global com-
mon subexpression elimination options since they are enabled by default when gcse is
enabled. Note also, that in factors 26 and 27, we turn on instruction scheduling together
with a speculative scheduling option because the gcc manual states that this speculative
scheduling option needs instruction scheduling, but we also have instruction scheduling
as a separate option (22).

Code Size Reduction by Compiler Tuning 191

1 defer-pop
2 force-mem
3 force-addr
4 omit-frame-pointer
5 optimize-sibling-calls
6 inline-functions
7 merge-constants
8 strength-reduce
9 thread-jumps
10 cse-follow-jumps
11 cse-skip-blocks
12 rerun-cse-after-loop
13 rerun-loop-opt
14 gcse

gcse-lm
gcse-sm
gcse-las

15 loop-optimize
16 crossjumping
17 if-conversion

18 if-conversion2
19 delete-null-pointer-checks
20 expensive-optimizations
21 optimize-register-move
22 schedule-insns
23 sched-interblock
24 sched-spec
25 schedule-insns2
26 sched-spec-load

schedule-insns
27 sched-spec-load-dangerous

schedule-insns
28 caller-saves
29 move-all-movables
30 reduce-all-givs
31 peephole

peephole2
32 reorder-blocks
33 reorder-functions
34 strict-aliasing

35 align-functions
36 align-labels
37 align-loops
38 align-jumps
39 rename-registers
40 web
41 cprop-registers
42 tracer
43 unit-at-a-time
44 function-sections
45 data-sections
46 unroll-loops

rerun-cse-after-loop
47 peel-loops
48 unswitch-loops
49 old-unroll-loops
50 branch-target-load-optimize
51 branch-target-load-optimize2
52 delayed-branch
53 prefetch-loop-arrays

Fig. 2. Options from gcc 3.3.4 used

We have configured gcc as a cross-compiler for the following platforms. We have
used mips and arm which are two well known embedded RISC processors. We use
the Motorola m68k which is a CISC processor that 25 years after its introduction still
is a popular embedded processor. Current implementations are known as 68HC000.
We have also used a processor that is more specifically geared toward the embedded
domain: the Renesas M32R processor.

We use the MediaBench benchmark suite for our test programs [14] except pgp and
ghostscript that did not compile correctly on all platforms.

6 Results

6.1 Optimization Time Requirements

We let the algorithm run until completion when no more options are selected. The num-
ber of iterations required is between 5 and 12, with an average of 8. This means that on
average we require 448 program compilations. Concerning the time it took to complete
our iterative method, we performed our experiments on a P4 at 2.8 GHz platform. De-
pending on the size of the source code for the benchmark, it took between 30 minutes
and 2 hours to complete the iterative procedure. Hence, when developing embedded
applications, this time is certainly affordable. Please, note also that our approach is es-
sentially ‘for free’: all that is required to implement it is a small driver on top of the
compiler that generates different settings, compiles the source code using these set-
tings, and counts the number of instructions in the assembly code. No complex new
transformations or other adaptation of the compiler are needed.

6.2 Code Size Reduction

In this section, we show the results obtained from our iterative selection In Figures 3,
we show the code size reduction for the mips with respect to the standard option -Os

192 M. Haneda, P.M.W. Knijnenburg, and H.A.G. Wijshoff

Fig. 3. Code size reduction with respect to –Os for mips

which is specifically geared toward code size reduction [13]. The figures for the other
platforms are not included in this paper due to space restrictions and are available in
[15]. The code size reduction is computed as follows. For an application A, let Ss(A)
be the size obtained by using -Os given by the number of instructions in the resulting
assembly code, and let Sn(A) be the size obtained from our new method. Then the
code size reduction R(A) is computed as R(A) = Ss(A)−Sn(A)

Ss(A) · 100%. This definition
implies that when the code size obtained from our new method is larger than the size
obtained from -Os, the reduction has a negative value. We immediately observe that
in almost all cases, on all platforms, our method produced code sizes that are smaller
than the code sizes produced by -Os. The amount of reduction is highly dependent
on the platform used. For the mips, Figure 3 shows that high reductions are obtained
for all benchmarks, with an average of 18%. For one benchmark, even a reduction
of 30% is obtained. For the m68k and M32R, almost every benchmark is reduced in
size w.r.t. -Os and in some cases reductions of 10 to 15% are achieved. On average,
we reduce code size by 4 to 5% on these platforms which is the same reduction as is
obtained from code factoring [1]. However, this last approach is much more complex
to implement and moreover can be used in conjunction with our approach. We perform
worst on the arm. The reason for this is that most options in gcc have little effect on
code size for this architecture. We have observed that on the arm platform after a few
iterations, the variance (standard deviation) in the 56 different settings tested becomes
less than 0.5%. This means that there exist several hundreds of different settings that
give rise to almost the same code size. In fact, there are more than one hounded settings
that give rise toexactly the shortest code size found. We have also observed that on
the arm platform -O1, -O2, -Os and our method give rise to almost the same code
sizes. Only -O3 produces code sizes that are significantly larger, mainly due to inlining.

Code Size Reduction by Compiler Tuning 193

Nevertheless, also for the arm there exist two applications that are significantly reduced
in size.

For each platform, there exist at least a few benchmarks that obtain a significant re-
duction in code size. On the other hand, there are no benchmarks that suffer a significant
degradation in size, except one benchmark on the arm. As mentioned before, these code
size reductions are obtained by carefully exploiting the existing code generator in gcc
and are essentially ‘for free’. This means that our method can be applied, the resulting
code size can be compared to -Os, and the shortest code can be selected.

6.3 Compiler Settings

In Figure 4, we have shown the final selection of compiler options in the last iteration of
our iterative method for the mips. The tables for the other platforms are left out from the
present paper due to space restrictions and are available in [15]. In the table, ‘1’ denotes
that the option has been turned on, ‘0’ that it has been turned off, and a blank space
that it has not yet been decided. In the setting that is finally produced, these blanks are
filled with values that give rise to the shortest code in the final iteration. However, the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

-Os 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

adpcm-rawcaudio 0 1 0 1 0 1 1
adpcm-rawdaudio 0 1 1 0 1 1

adpcm-timing 0 1 0 0 1 0 1
epic-epic 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 0

epic-unepic 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0
g721-decode 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0
g721-encode 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0

gsm 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0
jpeg-cjpeg 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0
jpeg-djpeg 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0

jpeg-jpegtran 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0
jpeg-rdjpgcom 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1
jpeg-wrjpgcom 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0

mesa-mesa 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0
mesa-mesa-aux 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1
mesa-mesa-glu 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0

mpeg2-mpeg2decode 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0
mpeg2-mpeg2encode 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0

pegwit-pegwit 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0
rasta-rasta 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
-Os 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0

adpcm-rawcaudio 0 0 0 0
adpcm-rawdaudio 1 0 0 0 0 0

adpcm-timing 1 0 0 0 0 0 0
epic-epic 0 0 0 1 0 0 0 0

epic-unepic 1 0 1 1 1 0 0 1 0
g721-decode 1 0 0 1 0 0 1 0 0
g721-encode 1 0 0 1 0 0 0

gsm 1 0 1 1 1 1 0 0 0 1 1 0 0
jpeg-cjpeg 1 0 1 0 1 1 0 0 1 0
jpeg-djpeg 1 0 1 0 1 1 0 0 1 1 0

jpeg-jpegtran 1 0 1 0 1 1 0 0 1 1 0
jpeg-rdjpgcom 0 1 1 1 0 0 0
jpeg-wrjpgcom 0 1 0 1 1 0 0 0

mesa-mesa 1 1 1 0 1 1 0 0 0
mesa-mesa-aux 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0
mesa-mesa-glu 1 0 1 1 1 1 0 0 0

mpeg2-mpeg2decode 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0
mpeg2-mpeg2encode 1 0 1 0 1 1 0 0 1 1 1 0

pegwit-pegwit 1 1 1 1 1 0 0 0 0
rasta-rasta 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0

Fig. 4. Generated settings for mips

194 M. Haneda, P.M.W. Knijnenburg, and H.A.G. Wijshoff

variance in this last iteration is very low, sometimes as low as 0.002%. This means that
the effect of these options on code size is very low and it is not important which value
they receive. For comparison purposes, we have also shown the setting -Os.

From the table, we observe that many options do not have much effect on code size
for any benchmarks. Also, we observe that there are a few options (14, 15, and 43)
that in our method are explicitly turned off mostly whereas they are turned on in -Os.
This means that we measure a degradation in size. From this table, we see that inline-
functions (6) is turned off in all cases, as is loop-optimize (15) and tracer (42). This last
option performs tail duplication to enlarge superblock sizes. In many cases, instruction
scheduling (22-27) and reorder-blocks (32) are turned off also. The option omit-frame-
pointer (4) is turned on in almost all cases since it drops the instructions required to
create this frame pointer. Remarkably, the loop unrolling option (46) is turned on in
several cases. These observations are valid across benchmarks and platforms [15].

Many options are switched on or off depending on the application and platform, show-
ing that compiler tuning for a particular application and platform can be worthwhile.

7 Conclusion

In this paper, we have proposed an iterative approach to setting compiler options in or-
der to generate as few instructions in the assembly code as possible. We use a technique
that is based on non-parametric inferential statistics, in particular, the Mann-Whitney
test, to decide which options should be switched on or off. We have shown that our
technique performs better in almost all cases considered than the standard -Os switch
that is designed to optimize for size. However, this improvement is highly dependent
on the target platform. For the mips platform, we obtain high reductions in code size of
18% on average over -Os. In some cases, we produce code that is 30% smaller than -Os.
For the m68k and M32R we reduce code size by 4 to 5% on average, and 10 to 15% in
some cases. Finally, for the arm gains are less and in one case we are even 5% larger
than -Os. However, our technique is easy to implement and requires no adaptation of the
compiler. Therefore, it can be worthwhile to try to optimize for size using our method
and switching to -Os in the few cases it should fail.

References

1. Beszédes, A., Ferenc, R., Gyimóthy, T., Dolenc, A., Karsisto, K.: Survey of code-size reduc-
tion methods. ACM Comput. Surv. 35 (2003) 223–267

2. Cooper, K., Hall, M., Torczon, L.: Unexpected side effects of inline substitution: A case
study. ACM Letters on Programming Languages and Systems 1 (1992) 22–32

3. Pinkers, R.P.J., Knijnenburg, P.M.W., Haneda, M., Wijshoff, H.A.G.: Statistical selection of
compiler options. In: Proc. Workshop on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). (2004) 494–501

4. Fraser, C., Myers, E., Wendt, A.: Analyzing and compressing assembly code. In: Proc.
SIGPLAN symposium on Compiler Construction. (1984) 117–121

5. Cooper, K., McIntosh, N.: Enhanced code compression for embedded risc processors. In:
Proc. Programming Language Design and Implementation (PLDI). (1999) 139–149

Code Size Reduction by Compiler Tuning 195

6. Debray, S., Evans, W., Muth, R., Sutter, B.D.: Compiler techniques for code compaction.
ACM Trans. Programming Languages and Systems 22 (2000) 378–415

7. Mathias, K., Eshelman, L., Schaffer, J., Augusteijn, L., Hoogendijk, P., van de Wiel, R.:
Code compaction using genetic algorithms. In: Proc. Genetic and Evolutionary Computation
Conference (GECCO). (2000) 710–717

8. Sutter, B.D., Vandierendonck, H., Bus, B.D., Bosschere, K.D.: On the side-effects of code
abstraction. In: Proc. Language, Compiler, and Tool for Emebedded Systems (LCTES).
(2003) 244–253

9. Cooper, K., Schielke, P., Subramanian, D.: Optimizing for reduced code space using genetic
algorithms. In: Proc. Languages, Compilers, and Tools for Embedded Systems (LCTES).
(1999) 1–9

10. Hedayat, A., Sloane, N., Stufken, J.: Orthogonal Arrays: Theory and Applications. Series in
Statistics. Springer Verlag (1999)

11. Sloane, N.: A library of orthogonal arrays. (http://www.research.att.com/˜njas/)
12. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley Series in Probability

and Statistics (1999)
13. GNU Consortium: GCC online documentation. (http://gcc.gnu.org/onlinedocs/)
14. : Mediabench. (http://cares.icsl.ucla.edu/MediaBench)
15. Haneda, M., Knijnenburg, P., Wijshoff, H.: Code size reduction by compiler tuning. Techni-

cal report, LIACS, Leiden Univeresity (2005)

Energy Optimization of a Multi-bank Main
Memory

Hanene Ben Fradj, Sébastien Icart, Cécile Belleudy, and Michel Auguin

Laboratoire d’informatique, Signaux et Systèmes de Sophia-Antipolis,
Les Algorithmes, route des Lucioles-BP 121, 06903 Sophia-Antipolis cedex. France

{benfradj, sicart, belleudy, auguin}@i3s.unice.fr

Abstract. A growing part of the energy, battery-driven embedded sys-
tem, is consumed by the off-chip main memory. In order to minimize
this memory consumption, an architectural solution is recently adopted.
It consists of multi-banking the addressing space instead of monolithic
memory. The main advantage in this approach is the capability of setting
banks in low power modes when they are not accessed, such that only
the accessed bank is maintained in active mode. In this paper we inves-
tigate how this power management capability built into modern DRAM
devices can be handled for multi-task applications. We aim to find, at
system level design, both an efficient allocation of applications tasks to
memory banks, and the memory configuration that lessen the energy
consumption: number of banks and the size of each bank. Results show
the effectiveness of this approach and the large energy savings.

1 Introduction and Related Work

Memories in SoCs become increasingly broad especially for multimedia appli-
cation which handles a great quantity of data. According to ITRS prevision,
embedded memory will continue to dominate SoC content in the next several
years, approaching 94% of the die area by year 2014 [1]. As a consequence, the
power consumption of memories increases tremendously. The main memory is
consuming an increasing proportion of the power budget and thus motivates
efforts to improve DRAM energy efficiency. On other hand, memories with mul-
tiple banks instead of a monolithic module appeared in several architectures.
Recently, this kind of memory architecture was exploited to reduce energy dis-
sipation by operating banks at different modes (Active, Standby, Nap, Power-
Down) for example RAMBUS-DRAM technology (RDRAM) [2], Mobile-RAM
of Infineon (SDRAM) [3]. To service a memory request (read or write), a bank
must be in active mode which consumes most of the power. When a bank is
inactive, it can be put in any low power mode (Standby, Nap, Power-Down).
Each mode is characterized by its power consumption and the time that takes
to transit back to the active mode (resynchronization time). The lower the en-
ergy consumption of the low power mode is, the higher the resynchronization
time is (see table 1 [2]). Several techniques, which exploit the low power modes

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 196–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Energy Optimization of a Multi-bank Main Memory 197

of memories, were published recently. Those works can be classified in two cat-
egories. The first one tries to determine when to power down and into which
low power mode its possible to transit the memory banks. These memory con-
trollers policies are either hardware [4] or software [5] [6] oriented. The second
category focuses on data allocation (dynamically or passively) to memory banks
to minimize energy. The paper [7] studied the impact of loop transformations
on banked memory architecture; [8] proposed an automatic data migration to
reduce energy consumption in multiple memory banks by exploiting the tempo-
ral affinity among data. Authors in [9] proposed an integer linear programming
(ILP) based approach that returns the optimal non uniform bank sizes and the
mapping of data to banks. Our work is classified in the second category as we
consider only one low power mode at once. We address the energy optimization
in a multi-bank memory architecture but unlike the previous quoted works, we
choose to operate at the system level of the co-design steps. In this level we can
achieve larger energy savings. So the considered data granularity is the combined
task’s data and code. We noted that results in previous researches like [9] [8] [6]
[7] can be added to our approach by optimizing the data and code allocation
in each task. The focus of this paper is to find the optimal allocation of tasks
to banks based on several parameters: task size, number of times the task was
executed during the hyperperiod, memory access ratio, number of preemptions
between tasks) and the corresponding memory configuration that lessens the
memory energy consumption (optimal number of banks and optimal size of each
bank). The paper is structured as follow: section 2 presents the memory archi-
tecture and the system model. In section 3 an estimation of a multi-banked main
memory consumption is presented. In section 4 we focus on searching the low
power tasks allocation to banks and the associated memory configuration (num-
ber of banks and banks size). Section 5 shows experiments and results obtained
with our approach. We close the paper in section 6 with concluding remarks and
future works.

2 Memory Architecture and System Model

For the architecture model, we consider a multi-bank main memory architec-
ture. Each bank can be controlled independently and placed into one of the
available low power modes. Each low power mode is characterized by the num-
ber of components being disabled to save energy. This multi-bank main mem-
ory communicates with an embedded processor through a L1 SRAM cache
(figure 1). We consider real-time, multi-task embedded application. This ap-
plication is described by a set of N periodic tasks; each task is characterized
by temporal parameters namely (Pi: period, wceti: worst case execution time),
ξi: memory access ratio and STi : the task size (code and data). These tasks are
scheduled according to the fixed priority and preemptive Rate Monotonic (RM)
algorithm as shown in figure 2. ξi is the ratio of wceti corresponding to cycles
where the task Ti accesses to the memory, the number of memory accesses Mi

of Ti is computed with the following equation:

198 H. Ben Fradj et al.

Mi =
ξi × wceti

100

We define an allocation function noted φ that associates each task Ti belonging
to a set of N tasks to a bank bj belonging to a set of k banks.

φ : {T1, T2, ..., TN} → {b1, b2, ..., bk} ; φ(Ti) = bj

...

Processor
Cache L1

Bank bkBank b2Bank b1

Fig. 1. Multi-bank main memory architecture

T3

p p

T1

T2

Fig. 2. RM schedule of the example task set during the hyperperiod

3 Energy Estimation and Models

3.1 Parameters Influencing Memory Consumption

Bank Size. The energy consumption monotonically increases with the mem-
ory size. The analytical model given in [10] illustrates that the memory energy
consumption increases with the number of lines and columns in the memory.
For the multi-bank main memory, several papers consider that the energy values
given in table 1 (active, low power mode, resynchronization) increase by τ1=
30% when bank size is doubled [9] [8]. In our approach, we consider that the size
Sbj of bank bj is the sum of the size of all tasks Ti allocated to this bank:

Sbj =
∑

Ti/φ(Ti)=bj

STi

So in the same architecture, the banks can have different sizes (non uniform bank
sizes). We develop a mathematic formula that traduces the 30% of increase
in memory energies consumption when the bank size is doubled for RDRAM
technology. So with equation 1, we can determine the energy values per memory
cycle of a bank bj for a given size of Sbj .

Energy Optimization of a Multi-bank Main Memory 199

Table 1. Energy consumption (per cycle) and resynchronization times for different
operating modes for 8 MB RDRAM bank size

Operating modes Energy consumption (nJ) Resynchronization cost (cycles)
Active 3.57 0
Standby 0.83 2
Nap 0.32 30
Power-Down 0.005 9,000

Eα = E0α(1.3)Log2(
Sbj
8) (1)

α={active, lp-mode, resynchronization}, E0α: The energy values for the 8 MB
bank size given in table 1.

Number of Banks and Communication. The multi-bank energy consump-
tion depends also on the number of banks in the memory architecture. When
we add a new bank, the sizes of banks decrease (less tasks per bank) as well
as the energy values (active, low power mode and resynchronization). However,
the energy consumption in the banks connecting increases. We assume that the
energy consumption for communication increases by τ2=20% when we add a new
bank to the architecture [11]. So for main memory architecture with k banks,
the communication energy is described by equation 2.

Ebus = E0bus(1.2)k−1 (2)

E0bus: The bus consumption for one bank main memory architecture (mono-
lithic memory). In our approach, τ1 and τ2 can be easily adjusted for different
technologies.

Successivity and Preemption Between Tasks. We call successivity be-
tween task Ti and task Tj noted σij when Tj begins its execution just after the
end of Ti or when the higher priority task (Ti or Tj) preempts the other one.
The successivity parameters are deduced from the application scheduling during
the hyperperiod. They are exploited to minimize the number of resynchroniza-
tions of the memory banks and making the idle period of banks longer. The
resynchronizations number of a bank bj is computed as follows.

Nresynchronization bj =
∑

Ti/φ(Ti)=bj

NexeTi −
∑

Ti,Tj/(φ(Ti),φ(Ti))=(bj ,bj)

σij

Where NexeTi is the number of executions of task Ti during the hyperperiod.
From the RM schedule of figure 2, the successivities between the three tasks are:
σ12= 3, σ13= 4, σ23= 3. Considering the tasks allocation given in figure 3, the
resynchronizations numbers of each bank are:

Nresynchronization b1 = NexeT1 + NexeT3 − σ13 = 4
Nresynchronization b2 = NexeT2 = 3.

200 H. Ben Fradj et al.

T2

Processor
Cache L1

T1

T3

Fig. 3. Tasks allocation to 2 memory banks

By exploiting the successivity between tasks we can minimize the resynchro-
nization numbers of banks and the energy associated. However, reducing the
energy of resynchronisation by grouping in the same bank the tasks having the
maximum number of successivities, can increase other energy contributions due
for example to the increase in the size of the banks. In conclusion, minimiz-
ing separately each memory energy contribution cannot usually minimize the
total memory consumption because of the strong interdependence between the
memory parameters relevant to energy consumption. The problem can be mod-
eled as a problem of allocation of tasks to banks with an objective of energy
optimization.

3.2 Energy Models for a Multi-bank Memory

The energy consumption of a memory composed of k banks and a given allocation
of N tasks to these banks is evaluated with equation 3.

Ememory = Eaccess+Enonaccess+Elpmode+Eresynchronization+Epreemption+Ebus

(3)

Unlike [9] we separate the active mode given in table 1 into two different operat-
ing modes: the read/write mode (access) and active but idle mode (nonaccess).
Eaccess: the energy due to read or write accesses to the memory banks.

Eaccess =
k∑

bj/j=1

(∑
Ti/φ(Ti)=bj

Ncycles access Ti E0access(1.3)Log2(
Sbj
8)

)

Enonaccess: the energy consumption when the memory banks are active but not
servicing any read or write operation. This energy is essentially due to the co-
activation of the memory bank with the task execution by the processor.

Enonaccess =
k∑

bj/j=1

(∑
Ti/φ(Ti)=bj

Ncycles nonaccess Ti E0nonaccess(1.3)Log2(
Sbj
8)

)

Elpmode: the energy consumed by banks when they are in low power mode

Elpmode =
k∑

bj/j=1

Ncycles lpmode bj E0lpmode(1.3)Log2(
Sbj
8)

Energy Optimization of a Multi-bank Main Memory 201

Eresynchronization: the energy consumption due to the transition of memory
banks from a low power mode to the active mode to service a memory request.

Eresynchronization =
k∑

bj/j=1

Nresynchronization bj E0resynchronization(1.3)Log2(
Sbj
8)

Epreemption: the energy induced by context switches due to the preemption be-
tween tasks on the processor.
Ebus: the energy consumption in the bank interconnection.

Ebus = E0bus (1.2)k−1

Ncycles access Ti : the number of memory access cycles of task Ti to the memory
bank.

Ncycles access Ti = Mi × taccessM × fmemory

Ncycles nonaccess Ti : the number of memory cycles of task Ti when the memory
bank is active but idle.

Ncycles nonaccess Ti = (wceti × 1
fprocessor

− Mi × taccessM) × fmemory

taccessM : the memory access time.
fmemory, fprocessor are respectively memory and processor frequency.
Ncycles lpmode bj : the number of memory cycles, the bank bj spends in low power
mode.
Nresynchronization bj : the resynchronizations number of bank bj from low power
mode to the active mode.
Npreemptions: the number of preemptions of tasks during the hyperperiod.
We note that Ncycles acessTi , Ncycles nonacessTi , Npreemptions are application re-
lated constants, whereas Ncycles lpmode, Nresynchronization bj are variables de-
pending on the number of banks and the tasks allocation.
E0access, E0nonaccess, E0lpmode, E0resynchronization are the energy values per
memory cycle for a 8 MB bank size given in table 1.
Econtext switch: the energy of preemption due to context switching.

4 Exploration Algorithm

Our aim is to find both; an allocation φ of tasks to a multi-bank memory and
the number of banks and their respective sizes; so as to minimize the overall
energy consumption due to the main memory structure. In this study, only a
single low power mode is considered. The strong interdependence of the differ-
ent parameters influencing memory consumption, as explained in the previous
section, makes the problem NP-hard to solve. An exhaustive approach explor-
ing all the configurations space was adopted. This technique allows to find the
optimal solution, to compare the energy of all the configurations and to observe
the behavior of the memory consumption according to the variations of tasks

202 H. Ben Fradj et al.

and system characteristics. First, the algorithm starts by finding all the banks
configurations to arrange N tasks in a k memory banks with k = 1 to N. Each
configuration is represented by a set of integers; the cardinal of the set (k) rep-
resents the number of banks in the memory architecture and the sets elements
called tasks bi represents the number of tasks in a bank bi. Considering for ex-
ample 4 tasks application, five bank configurations are possible : {4} ; {3, 1} ;
{2, 2} ; {2, 1, 1} ; {1, 1, 1, 1}. For a number of banks equals to 2, there are two
different configurations for arranging tasks in banks. In the first one {3, 1}: 3
tasks are allocated to the first bank and one task is in the second while in the
second configuration {2, 2} two tasks are allocated to each bank. Second for each
configuration, there are several permutations of tasks in banks. For the configu-
ration {3, 1}, allocating tasks T1, T2 and T3 in the first bank b1 and task T4 in
b2 does not consume the same energy as if we allocate tasks T2, T3 and T4 in the
bank b1 and task T1 in bank b2. This is due for example, to the different number
of banks resynchronizations or to the different banks sizes. The number of tasks
permutations for a given bank configuration is evaluated by equation 4.

Npermutations =

∏k
i=1 Ctasks bi

N− i
j=1 tasks bj

s!
(4)

Where s is the number of banks in the memory architecture in which there
are an equal number of tasks, N is the number of tasks in the task set and
k is the number of banks. For the 4 tasks application example, there are 15
possibilities for arranging 4 tasks in a number of banks varying from 1 to 4. Once
all tasks permutations are exhibited for all bank configurations, the energy of
each solution is estimated based on energy models described in section 3.2. Then
we select the tasks permutation that gives the minimum main memory energy.

5 Experiments and Results

We considered an Intel PXA270 processor with a first level cache and a main
memory in RAMBUS RDRAM technology (table 2) with the Nap as low power
mode (table 1). The application example is described in table 3. The L1 cache
energy is deduced from an extended version of the original CACTI cache model-
ing tool called eCACTI (enhanced CACTI) [12]. It considers in addition to the
dynamic consumption, the static dissipation of the SRAM cache.

Table 2. System parameters

Component Parameters
Processor Intel PXA 270, 624Mhz [13]
cacheL1 32 KB, 2 way set associative, 2 cycles latency
Main Memory Rambus DRAM, tMaccess = 50ns

Energy Optimization of a Multi-bank Main Memory 203

Table 3. Task set example

Tasks Pi (cycles) wceti (cycles) STi (MB) ξi (%)
1 100,000 550 16 50
2 150,000 500 14 60
3 200,000 450 12 70
4 300,000 350 8 55
5 300,000 490 10 85
6 400,000 1,500 8 60
7 600,000 2,050 16 56
8 1,200,000 9,000 12 78

As first experiments, we plot the variation of the total main memory consump-
tion versus the number of banks. Figure 4 illustrates the energy efficiency of a
multi-bank memory architecture compared to monolithic module (single bank
memory). The minimum consumption is obtained for the architecture with 4
banks (the optimal number of banks). Compared to the monolithic architec-
ture, the energy savings is about 42%. Figure 5 depicts the optimal memory
architecture and the corresponding optimal tasks allocation.

In figure 4, we remark also that the memory consumption decreases as long as
were adding a new bank to the architecture until we reach the optimal number
of banks (4 in our case). Exceeding this number, the memory consumption in-
creases again. To understand this memory consumption behavior, we plot figure
6. It represents for each number of banks, the sum of all the memory energy
contributions mentioned in equation 3.

Adding a new bank to the architecture means: first, smaller bank sizes thus a
decrease in Eaccess and Enonaccess. Second, more low power periods, resynchro-
nizations of banks and consumption in the interconnection thus an increase in
Elpmode, Eresynchronization and Ebus. We define two differential energy values:

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14
x 10

5

Number of banks

M
em

or
y

co
ns

um
pt

io
n

(n
J)

Fig. 4. Variation of multi-bank memory consumption versus the number of banks

204 H. Ben Fradj et al.

Sb2=22MB

Processor
Cache L1

T1

T3

T4

T5

T7

T2

T6

T8

Sb1=34MB Sb3=28MB Sb4=12MB

Fig. 5. Optimal allocation

Fig. 6. Memory energy contributions

Δ1 = (Eaccess + Enonaccess)b=k+1 − (Eaccess + Enonaccess)b=k

Δ2 = (Ebus + Elpmode + Eresynchronization)b=k+1 − (Ebus + Elpmode

+ Eresynchronization)b=k

b: represents the number of banks in the memory architecture. We notice,
while Δ1 > Δ2, that the total memory consumption decreases as the num-
ber of banks increases. However, when adding an extra bank does not sig-
nificantly reduce Eaccess + Enonaccess but in other hand significantly increase
Elpmode+Eresynchronization+Ebus, the total energy consumption increases again.
In figure 4 and figure 6, the fifth bank is responsible of re-increasing the memory
consumption. So its not beneficial to add a supplementary bank to an architec-
ture with four banks. These 2 values Δ1 and Δ2 can be used in future work to
build an heuristic approach for tasks allocation to memory banks.

Energy Optimization of a Multi-bank Main Memory 205

6 Conclusion and Future Work

For the multi-bank memory consumption problem, we proposed an exhaus-
tive algorithm; at system level and for real-time applications; that returns the
optimal allocation of tasks to banks (the optimal number of banks, the optimal
sizes of banks). This approach can reduce the memory consumption by up to
40%. The exhaustive approach returns the optimal solution. Unfortunately, the
exploration space is exponential in size and the computation time become quickly
important. The exhaustive approach becomes impractical exceeding a set of 30
tasks, so employing such approach to take into account additional tasks that
appears on-line (sporadic tasks) is impossible. As future work, we seek to pro-
pose an heuristic approach that is able to prune the configuration space, and to
efficiently solve, in polynomial time, the power aware multi-bank main memory
configuration and the corresponding tasks allocation. It will be interested also to
extend this memory consumption optimization to multi-processor architecture
with more accurate L1 and L2 cache models in the memory hierarchy.

References

1. SIA: International roadmap for semiconductors. (2001)
2. Rambus, Inc.: 128/144 MBit Direct RDRAM data sheet. (1999)
3. Infineon, Inc.: Mobile-RAM data sheet. (2004)
4. Delaluz, V., Kandemir, M., N.Vijaykrishnan, Sivasubramaniam, A., Irwin, M.:

Dram energy management using software and hardware directed power mode con-
trol. HPCA (2001) 159–170

5. Delaluz, V., Kandemir, M., Sezer, U.: Improving off-chip memory energy behavior
in a multi-processor, multi-bank environment. LCPC (2001) 100–114

6. Lebeck, A.R., X. Fan, H.Z., Ellis, C.: Power aware page allocation. ASPLOS (2000)
7. Kandemir, M., Kolcu, I., Kadayif, I.: Influence of loop optimizations on energy con-

sumption of multi-bank memory systems. In Proc. Compiler Construction (2002)
8. Delaluz, V., Kandemir, M., Kolcu, I.: Automatic data migration for reducing

energy consumption in multi-bank memory systems. DAC (2002)
9. Ozturk, O., Kandemir, M.: Nonuniform banking for reducing memory energy con-

sumption. DATE (2005)
10. Itoh, K., Sasaki, K., Nakagome, Y.: Trends in low-power RAM circuit technologies.

Proc. IEEE 83 (1995) 524–543
11. Benini, L., Macci, A., M, P.: A recursive algorithm for low-power memory parti-

tioning. ISLPED (2000)
12. Mamidipaka, M., Dutt, N.: ecacti: An enhanced power estimation model for on-

chip caches. Technical Report TR-04-28, Center for Embedded Computer Systems
(2004)

13. Intel, Inc.: PXA 270 data sheet. (2005)

Probabilistic Modelling and Evaluation of Soft
Real-Time Embedded Systems�

Oana Florescu1, Menno de Hoon2, Jeroen Voeten1,3, and Henk Corporaal1

1 Eindhoven University of Technology
2 Chess Information Technology BV

3 Embedded Systems Institute

Abstract. Soft real-time systems are often analysed using hard real-
time techniques, which are not suitable to take into account the deadline
misses rate allowed in such systems. Therefore, the resulting
system is over-dimensioned, thus expensive. To appropriately dimension
soft real-time systems, adequate models, capturing their varying runtime
behaviour, are needed. By using the concepts of a mathematically defined
language, we provide a modelling approach based on patterns that are
able to express the variations appearing in the system timing behaviour.
Based on these modelling patterns, models can be easily created and are
amenable to average case performance evaluation. By the means of a
case study, we show the type of results that can be obtained from such
an evaluation and how these results are used to dimension the system.

1 Introduction

Due to the high time-to-market constraint in the embedded systems industry,
accompanied by increasing demand for more functionality and tighter require-
ments on cost, speed (throughput) and energy consumption of the final product,
the industry has shifted its focus from improving the system implementation
phase to improving the system design phase. To this end, early evaluation of
system properties is needed to make correct decisions that guarantee the satis-
faction of the functional and non-functional requirements. This is where design
space exploration and system-level performance modelling techniques come into
scene. In the past, such techniques were applied mainly in the design of hard
real-time systems. However, the higher demands on the quality of products re-
quire such techniques also for soft real-time systems, like DVD players for the
synchronisation of the audio and video stream decoding, or printers for the ac-
curacy of printing an image on a sheet. As no suitable techniques are available,
the timing requirements of such systems are treated as hard, and consequently,
the resulting system is over-dimensioned. However, as these requirements are
not critical factors, instead of having all the deadlines met, one should be able
to reason about the rate of deadlines misses which is allowed in soft real-time
systems.
� This work has been carried out as part of the Boderc project under the responsibil-

ity of the Embedded Systems Institute. This project is partially supported by the
Netherlands Ministry of Economic Affairs under the Senter TS program.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 206–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Probabilistic Modelling and Evaluation 207

Contributions of the paper. In this paper, we present an approach for prob-
abilistic modelling and evaluation of soft real-time embedded systems. The ap-
proach is based on the concepts of a formally defined general-purpose modelling
language, POOSL, which enables creation of models that describe systems be-
haviour using probabilistic distributions. Based on this, we developed a library
of probabilistic modelling patterns to be used when composing models for design
space exploration of soft real-time systems. These patterns act like templates
that can be used in any situation, reducing the necessary modelling effort. Based
on them, we can analyse the varying timing behaviour (average case analysis)
of the system, instead of considering only its worst case. The analysis results ex-
pose the degree to what extent the requirements can be met by a certain system
architecture and decisions can be made with respect to reducing the performance
of the necessary architecture for lowering the cost and the energy consumption.

Related research. An extensive overview of performance modelling and analy-
sis methodologies is given in [1] and [2]. They range from analytical compu-
tation (Modular Performance Analysis [3], UPPAAL [4]) to simulation-based
estimation (Spade [5], Artemis [6]). The analytical computation techniques are
exhaustive in the sense that all possible behaviours of the system are taken
into account, whereas simulation of models allows the investigation of a limited
number of behaviours. Thus, the obtained analysis results are estimates of the
real performance of the system. For credibility of results, models created in both
types of techniques need to be amenable to mathematical analysis (see [7]), us-
ing mathematical structures like Real-Time Calculus [8], timed automata [9] or
Kahn process networks [10]. As in general analytical approaches do not scale
with the complexity of the industrial systems, simulation-based estimation of
performance properties is used more often.

With respect to timing behaviour, an impressive amount of work has been
carried out in the area of schedulability analysis (e.g. [11], [12], [13]) focussing
on worst case. However, less work addresses the analysis of systems with prob-
abilistic behaviour. For soft real-time systems, it is important to analyse the
variations in the runtime behaviour to determine the likelihood of occurrence
of certain undesired situations and, based on that, to dimension the system.
In [14] and [7] it is showed that the techniques proposed in this area are quite
restrictive. Some of them target certain application classes, being limited to
uni-processor architectures or supporting only exponential distributions for ex-
pressing the probabilistic behaviour; other approaches address specific scheduling
policies or assume highly-loaded systems. Overcoming these issues, the modelling
approach presented in this paper can capture any kind of probabilistic distribu-
tion of system behaviour and any scheduling policy is allowed for the analysis of
timing behaviour. Although the evaluation of the system properties is based on
simulations, due to the formal semantics of the modelling language, the accuracy
of the results can be determined.

The paper is organised as follows. The case study used throughout the paper
to illustrate various ideas is presented in section 2. In section 3, the modelling
approach is described together with the modelling language used, whereas the

208 O. Florescu et al.

performance analysis method is presented in section 4 next to the results ob-
tained for the case study. Conclusions are drawn in section 5.

2 Case Study

The case study discussed in this paper is an in-car navigation system. The system
has three clusters of functionality: the man-machine interface (MMI) handles the
interaction with the user; the navigation functionality (NAV) deals with route-
planning and navigation guidance; the radio (RAD) is responsible for basic tuner
and volume control, as well as receiving traffic information from the network.
For this system, three application scenarios are possible: the ChangeVolume sce-
nario allows users to change the volume; the ChangeAddr scenario enables route
planning by looking up addresses in the maps stored in the database; in the
HandleTMC scenario the system needs to handle the navigation messages re-
ceived from the network. Each of these scenarios is described by a UML message
sequence diagram, like the one shown in fig. 1. A detailed description of the
system and of its scenarios can be found in [3].

The problem related to this system was to find suitable platform candidates
that meet the timing requirements of the application. To explore the design
space, a few platforms, presented in fig. 2, were proposed and analysed using
Modular Performance Analysis (MPA) in [3]. MPA is an analytical technique
in which the functionality of a system is characterised by the incoming and
outgoing event rates, message sizes and execution times. Based on Real-Time
Calculus, hard upper and lower bounds of the system performance are com-
puted. However, these bounds are in general not exact, meaning that they are
larger/smaller than the actual worst/best case. Thus, the analysis performed is
conservative.

As the in-car navigation is a soft real-time system that allows a certain per-
centage of deadline misses, it is doubtfully interesting to explore if there is an

Fig. 1. ChangeVolume scenario

(A)

(E)
(D)(C)

(B)

22 MIPS

113 MIPS 11 MIPS

72 kbps

22 MIPS

113 MIPS 11 MIPS

72 kbps 57 kbps

260 MIPS 22 MIPS

72 kbps

113 MIPS 130 MIPS

72 kbps

260 MIPS

MMI

RAD

NAV

MMI

RADNAV

MMI

RAD

NAV

MMI

RADNAV

MMI

RADNAV

Fig. 2. Platforms proposed for analysis

Probabilistic Modelling and Evaluation 209

architecture of lower cost and performance than what have been obtained with
MPA that can still meet the timing requirements.

3 Modelling of the System

One of the approaches for performing systematic design space exploration is the
Y-chart scheme introduced in [15]. This scheme makes a distinction between ap-
plications (the required functional behaviour) and platforms (the infrastructure
used to perform this functional behaviour). The design space can be explored
by evaluating different mappings of applications onto platforms. In the following
subsections, first the modelling language POOSL is briefly presented and then
the models of the application and of the platform are explained, whereas the
environment model and the mapping are detailed in [16].

3.1 POOSL Modelling Language

The Parallel Object-Oriented Specification Language (POOSL) [17] lies at the
core of the system-level design method called Software/Hardware Engineering
(SHE). POOSL contains a set of powerful primitives to formally describe concur-
rency, probabilistic behaviour, (synchronous) communication, timing and func-
tional features of a system into a single executable model. Its formal semantics
is based on timed probabilistic labelled transition systems. This mathematical
structure guarantees a unique and unambiguous interpretation of POOSL mod-
els. Hence, POOSL is suitable for specification and, subsequently, verification
of correctness and analytical computation of performance for real-time systems.
However, due to the state space explosion problem, simulation-based estimations
are used for the evaluation of system properties.

The SHE method is accompanied by two simulation tools. SHESim is a graph-
ical environment intended for incremental specification, modification and vali-
dation of POOSL models. Rotalumis is a high-speed simulator, enabling fast
evaluation of system properties. Both tools have been proved to correctly simu-
late a model with respect to the formal semantics of the language ([18]).

3.2 Application Model

The functional behaviour of a real-time embedded system is implemented
through a number of tasks that communicate with each other. In our approach,
they are modelled as POOSL process objects. Using the primitives of the lan-
guage, any kind of real-time behaviour can be expressed (e.g. concurrency, com-
munication, data computations).

As an example, the HandleKeyPress (visualised in the UML diagram in
fig. 1) task model is presented in fig. 3. The activation of the task is triggered by
an event (i.e. turning the knob by the user). The computations performed by the
task, modelled by the method Computation, impose a certain load on a CPU
and have a deadline D, modelled by the delay statement. When the deadline
expires, or when the computation finishes (if it takes longer than D) the result

210 O. Florescu et al.

HandleKeyPress()()
| E : Event, R : Results |

/* a new event E is received */
in?event(E);
par
par

Computation(E)(R)
and
delay D

rap;
/* the result R is sent */
out!result(R)

and
/* handle another event */
HandleKeyPress()()

rap.

Fig. 3. HandleKeyPress task
model

Schedule()() | req, oldreq : Request |
sel

task?schedule(req);
req setCurrentLoad();
SchPolicy scheduleRequest(req);
if (SchPolicy hasHighestPriority(req) == true)
then

sel
toResource!execute(req)

or
toResource!preemption;
fromResource?stopped(oldreq);
toResource!execute(req);
SchPolicy update(oldreq)

les
fi;
Schedule()()

or
fromResource?stopped(oldreq);
task!executed;
req := SchPolicy removeRequest(oldreq);
if (req != nil)
then toResource!execute(req) fi;
Schedule()()

les.

Fig. 4. Scheduler model

is sent as a message to another task. By recursively calling HandleKeyPress
method in the and branch of the outer par statement, it is ensured that another
available message can be immediately received.

The deadline and the load (expressed as the number of instructions to be
executed by a CPU) represent the parameters of a real-time task. As the Com-
putation performed by a task usually depends on the incoming event, the load
is not a fixed value, but varies between a minimum and a maximum (best case
and worst case). These parameters affect the scheduling of tasks on a platform.

3.3 Platform Model

The platform on which the software runs is described as a collection of compu-
tation and communication resources. As there is no large conceptual difference
between them (they receive requests, execute them and send back notification
on completion), we have conceived a single model for both types of resources.

As a resource is usually shared by a number of concurrent tasks, a scheduler is
needed to arbitrate the access. The modelling pattern for a scheduler is given in
fig. 4. The scheduler can either receive scheduling requests from newly activated
tasks (the outer sel branch), or notifications from the platform about completed
requests (the or branch). In case of a newly activated task, the setCurrentLoad
method sets its current load according to a probabilistic distribution which ap-
propriately captures the fluctuations in the task load. The data object SchPolicy
is an instance of a data class implementing the actual scheduling algorithm. For
specifying different policies, different subclasses can be defined. Any type of
policy can be modelled (e.g. EDF, RMA, round-robin). An EDF scheduling

Probabilistic Modelling and Evaluation 211

scheduleRequest(req : Request): SchPolicy
| i, j : Integer |

i := 1;
while(req getDeadline() >

list get(i) getDeadline()) do
i:=i+1

od;
list insert(i, req);
return self.

Fig. 5. EDF scheduling policy

Resource()() | req: Request,
loadLeft, tstart, tstop : Integer |

sch?execute(req);
delay initialLatency sample();
tstart := currentTime;
abort

delay req getLoad() / throughput
with sch?preemption;
tstop := currentTime;
loadLeft := req getLoad() -

(tstop - tstart) * throughput;
req setLoad(loadLeft);
sch!stopped(req);
Resource()().

Fig. 6. Resource model

policy is given as an example in fig. 5. A list is kept with all the ready requests,
and the new request req is inserted in this list based on its deadline value. For
the requests completed by the resource, the scheduler checks if the deadline was
missed and monitors the percentage of misses during simulation.

Fig. 6 presents the resource model as a POOSL process. The parameters of
this modelling pattern are the initialLatency, which is due to task context switch
time, in case of a CPU, and to the time to transfer the first bit of a message, in
case of a bus, and the throughput. While throughput of a resource has a constant
value, the initialLatency may vary due to diverse factors (e.g. cache). Therefore,
we have modelled it is as a data object of some distribution type. Furthermore,
we have enabled preemption of the execution of a request on a resource using
the abort statement. Once finished or preempted, the remaining execution time
of a request is computed and the request is sent back to the scheduler.

4 Average Case Performance Analysis

The modelling patterns presented in the previous section can be used to auto-
matically generate a Y-chart-compliant model of a system. Different application-
platform configurations can be specified and evaluated. During the simulation
of such a model, the scheduler reports if there are deadline misses. Furthermore,
based on the POOSL semantics, it can be detected if there is a deadlock in
the system. If all the deadlines are met and there is no deadlock during the
simulation, then the corresponding platform is a good candidate that meets all
the system requirements, although simulation completeness cannot be claimed.
However, for soft real-time systems, it is allowed that a certain percentage of
deadlines are missed. Thus, in this case, it is useful to keep track of the rate
of deadlines missed and check if the underlying platform meets the require-
ments. With the modelling approach presented above, the average case behav-
iour can be monitored and an appropriate dimensioning of the system can be
made.

212 O. Florescu et al.

Task Min Max
name [instr.] [instr.]

HandleKeyPress 7.5E4 1E5
AdjustVolume 7.5E4 1E5
UpdateScreen 3.75E5 5E5

DatabaseLookup 3.75E6 5E6
ReceiveTMC 7.5E5 1E6
DecodeTMC 3.75E6 5E6

Fig. 7. Tasks loads in the case study

Scenario Deadline Task f
name [ms] name [1/s]

ChangeVolume 200 HandleKeyPress 32
AdjustVolume 32
UpdateScreen 32

ChangeAddr 200 HandleKeyPress 1
DatabaseLookup 1
UpdateScreen 1

HandleTMC 1000 ReceiveTMC 1/3
DecodeTMC 1/3
UpdateScreen 1/30

Fig. 8. Timeliness requirements

4.1 Analysis Results for the Case Study

For the case study considered in this paper (the in-car navigation system)
we have assumed that the loads of all tasks variate according to a uniform
distribution, based on the inspiration got from measurements of similar sys-
tems. As the UML diagrams provide only the worst case value of the load of
each task, we have considered that the actual load varies between 75% and
100% of the value provided. The limits of the load variation for each task are
given in fig. 7. Based on the MIPS rate of the CPUs on the proposed architec-
tures, given in fig. 2, we can compute the execution times of tasks. Depending
on the scenario in which it is used, a task may be called at different rates.
The frequencies of tasks activations per scenario are given in fig. 8. Based on
these activation rates, priorities were assigned to tasks according to the rate
monotonic approach. The timing requirements of the system are specified in
the UML diagrams as end-to-end deadlines for each scenario, provided also in
fig. 8.

During simulations4 of the system behaviour for each of the architectures
proposed in fig. 2, the end-to-end delays were monitored. The results obtained
were graphically plotted as distribution histograms, showing on the horizon-
tal axis the values of the end-to-end delay and on the vertical axis the rate
of occurrence of each value. As the parallel execution of two scenarios is likely
to lead to more variation in the end-to-end delay, fig. 9 shows the distribution
histogram for the HandleTMC scenario when it runs in parallel with ChangeVol-
ume on architecture A. From such distribution histograms, the minimum (best
case) and the maximum (worst case) values for the end-to-end delays can be
deduced. Columns 3 and 4 in fig 11 show these values for all the combinations
of scenarios running on architecture A. Moreover, the relative frequency of oc-
currence of the maximum value can also be deduced. During simulations, we
have observed that the requirements are met for all the scenarios on all the pro-
posed architectures and that the maximum delays are much smaller than the
deadlines.

4 By using the fast execution engine Rotalumis, a few minutes of system simulation
represent several hours of runtime behaviour. The simulation was run until an accu-
racy of 99% of the results was reached.

Probabilistic Modelling and Evaluation 213

180 200 220 240 260 280 300 320 340
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

End−to−end delay HandleTMC

D
en

si
ty

End−to−end delay distribution HandleTMC − ChangeVolume

TMCVOL data

Fig. 9. HandleTMC distribution his-
togram on architecture A

650 700 750 800 850 900 950 1000 1050
0

1

2

3

4

5

6

x 10
−3

End−to−end delay HandleTMC [ms]

D
en

si
ty

 [%
]

End−to−end delay distribution HandleTMC with ChangeVolume

Fig. 10. Distribution fitted over the Han-
dleTMC distribution histogram on the
improved A

Measured Active Min. delay Max. delay Mean delay Max. delay
scenario scenario [ms] [ms] [ms] [ms]

ChangeVolume HandleTMC 28.17 47.82 49.66 58.48
HandleTMC ChangeVolume 180.9 353.51 838.32 1056.06
ChangeAddr HandleTMC 61.08 127.51 134.12 270.8
HandleTMC ChangeAddr 132.59 204.06 349.712 496.03

Fig. 11. End-to-end delays of all scenarios

4.2 Dimensioning of the System

The in-car navigation system is a soft real-time system that allows a rate of
5% of deadline misses. Based on this, together with the utilisation rates of the
resources, which were also monitored during simulation, and the observed max-
imum values of the delays, one can reason about possible platform performance
reduction in order to reduce cost and energy consumption of the system.

In [3], where this case study was analysed using MPA, the authors investi-
gated the robustness of architecture A. Therefore, in this paper we have also
focussed on this architecture to reason about its resources. The utilisation of
MMI is 88%. As the periods and loads of the tasks mapped on this processor
are quite heavy, there is not much room for the decrease of its capacity. The
NAV processor is used 6%. The histograms of scenarios ChangeAddr and Han-
dleTMC showed a difference of 80ms and 200ms respectively between the worst
case delays obtained and the requirements. Hence, we reduced NAV capacity
to 40MIPS. The utilisation of RAD is 33%. The analysis showed a difference
of 100ms for ChangeAddr and 200ms for HandleTMC respectively between the
maximum delays and the deadlines. As there is potential for capacity reduction,
we reduce the capacity of this processor to 5MIPS.

With this new configuration for architecture A, we resumed our simulations
using the same variances in the task loads and the same task priorities. The dis-
tribution histograms of the end-to-end delays were plotted and, as an example,
fig. 10 shows the histogram for the HandleTMC scenario. The mean and maxi-
mum values of the end-to-end delays for all the scenarios are presented in columns

214 O. Florescu et al.

Build
system
model

Modelling
patterns

System
properties

Generate
histograms

reduce performance
of the platform

Deadline
misses?

NO

YESsimulate Fit
distribution

curve

Calculate
miss rate

Within
req.?

NO

YES

increase performance
of the platform

OK

Fig. 12. Flow of the steps in the analysis approach

5 and 6 in fig. 11. From the confidence intervals calculated during simulation, we
observed that the rate of deadline misses is within 5%, thereby fulfilling the re-
quirements. In this way, we have found a better dimensioning of the system than
what was found using MPA, reducing two of the processors with 65% (NAV) and
respectively 55% (RAD).

Furthermore, in order to use such analysis results in an multi-disciplinary
model of complex systems aiming at design trade-offs across disciplines, an ab-
straction of the timing behaviour of the software part is needed. To this end,
we propose to fit the resulting distribution curves into known types of distrib-
ution. According to the central limit theorem in probability theory, due to the
uniformly distributed loads of the tasks and to the fact that tasks in different
scenarios are independent, the end-to-end delay of a scenario has approximately
a normal distribution. Therefore, over the distribution histogram obtained from
a simulation, a normal distribution curve is fitted. Fig. 10 shows such a curve
fitted over the HandleTMC histogram. The parameters of the normal distribu-
tion are the mean value (μ) of 838.32 (ms) (the mean value of the delay) and the
standard deviation (σ2) of 3953.36 (ms). From such curves, the rate of deadline
misses can be deduced, based on their characteristics. For example, the deadline
for HandleTMC, which is 1000ms, can be found between two and three standard
deviations from the mean. Thus, the probability of missing the deadline is less
than 5%, which means the requirements are met. Furthermore, from these curves
the probability of rare events occurrence can also be computed.

The analysis approach presented in this section is summarised in fig. 12 in which
the steps to be performed for the analysis of a soft real-time system are provided.

5 Conclusions

As soft real-time systems are often analysed using hard real-time techniques,
which are not suitable to account for the deadline misses rate allowed in such
systems, the resulting system is over-dimensioned. To overcome this issue, in
this paper, we have presented a modelling approach, based on the concepts
of the POOSL language, that enables probabilistic modelling of soft real-time
embedded systems. This approach relies on patterns that allow composition of
system models consisting of tasks, resources and their associated schedulers,

Probabilistic Modelling and Evaluation 215

capturing the varying runtime system behaviour using distributions. By using
them, models for design space exploration can be built easily.

Moreover, we presented an approach to perform average case performance
analysis to appropriately dimension soft real-time systems. We show for a case
study that, using this approach, we could reduce the dimension of the system
with more than 50% than what was found using analytical techniques. Further-
more, we presented a way to make an abstraction of the analysis results of the
timing behaviour to use it as input for multi-disciplinary models.

As future work, we aim at extending the probabilistic modelling patterns
to cover for complex platforms like networks-on-chip, by taking into account
memory components, routing algorithms and even batteries for the analysis of
energy consumption.

References

1. Balsamo, S., et al.: Model-based performance prediction in software development:
A survey. IEEE Trans. on Software Engineering 30(5) (2004) 295–310

2. Gries, M.: Methods for evaluating and covering the design space during early
design development. Integration, the VLSI Journal 38(2) (2004) 131–183

3. Wandeler, E., et al.: System architecture evaluation using Modular Performance
Analysis - A case study. (Accepted in the STTT Journal)

4. Behrmann, G., et al.: A tutorial on UPPAAL. In: Proc. of SFM. (2004) 200–236
5. Lieverse, P., et al.: A methodology for architecture exploration of heterogeneous

signal processing systems. VLSI Signal Processing Systems 29(3) (2001) 197–207
6. Pimentel, A.D., et al.: Exploring embedded-systems architectures with Artemis.

Computer 34(11) (2001) 57–63
7. Theelen, B.D.: Performance modelling for system-level design. PhD thesis, Eind-

hoven University of Technology (2004)
8. Chakraborty, S., et al.: A general framework for analysing system properties in

platform-based embedded system designs. In: Proc. of DATE, IEEE (2003)
9. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science

126(2) (1994)
10. Kahn, G.: The semantics of simple language for parallel programming. In: Proc.

of IFIP Congress. (1974)
11. Liu, C., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard

real time environment. J. of ACM 20(1) (1973) 46–61
12. Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algo-

rithms and applications. Kluwer Academic Publishers (1997)
13. Bini, E., et al.: A hyperbolic bound for the rate monotonic algorithm. In: Proc. of

ECRTS, IEEE (2001) 59–66
14. Manolache, S.: Analysis and optimisation of real-time systems with stochastic

behaviour. PhD thesis, Linkpings University (2005)
15. Kienhuis, B., et al.: An approach for quantitative analysis of application-specific

dataflow architectures. In: Proc. of ASAP. (1997)
16. Florescu, O., et al.: Performance modelling and analysis using poosl for an in-car

navigation system. In: Appear in Proc. of ASCI. (2006)
17. (POOSL) http://www.es.ele.tue.nl/poosl.
18. Geilen, M.G.: Formal techniques for verification of complex real-time systems.

PhD thesis, Eindhoven University of Technology (2002)

Hybrid Functional and Instruction Level Power
Modeling for Embedded Processors

Holger Blume1, Daniel Becker1, Martin Botteck2, Jörg Brakensiek2,
and Tobias G. Noll1

1 Chair for Electrical Engineering and Computer Systems
RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany

2 Nokia Research Center
Meesmannstr. 103, 44807 Bochum, Germany

{blume, becker, tgn}@eecs.rwth-aachen.de,
{martin.botteck, jorg.brakensiek}@nokia.com

Abstract. In this contribution the concept of Functional-Level Power
Analysis (FLPA) for power estimation of programmable processors is
extended in order to model even embedded general purpose processors.
The basic FLPA approach is based on the separation of the processor ar-
chitecture into functional blocks like e.g. processing unit, clock network,
internal memory etc. The power consumption of these blocks is described
by parameterized arithmetic models. By application of a parser based au-
tomated analysis of assembler codes the input parameters of the arith-
metic functions like e.g. the achieved degree of parallelism or the kind
and number of memory accesses can be computed. For modeling an em-
bedded general purpose processor (here, an ARM940T) the basic FLPA
modeling concept had to be extended to a so-called hybrid functional
level and instruction level model in order to achieve a good modeling
accuracy. The approach is exemplarily demonstrated and evaluated ap-
plying a variety of basic digital signal processing tasks ranging from basic
filters to complete audio decoders. Estimated power figures for the in-
spected tasks are compared to physically measured values. A resulting
maximum estimation error of less than 8 % is achieved.

1 Introduction

In the course of increasing complexity of digital signal processing applications,
especially in the field of mobile applications, low power techniques are of cru-
cial importance. Therefore, it is desirable to estimate the power consumption
of a system at a very early stage in the design flow. By this means, it is pos-
sible to predict whether a system will meet a certain power budget before it is
physically implemented. Necessary changes in the system or the underlying ar-
chitecture will then be much less time and money consuming, because no physical
implementation is required to determine its power dissipation.

Like any other architecture block the power consumption of a processor de-
pends on several factors like the switching activity of the input data, the clock
frequency and of course the executed task itself. Besides these dependencies

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 216–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hybrid Functional and Instruction Level Power Modeling 217

there are many more processor-specific factors like the type and rate of memory
accesses, the usage of specific architecture elements, different compiler settings,
pipeline stalls and cache misses but also different programming styles or algo-
rithmic alternatives which all strongly influence the power consumption of a task
that is executed on a processor.

For this reason it is desirable to consider methodologies for power estimation
that cover all significant influencing factors and provide a sufficient accuracy
at moderate complexity. Such a methodology is presented in this paper and
verified using exemplary vehicles. The paper is organized as follows: Chapter 2
shortly discusses several existing power estimation techniques in terms of their
applicability to modern processor kernels. The following chapter describes the
so-called Functional-Level Power Analysis (FLPA) approach in detail. Chapter
4 describes the required basics of the ARM940T general purpose processor ar-
chitecture which is exemplarily modeled here. Chapter 5 explains the exemplary
modeling of this processor architecture and works out the need for a hybrid
FLPA/ILPA approach. A benchmarking of the hybrid FLPA/ILPA model is
performed in chapter 6. Finally, a conclusion of the paper is given in chapter 7.

2 Classical Approaches for Power Estimation

One possible straight forward power estimation approach on processors is the so-
called Physical-Level Power Analysis methodology. This approach is based on the
analysis of the switching activity of all circuit nodes of the processor architecture.
The requirement of this methodology is the availability of a detailed description
of the processor architecture on transistor level, which is rarely given for modern
processors and even more severe results in an extremely high computational
effort. Architectural-Level approaches like [1] reduce this computational effort
by abstracted modeling typical architecture elements like registers, functional
units or load/store queues. Therefore, these methodologies can be mainly found
in the development of high volume products like e.g. microprocessors. Due to
their extremely high computational effort they are not suited to evaluate the
power consumption of complete digital signal processing tasks performed on a
processor in practical use with acceptable computation times.

Another possibility for power estimation for processors is the so-called
Instruction-Level Power Analysis [2]. By means of low level simulations or
physical measurements the energy consumption of each instruction out of the
instruction set of a processor is determined. By analysis of the assembler code of
a task it is possible to estimate the specific power consumption of this program
performed on a certain processor. The advantage of this approach is to cope
with so-called inter-instruction effects. In general, the energy consumption of
a processor instruction depends on the previously executed instructions, what
can be explained by means of Fig. 1 and Fig. 2.

At a certain stage of a processors pipeline, instruction words are transferred
from the program cache into a register in the processor core for further process-
ing. Fig. 1 shows the situation that an ADD instruction word replaces a MUL

218 H. Blume et al.

Program cache

MUL: 0111001110100110

ADD: 0010110111100011

0111001110100110

0010110111100 011

Cycle 1

Cycle 2

Register in the processor core

Fig. 1. Sequential execution of two different processor instructions

Program cache

ADD: 0010110111100011

0111001110100110
Cycle 1

Cycle 2

Register in the processor core

0111001110100110

ADD: 0010110111100011

Fig. 2. Sequential execution of two identical processor instructions

instruction word in cycle 2. The numbers shaded by gray boxes show the bits in
the register that switch their state in this case. In this example a Hamming dis-
tance (number of different bits of these two instruction words) of eight (Hd=8) is
resulting. Of course the sequence of two identical instructions causes no switching
activity (Hd=0), (Fig. 2). Effects like this occur in many stages of a processors
pipeline and as a result of these effects the energy consumption of an instruction
obviously depends on the previously executed instruction. The Instruction-Level
Power Analysis methodology allows to cover such inter-instruction effects by
measuring the energy consumption of groups of processor instructions, but the
huge number of possible combinations makes this approach very complex. The
effort will even grow, if Very-Long-Instruction-Word (VLIW) architectures shall
be modeled due to their increasing word length and their ability to issue several
operations in parallel.

A more attractive approach for power estimation is the Functional-Level Power
Analysis (FLPA) methodology. This methodology has been introduced in [3] and
was first applied in [4] to a digital signal processor. Furthermore, in [5] or [6] it
could be shown that a good estimation accuracy can be achieved. Here, an exten-
sion of this methodology is presented in order to model even processor cores which
feature a strong dependency of the corresponding power consumption on the per-
formed instruction. According to this, a so-called hybrid FLPA/ILPA model is
elaborated which advantageously combines the low modeling and computational
effort of an FLPA model and the higher accuracy of an ILPA model.

3 Functional Level Power Analysis (FLPA)

The basic principle of the FLPA methodology is depicted in Fig. 3. In a first
step the processor architecture is divided into functional blocks like fetch unit,
processing unit, internal memory etc. By means of simulations or measurements
it is possible to find an arithmetic model for each block that determines its
power consumption in dependency of certain parameters. These parameters are

Hybrid Functional and Instruction Level Power Modeling 219

for example the degree of parallelism, the access rate of the internal memory or
the clock frequency. Most of these parameters can be automatically determined
by a parser which analyzes the assembler file of a program code. The total
power consumption is then given as the sum of the power consumption of each
functional block.

The left side of Fig. 3 depicts the process of extracting parameters from a
program implementing a task. In this second step it is possible after compilation
to extract the task parameters from the assembler code. Further parameters can
be derived from a single execution of the program (e.g. the number of required
clock cycles). These parameters are the input values for the previously deter-
mined arithmetic models. Thus, an estimation of the power consumption of a
given task can be computed. This approach is applicable to all kind of processor
architectures without detailed knowledge of the processor architecture. Further-
more, FLPA modeling only requires moderate time effort.

Task
DSP

architecture

Compilation

Parameter

Extraction

FLPA

Simulations or

Measurements

Power

Model

Task

Parameters

Arithmetic

Models

Estimated

Power

Consumption

Fig. 3. The basic FLPA principle

4 Architecture of the ARM940T Processor

The 32 bit general purpose processor ARM940T is targeted for mobile appli-
cations, e.g. smart phones. Both hardware and instruction set architecture are
based on the ARM v4T reference architecture (see e.g. [7]).

Like the ARM v4T, the ARM940T processor is based on a Harvard-
architecture. The ARM940T consists of an ARM9TDMI Reduced Instruction
Set Computer (RISC) -processor core and separate instruction and data caches
(4KByte each). Additionally, the ARM940T provides interfaces for coprocessors
and the special Advanced Microcontroller Bus Architecture (AMBA) interface,
as well as the system configuration coprocessor (CP15), which is used to con-
trol e.g. the memory protection unit [8]. A block diagram of the ARM940T
architecture is depicted in Fig. 4.

220 H. Blume et al.

Coprocessor Interface

AMBA Interface

ARM9TDMI

Memory Protection Unit

Instruction

Cache
Data

Cache

CP15

Fig. 4. Block diagram of the ARM940T architecture

The ARM9TDMI RISC-processor core consists of a five stage pipeline, which
is controlled by a 32 bit instruction word. Each instruction word is derived
from the standard ARM instruction set. The standard ARM instruction set
itself is based on a load/store architecture. As a consequence, the source data of
different instructions must be loaded separately into one or two source registers.
The result is written back to a target register. Therefore, the instruction set
can be divided into load/store and arithmetic instructions. However, branch
and control instructions are supplied by the standard ARM instruction set. To
improve the code density the ARM9TDMI processor core also features a dynamic
instruction set exchange to the Thumb instruction set. These 16 bit instructions
are compressed versions of a subset of the standard ARM instructions. The
exchange is performed by dynamic decompression in the ARM9TDMI pipeline.

The CP15 coprocessor is accessed via the coprocessor interface using specific
assembler directives. It enables and initializes the memory protection unit, which
itself enables instruction and data regions in the main memory as well as in
the instruction and data cache. Moreover, the memory protection unit sets and
monitors access rules for the different instruction and data regions.

For the course of this modeling work, a so-called ARM Integrator Core Module
featuring an ARM940T has been applied as reference platform. Internal proces-
sor states could be analyzed using a MultiICE in circuit emulation interface and
an instruction set simulator (ARMulator).

5 Hybrid FLPA/ILPA Modeling of the ARM940T

In contrast to the FLPA modeling of some complex VLIW-DSP-architectures
where the processor architecture had to be separated into up to seven functional
blocks [5] for the modeling of the ARM940T only a separation into three different
functional blocks is required. These are the ARM9TDMI processor core, the
instruction cache and the data cache. According to the FLPA modeling concept
each functional block is described by an arithmetic model, which itself describes
the power consumption of the functional block. It can be found via simulations
or measurements [5]. Hence, it is necessary to excite each block separately. This
can be achieved by executing different parts of assembler code, which will be
called scenarios in the following. Both, scenarios with and without cache misses

Hybrid Functional and Instruction Level Power Modeling 221

have to be considered to model the ARM9TDMI processor core (execution unit)
and the instruction and data caches.

In Fig. 5 the power consumption is depicted as a function of the frequency
of the core clock while the ARM940T is executing exemplary SUB and MUL
scenarios without cache misses (test loops featuring 1000 SUBs (single cycle
op.) or 1000 MULs (three cycle op.)). The results show that there are significant
differences between individual instructions and that for each instruction a nearly
perfect linear frequency dependency results (avg. coefficient of determination, a
measure that is used to determine how well a regression fits [9], for all operation
types is R2

avg = 0.9993, theoretical maximum for R2 is 1). In the following, the
according power consumption of a test loop with an instruction i at the frequency
f without cache misses is denoted as instruction-specific offset Pinst spec(i, f).

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

f [MHz]

P
in

s
t_

s
p
e

c
(i
,f

)
[m

W
]

SUB

MUL

SUB:

R²= 0.9993

P(f)= 1.32 * f + 5.93

MUL:

R²= 0.9995

P(f)= 0.86 * f + 3.75

Fig. 5. Power consumption as a function of the frequency of the ARM940T core clock
while executing SUB and MUL scenarios without cache misses

It has to be regarded, that the distribution of basic instructions significantly
varies from application to application. Two exemplary distributions for a 4 tap
1D FIR filter and an MP3 (MPEG1/2 Layer3) decoder are depicted in Fig. 6.

Regarding the strong dependency of the power consumption on the operation
which is performed and the significant difference of the distribution of instruc-
tions this shows, why it is required to extend the classical FLPA approach by an
instruction dependent part. This new approach is denoted as hybrid FLPA/ILPA
modeling. One key element of this approach is that for each application, respec-
tively task, whose power consumption has to be determined, a dynamic deter-
mination of the distribution of instructions on the basis of the assembler code
has to be performed.

Increasing the number of instructions in a test scenario (here more than 1024
instructions, due to the cache size and the instruction word length) leads to
cache misses. As shown in Fig. 7, the power consumption is no longer a linear

222 H. Blume et al.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

TST
TE

Q
C
M

P
C
M

N
A
N
D

O
R
R

S
U
B

SBC
R
S
B

R
SC

AD
D

A
D
C

M
O
V

M
V
N

M
U
L

M
LA

LD
R

STR

instruction

re
la

ti
v
e

o
c
c
u

rr
e
n

c
e

MP 3 Decoder

4 tap 1D FIR

Fig. 6. The distribution of instructions within the most frequently used sections of the
assembler code for a 4 tap 1D FIR filter and an MP3 decoder

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

f [MHz]

P
[m

W
]

looplength 1000

looplength 1050

looplength 1100

looplength 1250

looplength 1500

looplength 9500

Pbus_spec

Fig. 7. Power consumption as a function of the frequency of the core clock while
executing SUB test scenarios featuring cache misses

function of the core clock frequency while the processor is executing those test
scenarios.

The difference at a given frequency between the instruction-specific offset and
the actual power consumption of the ARM940T by executing such test scenarios
with cache misses is called the bus-specific offset Pbus spec. Hence, the number
of cache misses would be an appropriate parameter influencing the model for
Pbus spec. Using the ARM instruction set simulator and cycle counter (ARMu-
lator [10]) it is possible to derive various cycle counts (core clocks, memory bus
clocks, etc.). These values are much more accurate than the number of cache
misses which are also provided by the simulation environment [11]. Therefore,

Hybrid Functional and Instruction Level Power Modeling 223

P
b

u
s
_

s
p

e
c

[m
W

]

f [MHz]
bus cycle ratio �

Fig. 8. Bus-specific offset of the ADD instruction

the bus-specific offset (see Fig. 8) can be modeled as a linear function of the ratio
S/T . Here, the variable S denotes the number of bus cycles that are followed by
data movement and the variable T denotes the total number of bus cycles. In the
following, the ratio S/T is denoted as the bus cycle ratio ϕ. Using the relative
share of instruction cache misses ricm and the relative share of data cache misses
rdcm the bus cycle ratio is split into a bus cycle ratio caused by instruction cache
misses ϕinst and caused by data cache misses ϕdata, whereby the influence of
the instruction and data caches apart from each other is considered. So with

ϕinst = ricm · ϕ and ϕdata = rdcm · ϕ (1)

the bus-specific offset is calculated by the equation

Pbus spec = Pbus spec(i, f, ϕinst) + Pbus spec(i, f, ϕdata) . (2)

Besides the dependency on the bus cycle ratio ϕ the bus-specific offset is also
a function of the frequency. It could be modeled as

Pbus spec(f, ϕ) = a · ϕ + b · f + c · ϕ · f + d . (3)

Negative values for Pbus spec(f, ϕ) are not possible and clipped to zero.
Finally, the actual power consumption of a given task can be calculated by

Pact = Pinst spec − Pbus spec . (4)

To estimate the complete power consumption of the ARM940T processor
while executing a task, a profiler from the ADS1.2 framework [10] determines
the share hlabel of the execution time of the different parts of the assembler
code which are produced by the compiler and which are denoted here as labels.
The instruction distribution is determined for every label by a special parser

224 H. Blume et al.

Table 1. Subset of parameters of the ARM940T hybrid FLPA/ILPA model

Instruction Class i a b c d
arithmetic (ADD, SUB, . . .) 43.07 0.451 1.49 -44.6

logic (AND, CMP, . . .) 48.68 0.462 1.42 -47.3
multiplication (MUL, MLA, . . .) 194.82 1.436 -1.01 -133.6

load (LDR, LDRB, . . .) 82.54 0.61 1.61 -60.7
.

which has been implemented as a C program, whereby the complete share hi

of every instruction class i in the label is extracted. The parser categorizes the
instruction set into 6 different instruction classes. It has been analyzed by com-
prehensive inspections that 6 different instruction classes is an attractive com-
promise between estimation accuracy and modeling effort. Using less instruction
classes significantly decreases the estimation accuracy while increasing the num-
ber of instruction classes only very marginally improves the estimation accuracy.
Some exemplary parameters which are required to calculate Pbus spec(f, ϕ) for
some exemplary instruction classes are depicted in Table 1. The resulting hybrid
FLPA/ILPA power model of the ARM940T can be summarized as follows

Pact(i, f, ϕ) =
∑
label

hlabel · (
∑

i

hi · (Pinst spec(i, f) − Pbus spec(i, f, ϕ))) (5)

6 Benchmarking of the Hybrid FLPA/ILPA Model

The estimated power consumption was compared to the measured values for
a variety of tasks in order to benchmark the hybrid model (see Fig. 9). The

0

20

40

60

80

100

120

140

160

180

m
em

co
py

co
lo
r_

in
ve

rte
r

im
ag

e_
ro

ta
te

m
p4

aa
cd

ec
od

er

m
p3

de
co

de
r

hi
st
og

ra
m

sp
lin

e_
in
te

rp
ol
at

io
n

JP
E
G
_e

nc
od

er

m
ea

ns
hi
ft

(4
,4

)

4
ta

p
1D

FIR

3x
3

M
ed

ia
n

D
hr

ys
to

ne
2.

1

5x
5

M
ed

ia
n

p
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
[m

W
]

measurement
[mW]

estimation
[mW]

Fig. 9. FLPA estimation results and measurements for the AR940T architecture

Hybrid Functional and Instruction Level Power Modeling 225

comparison of estimated and measured values shows a maximum error of 7.8 %
and an average error of 4.8 % for the power consumption.

As can be seen in Fig. 9, the variety of tasks which has been inspected on
this platform features a dynamics concerning the according power consumption
of more than 55 % (e.g. memcopy: 68.7 mW, 5x5 median: 165.0 mW). Thus, the
estimation error is much smaller than the power consumption dynamics of the
ARM940T. It is one of the key features of this modeling technique that it pro-
vides a very robust estimation accuracy while covering even a very wide range
of applications with their according high power consumption dynamics. Some
other available power models [12] can provide such an attractive estimation ac-
curacy only for a limited range of applications with a corresponding small power
dynamics. However, a power modeling approach can be applied only successfully
if it is applicable also for a wide range of signal processing tasks.

7 Conclusion

Different approaches for power estimation for programmable processors have
been analyzed. It has been shown that the concept of so-called Functional-Level
Power Analysis (FLPA) has to be extended by an instruction dependent part
in order to achieve high estimation accuracy even for embedded general pur-
pose processor cores. According to this hybrid functional and instruction level
modeling approach the processor architecture has been separated into several
functional blocks. The power consumption of these blocks has been described
in terms of parameterized arithmetic models. A parser which allows to analyze
automatically the assembler codes has been implemented. This parser yields the
input parameters of the arithmetic models like e.g. distribution of instructions
or the type and number of memory accesses. An evaluation of this approach
has been performed applying an ARM940T processor core and a variety of ba-
sic signal processing tasks. Resulting estimated power figures were compared to
physically measured values. A maximum estimation error of 8 % for the absolute
power consumption is achieved. This estimation error is much smaller than the
dynamics of the power consumption for the inspected variety of tasks (55 %). The
application of this methodology allows to evaluate efficiently different parameter
settings of a programmable processor, different coding styles, compiler settings,
algorithmic alternatives etc. concerning the resulting power consumption.

References

1. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level
power analysis and optimizations. In: Proc. of the ISCA. (2000) 83–94

2. Tiwari, V., Malik, S., Wolfe, A.: Instruction level power analysis and optimization
of software. Journal of VLSI Signal Processing 13 (1996) 1–18

3. Qu, G., Kawabe, N., Usami, K., Potkonjak, M.: Function level power estimation
methodology for microprocessors. In: Proc. of the Design Automation Conference.
(2000) 810–813

226 H. Blume et al.

4. Senn, E., Julien, N., Laurent, J., Martin, E.: Power consumption estimation of a
C program for data-intensive applications. In: Proc. of the PATMOS Conference.
(2002) 332–341

5. Blume, H., Schneider, M., Noll, T.G.: Power estimation on a functional level for
programmable processors. In: Proc. of the TI Devel. Conf., Houston. (2004)

6. von Livonius, J., Blume, H., Noll, T.G.: FLPA-based power modeling and power
aware code optimization for a Trimedia DSP. In: Proc. of the ProRISC-Workshop,
Veldhoven, Netherlands. (2005)

7. Furber, S.: ARM System-on-Chip Architecture. Addison-Wesley (2000)
8. ARM: ARM940T Tech. Ref. Manual, Rev2, ARM DDI 0144B. (2000)
9. Sachs, L.: Angewandte Statistik (in German). Springer Verlag (1996)

10. ARM: RealView ARMulator ISS User Guide, V. 1.4, ARM DUI 0207C. (2004)
11. ARM: App. Note 93 Benchmarking with ARMulator, ARM DAI 0093A. (2002)
12. Senn, E., Julien, N., Laurent, J., Martin, E.: Functional level power analysis: An

efficient approach for modeling the power consumption of complex processors. In:
Proc. of the IEEE DATE. (2004) 666–667

Low-Power, High-Performance TTA Processor
for 1024-Point Fast Fourier Transform

Teemu Pitkänen, Risto Mäkinen, Jari Heikkinen, Tero Partanen, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
{teemu.pitkanen, jari.heikkinen, risto.makinen, jarmo.takala}@tut.fi

Abstract. Transport Triggered Architecture (TTA) offers a cost-effective trade-
off between the size and performance of ASICs and the programmability of
general-purpose processors. This paper presents a study where a high perfor-
mance, low power TTA processor was customized for a 1024-point complex-
valued fast Fourier transform (FFT). The proposed processor consumes only 1.55
μJ of energy for a 1024-point FFT. Compared to other reported FFT implementa-
tions with reasonable performance, the proposed design shows a significant im-
provement in energy-efficiency.

1 Introduction

Fast Fourier transform (FFT) has an important role in many digital signal processing
(DSP) systems. E.g., in orthogonal frequency division multiplexing (OFMD) commu-
nication systems, FFT and inverse FFT are needed. The OFMD technique has become
a widely adopted in several wireless communication standards. When operating in
wireless environment the devices are usually battery powered and, therefore, an energy-
efficient FFT implementation is needed. In CMOS circuits, power dissipation is propor-
tional to the square of the supply voltage [1]. Therefore, a good energy-efficiency can be
achieved by aggressively reducing the supply voltage [2] but unfortunately this results
in lower circuit performance. In this paper, a high performance, low power processor is
customized for a 1024-point FFT application. Several optimization steps, such as spe-
cial function units, code compression, manual code generation, are utilized to obtain the
high performance with low power dissipation. The performance and power dissipation
are compared against commercial and academic processors and ASIC implementations
of the 1024-point FFT.

2 Related Work

Digital signal processors offer flexibility and, therefore, low development costs but at
the expense of limited performance and typically high power dissipation. Field
programmable gate arrays (FPGA) combine the flexibility and the speed of application-
specific integrated circuit (ASIC) [3]. However, FPGAs cannot compete with the energy-
efficiency of ASIC implementations. For a specific application, the energy-efficiency
between these alternatives can differ by multiple orders of magnitude [4]. In general,
FFT processor architectures can be divided into five categories: processors are based

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 227–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 T. Pitkänen et al.

on single-port memory, dual-port memory, cached memory, pipeline, or array architec-
ture [5]. In [6], a reconfigurable FFT-processor with single memory based scalable IP core
is presented, with radix-2 algorithm. In [7], variable-length FFT processor is designed us-
ing pipeline based architecture. It employs radix-2/4/8 single path delay feedback archi-
tecture. The proposed processor supports three different transform lengths by bypassing
the input to the correct pipeline stage. In [5], cached memory architecture is presented,
which uses small cache memories between the processor and the main memory. It offers
good energy-efficiency in low voltage mode but with rather low performance. In [8], an
energy-efficient architecture is presented, which exploits subtreshold circuits techniques.
Again the drawback is the poor performance.

The proposed FFT implementation uses a dual-port memory and the instruction
schedule is constructed such that during the execution two memory accesses are per-
formed at each instruction cycle, i.e., the memory bandwidth is fully exploited. The
energy-efficiency of the processor matches fixed-function ASICs although the proposed
processor is programmable.

3 Radix-4 FFT Algorithm

There are several FFT algorithms and, in this work, a radix-4 approach has been used
since it offers lower arithmetic complexity than radix-2 algorithms. The specific algo-
rithm used here is a variation of the in-place radix-4 decimation-in-time (DIT) algorithm
and the 4n-point FFT in matrix form is defined as

F4n =

[
0

∏
s=n−1

[Ps
4n]T (I4n−1 ⊗ F4)Ds

4nPs
4n

]
Pin

4n ;

Ps
4n = I4(n−s−1) ⊗ P4(s+1),4s ; Pin

4n =
n

∏
k=1

I4(n−k) ⊗ P4k,4 ;

PK,R(m,n) =
{

1, iff n = (mR mod K)+ �mR/K�
0,otherwise

(1)

where ⊗ denotes tensor product, Pin
N is an input permutation matrix of order N, F4 is the

4-point discrete Fourier transform matrix, Ds
N is a diagonal coefficient matrix of order

N, Ps
N is a permutation matrix of order N, and IN is the identity matrix of order N. Matrix

PK,R is a stride-by-R permutation marix [9] of order K such that the elements of the
matrix. In addition, mod denotes the modulus operation and �·� is the floor function.
The matrix Ds

N contains N complex-valued twiddle factors, W k
N , as follows

Ds
N =

N/4−1

k=0

diag
{

W i(k mod 4s)
4s+1

}
, i = 0,1, . . . ,3 ; W k

N = e− j2πk/N (2)

where j denotes the imaginary unit and ⊕ denotes matrix direct sum. Finally, the matrix
F4 is given as

F4 =

⎛
⎜⎝

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎞
⎟⎠. (3)

Low-Power, High-Performance TTA Processor for 1024-Point FFT 229

4 Transport Triggered Architecture

Transport triggered architecture (TTA) is a class of statically programmed instruction-
level parallelism (ILP) architectures that reminds very long instruction word (VLIW)
architecture. In the TTA programming model, the program specifies only the data trans-
ports (moves) to be performed by the interconnection network [10] and operations occur
as “side-effect” of data transports. Operands to a function unit are input through ports
and one of the ports is dedicated as a trigger. Whenever data is moved to the trigger
port, the operation execution is initiated.

When the input ports are registered, the operands for the operation can be stored into
the registers in earlier instruction cycles and a transport to the trigger port starts the
operation with the operands stored into the registers. Thus the operands can be shared
between different operations of a function unit, which reduces the data traffic in the
interconnection and the need for temporary storage in register file or data memory.

A TTA processor consists of a set of function units and register files containing
general-purpose registers. These structures are connected to an interconnection net-
work, which connects the input and output ports of the resources. The architecture can
be tailored by adding or removing resources. Moreover, special function units with
user-defined functionality can be easily included.

5 TTA Processor for Radix-4 FFT

An effective means to reduce power consumption without reducing the performance is
to exploit special function units for the operations of the algorithm. These units reduce
the instruction overhead, thus they reduce the power consumption due to instruction
fetch. Here four custom-designed units tailored for FFT application were used.

The interconnection network consumes a considerable amount of power and, there-
fore, all the connections from ports of function units and register files to the buses,
which are not really needed, should be removed. By removing a connection, the capaci-
tive load is reduced, which reduces also the power consumption. Clock gating technique
can be used to reduce the power consumption of non active function units. Significant
savings can be expected on units with low utilization.

TTA processors remind VLIW architectures in a sense that they use long instruction
words, which implies high power consumption on instruction fetch. This overhead can
be significantly reduced by exploiting program code compression.

5.1 Arithmetic Units

Since the FFT is inherently an complex-valued algorithm, the architecture should have
means to represent complex data. The developed processor uses 32-bit words and the
complex data type is represented such that the 16 most significant bits are reserved for
the real part and the 16 least significant bits for the imaginary part. Real and imaginary
parts use fractional representation, i.e., one bit for sign and 15 bits for fraction. The
arithmetic operations in the algorithm in (1) can be isolated into 4-input, 4-output blocks
described as radix-4 DIT butterfly operation defined by the following:

(y0,y1,y2,y3)
T = F4 (1,W1,W2,W3)

T (x0,x1,x2,x3)
T (4)

230 T. Pitkänen et al.

a) b)

Reversal Rotaton

+/-
+ +

3233232

op0 op1 op2 trig

res0 res1

Control

op1 op2 op3 trigop0

res

32323232 3

16 16

1616
32

+/-

+/-

+/- +/-

+/-

.

Fig. 1. a) Block diagram of complex adder. Solid lines represent real parts and dotted lines
imaginary parts. ports op1-3 are operand ports and trigger port defines the operation. b) Block
diagram of data address generator. op0: Base address of input buffer. op1: Base address of output
buffer. op2: Butterfly column index. trig: Element index, trigger port. res0: Resulting address
after field reversal. res1: Resulting address after index rotation.

where xi denotes an input operand, Wi is a twiddle factor, and yi is an output operand.
One of the special function units in our design is complex multiplier, CMUL, which is
a standard unit containing four 16-bit real multipliers and two 16-bit real adders. When
the operand to the CMUL unit is a real one, i.e., multiplication by one, the other operand
is directly bypassed to the result register. The CMUL unit is pipelined and the latency is
three cycles. The butterfly operation contains complex additions defined by (3). In this
work, we have defined a four-input, one-output special function unit, CADD, which
supports four different summations according to each row in F4. The motivation is that,
in a TTA, the instruction defines data transports, thus by minimizing the transports, the
number of instructions can be minimized. Each of the four results defined by F4 are
dependent on the same four operands, thus once the four operands have been moved
into the input registers of the function unit, four results can be computed simply by
performing a transport to trigger register, which defines the actual function out of the
four possible complex summations. The block diagram of the CADD unit is illustrated
in Fig. 1 a).

5.2 Address Generation

The N-point FFT algorithm in (1) contains two type of data permutations: input per-
mutation of length N and variable length permutations between the butterfly columns.
In-place computations require manipulation of indices into data buffer. Such manipu-
lations are low-power if performed in bit-level. If the 4n input operands are stored into
a buffer in-order, the read index to the buffer, i.e., operand for the butterfly operation,
can be obtained by bit field reversal. This reminds the bit reversal addressing in radix-2
algorithms but, instead of reversing single bits, here 2-bit fields are reversed [11], i.e.,
a 2n-bit read index r = (r2n−1r(2n−2 . . .r0) is formed from an element index (a linear
counter) a = (a2n−1a2n−2 . . .a0) as

r2k = a2n−2k−2 ; r2k+1 = a2n−2k−1 , 0 ≤ k < n (5)

Low-Power, High-Performance TTA Processor for 1024-Point FFT 231

This operation is implemented simply with wiring. In a similar fashion, the permuta-
tions between the butterfly columns can be realized in bit-level simply by rotation of
two bits to the right. However, the length of the bit field to be rotated is dependent on
the butterfly column index, s, in (1). The 2n-bit read index p = (p2n−1 p(2n−2 . . . p0) is
formed from the element index a as [11]⎧⎪⎪⎨

⎪⎪⎩
p2k = a(2k+2s) mod 2(s+1),0 ≤ k ≤ s
p2k+1 = a(2k+1+2s) mod 2(s+1),0 ≤ k ≤ s
p2k = a2k,s < k < n
p2k+1 = a2k+1,s < k < n

. (6)

Such an operation can be easily implemented with the aid of multiplexers. When the
generated index is added to the base address of the memory buffer, the final address to
the memory is obtained. The block diagram of the developed AG unit is shown in Fig 1
b). The input ports of the AG units are registered, thus the base addresses of input and
output buffers need to be store only once into operand ports op0 and op1, respectively.
The butterfly column index is stored into operand port op2 and the address computation
is initiated by moving an index to trigger port. Two results are produced: output port
res0 contains the address according to input permutation and port res1 according to bit
field rotation.

5.3 Coefficient Generation

A coefficient generator (COGEN) unit was developed for generating the twiddle fac-
tors, which reduces power consumption compared to the standard method of storing the
coefficients as tables into data memory. In an radix-4 FFT, there are Nlog4(N) twid-
dle factors as defined by (2) but there is redundancy. It has been be shown that all the
twiddle factors can be generated from N/8 + 1 coefficients [12] with the aid of simple
manipulation of the real and the imaginary parts of the coefficients. The COGEN unit
is based on a table where the N/8 + 1 are stored. This table is implemented as hard
wired logic for reducing the power consumption. The unit contains an internal address
generator, which creates the index to the coefficient table based on two input operands:
butterfly column index (s = 0,1, . . . ,n − 1) and element index (a = 0,1, . . . ,4n − 1).
The obtained index is used to access the table and the real and imaginary parts of the
fetched complex number are modified by six different combinations of exchange, add,
or subtract operations depending on the state of input operands. The resulting complex
number is placed in the output register as the final twiddle factor.

5.4 General Organization

The general organization of the proposed TTA processor tailored for FFT (FFTTA)
processor is presented in Fig. 2. The processor is composed of eight separate function
units and a total of 11 register files containing 23 general-purpose registers. The func-
tion units and register files are connected by an interconnection network (IC) consisting
of 18 buses and 61 sockets. In addition, the FFTTA processor contains a control unit,
instruction memory, and dual-ported data memory. The size of the data memory is 2048
words of 32 bits implying that 32-bit data buses are used. There is one 1-bit bus, which
is used for transporting the Boolean values.

232 T. Pitkänen et al.

DATA
MEM LD_STRF1

RF9 RF8 RF7 RF6 RF5 RF4 RF3RF10 RF11

LD_STADDCOGEN CMUL

CADD AG

CNTRL INSTR
MEM

COMP

RF2

Fig. 2. Architecture of the proposed FFTTA processor. CADD: Complex adder. CMUL: Com-
plex multiplier. AG: Data address generator. COGEN: Coefficient generator. ADD: Real adder.
LD ST: Load-store unit. COMP: Comparator unit. CNTRL: Control unit. RFx: Register files,
containing total of 23 general purpose registers.

5.5 Instruction Schedule

In principle, an 4n-point radix-4 FFT algorithm in (1) contains two nested loops: an
inner loop where the butterfly operation is computed 4(n−1) times and an outer loop
where the inner loop is iterated n times. Each butterfly operation requires four operands
and produces four results. Therefore, in a 1024-point FFT, a total of 10240 memory
accesses are needed. If a single-port data memory is used, the lower bound for the
number of instruction cycles for a 1024-FFT is 10240. If a dual-port memory is used,
the lower bound is 5120 cycles.

In order to maximize the performance, the inner loop kernel needs to be carefully
optimized. Since the butterfly operations are independent, software pipelining can be
applied. In our implementation, the butterfly operations are implemented in a pipelined
fashion and several butterflies at different phases of computation are performed in par-
allel. The developed 1024-point FFT code follows the principal code in Fig. 3.

In initialization, pointers and loop counters, i.e., butterfly and element indices, are
set up. The input data is stored in order into data memory buffer. Another 1024-word
buffer is reserved for intermediate storage and the final result. There is no separate code
performing the input permutation but the address generation unit is used to access the
input buffer in correct order with an address obtained from port res0 of AG in Fig.1b).
The results of the first butterfly column are stored into the intermediate buffer with an
address obtained from port res1 of AG. All the accesses to the intermediate buffer are
done by using addresses from port res1 of AG.

In the prologue, the butterfly iterations are started one after each other and, in the
actual inner loop kernel, four iterations of butterfly kernels are performed in parallel in
pipelined fashion. The loop kernel evaluates also the loop counter. In the epilogue, the
last butterfly iterations are completed and the loop counter of the outer loop is evalu-
ated. The kernel contains the functionality of butterfly operations, which requires four
triggers for memory reads and memory writes and corresponding address computations,
four triggers for complex multiplier and four triggers for CADD unit. Since the branch
latency is three cycles, the kernel can actually be implemented with four instructions.
However, this approach results in a need for moving variables from an register to an-
other. The reason is that parallel butterfly iterations need more than four intermediate

Low-Power, High-Performance TTA Processor for 1024-Point FFT 233

main() {
initialization(); /* 9 instr. */
for(stage=0; stage<5; stage++) {

prologue(); /* 16 instr. */
for(k=0; k<84; k++)

kernel(); /* 12 instr. */
epilogue; /* 21 instr. */

}
}

Fig. 3. Pseudocode illustrating structure and control flow of program code

results, which need to be stored into register files. Since there is no mechanism to dy-
namically index the register accesses, the only way is to use the register files as first-
in-first-out buffers. Such register copies introduce additional power consumption, in
particular, since the moves require additional buses and increase the register activity.

The final implementation of the kernel was 12 instructions and by that way, it was
possible to keep the intermediate results in a dedicated register without need to copy
the values. This resulted significant savings in power consumption at the expense of
lengthening the program code by eight instructions. The parallel code for 1024-point
FFT contains a total of 58 instructions and the instruction length was 162 bits. The
program spends 96% of the execution time in the kernel. The execution of 1024-point
FFT takes 5234 instruction cycles, thus the overhead to the theoretical lower bound
with dual-port data memory (5120 cycles) is only 2% (114 cycles). This overhead is
negligible compared to overheads seen in typical software implementations.

5.6 Code Compression

TTA suffers from poor code density, which is mostly due to minimal instruction en-
coding that is used to simplify decoding. Minimal instruction encoding leads to long
instruction words. The long instruction word consists of dedicated fields, denoted as
move slots. Each move slot specifies a data transport on a bus. Each move slot consists
of three fields: guard, destination ID, and source ID. The guard provides means for con-
ditional execution. The destination ID specifies the address of a socket that is reading
data from a bus. The source ID specifies the address of a socket that is writing data on a
bus. In addition to move slots, instruction words may contain dedicated long immediate
fields to define large constant values, e.g., for jump addresses.

The poor code density can be improved by compression. Compression also results in
reduced power consumption as fewer bits need to be fetched from the program mem-
ory. Dictionary-based compression is one of the simplest compression approaches to
improve the code density [13]. Dictionary-based program compression stores all unique
bit patterns into a dictionary and replaces them in the program code with code words to
the dictionary. Given a program with N unique instructions, the length of the code word
is �log2|N|� bits. During execution, the code word, fetched from the program memory
is used to obtain the original instruction from the dictionary for decoding.

In order to reduce the power consumption of the FFTTA processor and improve
the code density, dictionary-based program compression was applied. All the unique

234 T. Pitkänen et al.

instructions of the program code were stored into a dictionary and replaced with indices
pointing to the dictionary. This resulted in decrease in the width of the program memory
from 162 bits to 6 bits. The decompression, i.e., the dictionary access was supplemented
to the control unit without additional pipeline stage. The actual dictionary(8586 bits)
was implemented using standard cells.

6 Performance Analysis

In order to analyse the characteristics of the FFTTA processor, the structures of the
previous special function units were described manually in VHDL. The structural de-
scription of the FFTTA core was obtained with the aid of the hardware subsystem of
the MOVE Framework [14], which generated the VHDL description.

Then the FFTTA was synthesized to a 130nm CMOS standard cell ASIC technology
with Synopsys Design Compiler. This was followed by a gate level simulation at 250
MHz. Synopsys Power Compiler was used for the power analysis. The obtained results
are listed in Table 1. It should be noted that the instruction and data memories take
40% of the total power consumption of 74mW with 1.5V supply voltage. If the supply
voltage is reduced to 1.1V, the total power consumption will drop down to about 40
mW. However, this will reduce the maximum clock frequency.

Table 1. Characteristics of 1024-point FFT on FFTTA processor on 130 nm ASIC technology
with 1.5V supply voltage

Clock Cycles 5234 Execution Time 20.94 μs Power 74 mW

Clock Frequency 250 MHz Area 140 kgates Energy 1.55 μJ

Table 2 presents how many 1024-point FFT transforms can be performed with energy
of 1 mJ. The results are presented for ten different implementations of the 1024-point
FFT. For some implementations there are different operating voltage or clock frequency
points listed. Spiffee processor [5] employs a high performance architecture and low
supply voltages and it’s dedicated for the FFT. The StrongArm SA-1100 processor [15]
employs custom circuits, clock gating, and reduced supply voltage. The Stratix [16] is
an FPGA solution with dedicated embedded FFT logic usign Altera Megacore func-
tion. The TI C6416 [17] is a digital signal processor and the Imagine [18] is a media
processor. They were both created using pseudo-custom data path tiling. In addition,
the TI C6416 employs pass-gate multiplexer circuits. The 1024-point FFT with radix-
4 algorithm can be computed in 6002 cycles in TI C6416 when using 32-bit complex
words (16 bits for real and imaginary parts) [19]. However, in-place computations can-
not be used and the processor has eight memory ports while the FFTTA uses only two.
The Intel Pentium-4 [20] is a standard general-purpose microprocessor. Rest of the
processors are dedicated for the FFT. The custom scalable IP core Zhao [6], employs
single memory architecture with clock gating. The custom variable-length Lin [7] FFT-
processor employs radix-2/4/8 single-path delay algorithm. MIT FFT uses subtreshold
circuit techniques [8].

Low-Power, High-Performance TTA Processor for 1024-Point FFT 235

Table 2. The number of 1024-point FFTs performed with a unit of energy

Design Tech.Oper.
voltage

Clock
freq.

Exec.
time

FFT/mJ Design Tech.Oper.
voltage

Clock
Freq.

Exec.
time

FFT/mJ

[nm] [V] [MHz] [μs] [nm] [V] [MHz] [μs]

FFTTA 130 1.5 250 20.9 645 130 1.2 720 8.34 100
600 1.1 16 330 319 TI C6416 130 1.2 600 10.0 167

Spiffee 600 2.5 128 41 67 130 1.2 300 21.7 250
600 3.3 173 40 39 MIT FFT 180 0.35 0.01 250000 6452

SA-110 350 2 74 425.7 60 180 0.9 6 430.6 1428
130 1.3 275 4.7 241 Lin 350 3.3 45.45 22.5 93

Stratix 130 1.3 133 9.7 173 350 2.3 17.86 57 133
130 1.3 100 12.9 149 Zhao 180 - 20 281.6 43

Imagine 150 1.5 232 16.0 16 Intel P4 130 1.2 3000 23.9 0.8

Compared to other FFT designs the proposed FFTTA processor shows significant
energy-efficiency. Only the MIT FFT outperforms the FFTTA. However, due to its long
execution time, the MIT FFT is not usable in high performance designs. The perfor-
mance of the FFTTA processor is still quite feasible although it does not provide the
best performance. However, the performance can be scaled, i.e., the execution time can
be halved by doubling the resources and memory ports. The memory size remains con-
stant and it can be estimated that the energy-efficiency remains the same in terms of
FFTs per energy unit.

7 Conclusions

In this paper, a low-power application-specific processor for FFT computation has been
described. The resources of the processor have been tailored according to the needs of
the application consisting of eight function units and 11 register files. Several methods
for reducing the power consumption of the processor were utilized: clock gating, special
function units, and code compression. The processor was synthesized on a 130 nm
ASIC technology and power analysis showed that the proposed processor has both high
energy-efficiency and high performance.

The described processor has limited programmability but the purpose of this experi-
ment was to prove the feasibility and potential of the proposed approach. However, the
programmability can be improved by introducing additional function units and loos-
ening the code compression. In addition, different transform sizes can be supported
by modifying the address generators and twiddle factor unit. This modifications are
mainly addition of multiplexers, thuse significant increase in power consumption is not
expected. In addition, the performance of the processor can be improved by adding
computational resources implying need for higher data memory bandwidth

Acknowledgement

This work has been supported by the Academy of Finland under project 205743 and the
National Technology Agency of Finland under research funding decision 40153/05.

236 T. Pitkänen et al.

References

1. Weste, N., Eshraghian, K.: Principles of CMOS VLSI Design: A Systems Perspective.
Addison-Wesley, Reading, MA (1985)

2. Chandrakasan, A., Sheng, S., Brodersen, R.: Low-power CMOS digital design. IEEE Journal
of Solid State Circuits 27 (1992) 473–483

3. Reeves, K., Sienski, K., Field, C.: Reconfigurable hardware accelerator for embedded DSP.
In Schewel, J., Athanas, P.M., Bove, V.M., Watson, J., eds.: Proc. SPIE High-Speed Comp.
Dig. Sig. Proc. Filtering Using Reconf. Logic. Volume 2914., Boston, MA (1996) 332–340

4. Chang, A., Dally, W.: Explaining the gap between ASIC and custom power: A custom
perspective. In: Proc. IEEE DAC, Anaheim, CA (2005) 281–284

5. Baas, B.M.: A low-power, high-performance, 1024-point FFT processor. IEEE Solid State
Circuits 43 (1999) 380–387

6. Zhao, Y., Erdogan, A., Arslan, T.: A low-power and domain-specific reconfigurable fft fabric
for system-on-chip applications. In: Proc. 19th IEEE Parallel and Distrubuted Prosessing
Symp. Reconf. Logic, Denver, CO (2005)

7. Lin, Y.T., Tsai, P.Y., Chiueh, T.D.: Low-power variable-length fast fourier transform proces-
sor. Proc. IEE Computers and Digital Techniques 152 (2005) 499–506

8. Wang, A., Chandrakasan, A.: A 180-mV subthreshold FFT processor using a minimum
energy design methodology. IEEE J. Solid State Circuits 40 (2005) 310–319

9. Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithms and the role of the tensor
product. IEEE Trans. Signal Processing 40 (1992) 2921–2930

10. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

11. Mäkinen, R.: Fast Fourier transform on transport triggered architectures. Master’s thesis,
Tampere Univ. Tech., Tampere, Finland (2005)

12. Wanhammar, L.: DSP Integrated Circuits. Academic Press, San Diego, CA (1999)
13. Lefurgy, C., Mudge, T.: Code compression for DSP. Technical Report CSE-TR-380-98,

EECS Department, University of Michigan (1998)
14. Corporaal, H., Arnold, M.: Using transport triggered architectures for embedded processor

design. Integrated Computer-Aided Eng. 5 (1998) 19–38
15. Intel: StrongARM SA-110 Microprocessor for Portable Applications Brief Datasheet. (1999)
16. Lim, S., Crosland, A.: Implementing FFT in an FPGA co-processor. In: The International

Embedded Solutions Event (GPSx), Santa Clara, CA (2004) 230–233
17. Agarwala, S., Anderson, T., Hill, A., Ales, M., Damodaran, R., Wiley, P., Mullinnix, S.,

Leach, J., Lell, A., Gill, M., Rajagopal, A., Chachad, A., Agarwala, M., Apostol, J., Krishnan,
M., Duc-Bui, Quang-An, Nagaraj, N., Wolf, T., Elappuparackal, T.: A 600 MHz VLIW DSP.
IEEE J. Solid State Circuits 37 (2002) 1532–1544

18. Rixner, S., Dally, W., Kapasi, U., Khailany, B., Lopez-Lagunas, A., Mattson, P., Owens, J.:
A bandwidth-efficient architecture for media processing. In: Proc. Annual ACM/IEEE Int.
Symp. Microarchitecture, Dallas, TX (1998) 3–13

19. Texas Instruments, Inc. Dallas, TX: TMS320C64x DSP Library Programmer’s Reference.
(2003)

20. Deleganes, M., Douglas, J., Kommandur, B., Patyra, M.: Designing a 3 GHz, 130 nm, Intel R©
Pentium R©4 processor. In: Digest of Technical Papers Symp. VLSI Circuits, Honolulu, HI
(2002) 230–233

Software Pipelining Support for Transport Triggered
Architecture Processors

Perttu Salmela1, Pekka Jääskeläinen1, Tuomas Järvinen2, and Jarmo Takala1

1 Tampere University of Technology, P.O.Box 553, FIN-33101, Tampere, Finland
{perttu.salmela, pekka.jaaskelainen, jarmo.takala}@tut.fi

2 Nokia Technology Platforms, P.O.Box 88, FIN-33721 Tampere, Finland
tuomas.jarvinen@nokia.com

Abstract. Many telecommunication applications, especially baseband process-
ing, and digital signal processing (DSP) applications call for high-performance
implementations due to the complexity of algorithms and high throughput require-
ments. In general, the required performance is obtained with the aid of parallel
computational resources. In these application domains, software implementations
are often preferred over fixed-function ASICs due to the flexibility and ease of
development. Application-specific instruction-set processor (ASIP) architectures
can be used to exploit efficiently the inherent parallelism of the algorithms but still
maintaining the flexibility. Use of high-level languages to program processor ar-
chitectures with parallel resources can lead to inefficient resource utilization and,
on the other hand, parallel assembly programming is error prone and tedious.

In this paper, the inherent problems of parallel programming and software
pipelining are mitigated with parallel language syntax and automatic generation
of software pipelined code for the iteration kernels. With the aid of the developed
tool support, the underlying performance of a processor architecture with parallel
resources can be exploited and full utilization of the main processing resources is
obtained for pipelined loop kernels. The given examples show that efficiency can
be obtained without reducing the performance.

1 Introduction

Rapid development and continually updated standards in all areas of telecommuni-
cations call for implementations with high-throughput, flexibility, configurability, and
even programmability. In [1] it was shown that the digital baseband functions of 3G
receiver will require approximately a total computational performance of 10 GIPS. For
such performance, processors relying on sequential execution of program code would
require unpractical clock frequencies. On the other hand, pure hardware implementation
does not possess the flexibility in form of programmability.

For the sake of increased design and manufacturing costs, using highly parallel
application-specific instruction-set processors (ASIP) is suggested in [2]. With the aid
of sufficient parallelism the clock frequencies and power consumption can remain at
practical level, while maintaining acceptable throughput. In addition, the program-
mability of the processor allows rapid development and alleviates updates. However,
mapping algorithms onto a parallel processor architecture is a challenging task. For
example, if a C compiler does not have the information that the memory accesses are

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 237–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

238 P. Salmela et al.

independent, they must be executed in the order defined in the source file and no paral-
lelism can be exploited. Furthermore, if the target architecture contains special function
units with operations, which are not part of the native operations of the used high-level
language, the compiler has a challenging task on mapping operations onto such units.
Manual assembly programming can be used to explicitly specify such parallel opera-
tions but this would be a tedious and error prone process due to the included details of
the processor architecture and literally long instruction words of parallel processors.

One example of an ASIP with parallel resources is transport triggered architecture
(TTA) [3]. In TTA, parallel computing resources can be tailored according to the re-
quirements of the given application. TTA processors can be programmed with C lan-
guage [4] but the scheduling of user defined special operations onto parallel function
units especially in loops with short kernels is challenging. Quite often the user has al-
ready information of the efficient schedule for the special operations. For example, in
[5] and [6], scalable FIR filtering and Viterbi decoding, respectively, were programmed
in detailed assembly and they obtained full utilization of main computing resources in
the pipelined loop kernel.

This paper represents a software development tool targeted in the area between de-
tailed low-level assembly language and high-level C language. The applications are
described with a parallel language, which excludes the lowest level details on how the
parallel resources are used. The developed compiler tool will partially solve the allo-
cation of resources. The language does not prohibit use of full parallelism available on
the processor. In addition, the language includes high-level structures, which make the
programming more intuitive. Especially, the tool supports automatic generation of soft-
ware pipelined code for the loops. This is essential since the fully pipelined loops result
in large sections of long instruction words, which calls for automatic code generation to
avoid extensive manual programming work. The proposed method is demonstrated on
parallel processors based on transport triggered architectures and the given experiments
show that the high performance and full parallelism of the TTA can be exploited with
minor efforts and typical loop based signal processing kernels can be developed rapidly.

2 Transport Triggered Architecture

A transport triggered architecture is an ASIP template [3] where parallel computing
resources can be tailored according to the requirements of the given application. Basi-
cally, a TTA processor consists of functional resources, which are connected with an
interconnection network and the network is controlled by a control unit. In Fig. 1, an
example of TTA processor is shown. This processor contains basic units for simple
arithmetic, units for accessing the memory, register files, and four special function units
for multiply and accumulate (MAC). The processor is modular since unnecessary func-
tion units can be excluded and necessary special function units can be easily included.
The interconnection network consists of buses, which are connected to the function
units via sockets. Since the processor can be tailored, the interconnection network does
not have to contain all the connections. Therefore, only the required connections are
used and the unnecessary connections can be removed. This reduces the bus load and,
therefore, reduces the power consumption and allows higher clock frequency.

Software Pipelining Support for Transport Triggered Architecture Processors 239

CMAC

CMAC

CMAC

CMAC PC

BR

LSU RF1

RF2

IRCMP

ADDSUB CNTL

ADDSUB ADDSUB

LSU

CU

Fig. 1. Example of TTA processor tailored for FIR filtering. A circle denotes a connection be-
tween one of buses of the interconnection network and port of a function unit. LSU: Load and
store unit. ADDSUB: Addition and subtraction unit. CMP: Comparison unit. CNTL: Processor sta-
tus word. CMAC: MAC unit. RFx: Register file. PC: Program counter. IR: Immediate register. BR:
Boolean register. CU: Control unit.

The syntax of the TTA processor assembly language consists of only one operation.
The move operation, →, moves data from a source in left-hand side to a destination in
the right-hand side. With non-terminals written in italics, the syntax of the move is

src → dst
src ⇐ number | register | function unit
dst ⇐ jump | register | function unit
function unit ⇐ identifier . operation port

In addition, the moves are followed by more detailed information in the form of four
fields separated by slashes, i.e., [bus / immediate unit / source port / destination port].
Furthermore, each move can be preceded with an optional Boolean guard, which allows
conditional execution. The syntax allows also inversion of the guard. A list of parallel
moves, separated by commas, constitute one instruction. Consecutive, sequentially is-
sued instructions are separated with semicolons.

An example of a move, which transports value of register r2 to the operand port of
an adder in function unit fu2 on bus zero and whose execution depends on value of
Boolean b0, would be

b0:r2 → fu2.add o [m0 / – / ri o1 / fu2 o].

Each move corresponds to a bus. If a bus is not used for any move, the no-operation
(NOP) is denoted by three dots.

3 Software Pipelining

Software pipelining is a technique for executing the loops in such a way that several loop
iterations are issued in parallel. An extensive study and comparison of software pipelin-
ing techniques is presented in [7]. Software pipelining is vital also for very long in-
struction word processors for the efficient utilization of available parallelism [8]. Since
the software pipelining strives to issue several iterations of loop in parallel, in one ex-
treme all the iterations of the loop are issued at the same time. In the other extreme,
the software pipelining can not be used and the iterations are executed sequentially.
An example of software pipelining principle is presented in Fig. 2, which shows how

240 P. Salmela et al.

loop(iterations) {
00: A
01: B
02: C
03: D

}

�
FU0 FU1 FU2 FU3

00 : A
01 : B A
02 : C B A
03 : D C B A
04 : A D C B
05 : B A D C
06 : C B A D
07 : D C B A
08 : D C B
09 : D C
10 : D

�

a) b)

Fig. 2. Loop Example consisting of operations A, B, C, and D: (a) code excerpt and (b) pipelined
iterations mapped to function units FU0...3. Block of instructions at 04. . .07 is repeated according
to the required number of iterations.

a total of four instances of loop iterations are executed in parallel. Depending on the
total number of required iterations, four parallel instances are iterated by conditionally
branching from instructions at 07 back to instructions at 04.

In general case, results of the computations of the loop body are used as operands in
the next iteration. In this case, the delay between demand of operands in the next iteration
and their completion in the previous iteration determines how soon the next iteration can
be issued. For example, if the first operation of the loop accesses the memory and the
memory pointer is updated, the update must take place also during the same single clock
cycle to allow issuing next iteration in the next clock cycle. This practice, where new
iterations are issued on consecutive clock cycles, is shown in Fig. 2(b). The example also
shows that during any of the instructions 03. . . 07, all the four operations A, B, C, and D
are executed in parallel and, therefore, they must be mapped to four separate function
units. On the contrary, in sequential loop in Fig. 2(a) the operations A, B, C, and D can
share the same function unit. If a new iteration is issued on each instruction cycle, the
maximum parallelism equals to the length of the sequential loop kernel.

4 Parallel Language with Software Pipelining

The developed parallel language is improved in two frontiers. First, the assembly lan-
guage syntax is both simplified and extended to a intuitive form of the proposed lan-
guage. Second, the language is enhanced with a loop construct, which pipelines the
loop iterations.

4.1 Language Extensions

The program is divided into declarations and labeled program blocks consisting of state-
ments. With non-terminals written in italics and excluding minor details the core syntax
of the improved assembly language is given in Fig. 3. The syntax replaces the function-
ality of moves (→) with assignment and operand passing, which are compiled to original

Software Pipelining Support for Transport Triggered Architecture Processors 241

low-level moves. Instead of list of moves, the program resembles a list of conventional
function calls. Since the function units can produce several results, the syntax allows the
left-hand side with several variables to be written in a similar syntax as in Matlab, e.g.,
radix-2 add-compare-select function returns two metrics and two bits as follows

[a,b,sela,selb] = fu1.acs(c,d,e, f); .

The parallel assignments or functions are separated with commas and consecutive
operations with semicolons. If the right-hand side of the assignment is a function and the
left-hand side is a register variable, operands will be passed to the function unit during
the current clock cycle and the assignment to the left-hand side will be issued after the

program ⇐ declaration-list block-list
declaration ⇐ register variables | bypass variables |

bool variables
block ⇐ stmnts-block | loop-block
stmnts-block ⇐ label: { statement-list }
loop-block ⇐ label: loop(immediate) { statement-list }
statement ⇐ assignment | function | no-operation
assignment ⇐ lhs = rhs
lhs ⇐ single-lhs | [list-of-single-lhs]
single-lhs ⇐ jump | variable
rhs ⇐ number | variable | function | conditional
function ⇐ identifier . operation(operand-list)
conditional ⇐ if(variable) number | variable | function
operand ⇐ number | variable
number ⇐ immediate | long-immediate | label
immediate ⇐ decimal | hexadecimal | octal | binary
long-immediate ⇐ ’immediate’
no-operation ⇐ . . .

Fig. 3. Syntax of the proposed parallel language

latency of the function unit. On
the contrary, immediately avail-
able right-hand side is assigned on
the current clock cycle.

The variables are divided into
three classes: registers, Booleans,
and bypass variables. Register and
Boolean variables are automati-
cally mapped to registers, regis-
ter files, and Boolean registers
of the processor. It is assumed,
that the processor contains enough
registers. The introduction of by-
pass variables is a novel contribu-
tion in the proposed syntax. The
bypass variables behave like dy-
namically defined macros. When a
bypass variable is used in the left-
hand side of a function, its value
will be set to a string, which de-
fines the outcome port of the func-
tion unit. Later, when the bypass
variable is used on the right-hand side or as an operand, it will be replaced with the
saved presentation of result port. In the next example, value of 10 + a is stored in ad-
dress 0xFF with the aid of bypass variable b:

b = fu1.add(10, a);
fu2.st(0xFF, b);

will be compiled to
10 → fu1.add o, r1 → fu1.add t;

255 → fu2.st o, fu1.add r → fu2.st t; .

In the resulting assembly code, variable a resides in register r1 and details about ac-
cessed ports and buses are excluded. The example shows that, in reality, the variable b
did not use any resources. Its value was obtained directly from the unit, which generated

242 P. Salmela et al.

the value. The purpose of the bypass variables is to easily pass short life-time results of
function units for later use. Their usage avoids extensive use of registers and reduces the
size of the register files. Since usage of bypass variables does not increase the complex-
ity of the processor, there is no practical limit on the number of bypass variables. For
these reasons, the bypass variables encourage imperative programming style without
reserving real registers.

The guarded moves are generated with conditional structures like, e.g.,

a = if(b) fu1.add(a, 10);

where b is a Boolean variable. In a similar way as in the assembly language, the branch-
ing occurs when program counter is accessed via assignment to the jump keyword.
Longer conditional branches can be created with conditional jumps to different code
blocks, which is a typical compilation strategy for processors lacking conditional exe-
cution of single operation. However, jumping can be disadvantageous due to the jump
latency.

4.2 Resource Allocation

The user does not have to provide detailed information about ports, units, and buses
since the missing information is resolved automatically. The port names of the function
units are defined systematically and, therefore, they can be derived easily. The function
name consisting of the name of the function unit, dot, and operation is split and the port
names are formed by concatenation of unit name, underscore, and a port letter, which
indicate whether the port is a trigger, operand, or result port. For example, fu1.add()
will result in ports fu1 r, fu1 o, and fu1 t.

When register variables are mapped to registers, two register files are assumed. The
variables are mapped in the same order as they are defined. Thus, every
other variable will get even register number and is mapped to the first register file and
every second variable is mapped to odd registers in the second register file. The register
files are also accessed via read or write ports. If there are several accesses to the same
register file the next free read or write port is used. In other words, the processor must
have as many ports for register file as the maximum number of parallel accesses in the
program. However, in practice, extensive use of registers can be avoided by applying
bypass variables when possible.

The mapping of compiled moves to the buses consists of several steps. First, the
maximum parallelism M, i.e., the maximum number of parallel moves is obtained from
the program. The M will be also the number of buses. Second, source-destination pairs
are formed from every move of the program and their frequencies are counted, i.e., a
distribution of source-destination pairs is generated. Third, M most frequent source-
destination pairs, i.e., moves, are mapped to the M buses in consecutive order. Next,
when deciding the bus for moves at current cycle, all the moves which are in the set of
the most frequent M moves, are assigned to the previously determined buses. Thereafter,
unassigned moves are mapped to the remaining free buses in consecutive order. The
main purpose of this practice is to let the most frequent moves use always the same
path along the interconnection network. Thus, they will never increase the complexity
of the interconnection network by requiring extra connections.

Software Pipelining Support for Transport Triggered Architecture Processors 243

4.3 Pipelining bypass addr, index, data;
init: {

addr = 0x1F, index = 0;
}
main: loop(32) {

index = fu4.add(index, 1);
data = fu6.mul(index, index);
addr = fu3.add(addr, 4);
fu1.st(data, addr);

}
a)
00: 0→fu4.add t, 1→fu4.add o;
01: fu4.add r→fu6.mul o, fu4.add r→fu6.mul t, 1→fu4.add o,

fu4.add r→fu4.add t;
02: fu4.add r→fu6.mul o, 4→fu3.add o, fu4.add r→fu6.mul t,

31→fu3.add t, 1→fu4.add o, fu4.add r→fu4.add t;
03: fu4.add r→fu6.mul o, 4→fu3.add o, fu4.add r→fu6.mul t,

fu6.mul r→fu1.st t, 1→fu4.add o, fu3.add r→fu1.st o,
fu4.add r→fu4.add t, fu3.add r→fu3.add t;

04: fu4.add r→fu6.mul o, 4→fu3.add o,fu4.add r→fu6.mul t,
fu6.mul r→fu1.st t, 1→fu4.add o, fu3.add r→fu1.st o,
fu4.add r→fu4.add t, fu3.add r→fu3.add t;

05: fu4.add r→fu6.mul o, 4→fu3.add o, fu4.add r→fu6.mul t,
fu6.mul r→fu1.st t, 1→fu4.add o, fu3.add r→fu1.st o,
fu4.add r→fu4.add t, fu3.add r→fu3.add t;

06: fu4.add r→fu6.mul o, 4→fu3.add o, fu4.add r→fu6.mul t,
fu6.mul r→fu1.st t, 1→fu4.add o, fu3.add r→fu1.st o,
fu4.add r→fu4.add t, fu3.add r→fu3.add t;

07: fu4.add r→fu6.mul o, 4→fu3.add o, fu4.add r→fu6.mul t,
fu6.mul r→fu1.st t, 1→fu4.add o, fu3.add r→fu1.st o,
fu4.add r→fu4.add t, fu3.add r→fu3.add t;

08: fu4.add r→fu6.mul o, 4→fu3.add o, fu4.add r→fu6.mul t,
fu6.mul r→fu1.st t, fu3.add r→fu1.st o, fu3.add r→fu3.add t;

09: 4→fu3.add o, fu6.mul r→fu1.st t, fu3.add r→fu1.st o,
fu3.add r→fu3.add t;

10: fu6.mul r→fu1.st t, fu3.add r→fu1.st o;
b)
02: 0→b0; 03: 0→fu51.add t, 0→fu51.add o;
04: !b0:4→jump;
05: 1→fu51.add t, fu51.add r→fu51.add o;
06: fu51.add r→fu50.eq t, 6→fu50.eq o;
07: fu50.eq r→b0;
c)

Fig. 4. Example loop, which sets ith array elements to i2: (a) orig-
inal loop, (b) pipelined loop, and (c) loop control code

All the program blocks
preceded with the loop
keyword and iteration
count are pipelined. If
there is a need for non-
pipelined loops, they can
be implemented by reg-
ular conditional jumps
back to the beginning of
loop body. In principle,
the loops are pipelined in
a similar manner as in
Fig. 2. The pipelining al-
gorithm basically copies
the code of the loop body
to be issued on consecu-
tive clock cycles. An ex-
ample loop is illustrated
in Fig. 4(a). First, by-
pass variables for write
address, data, and array
index are created. The
loop iterates 32 times
and sets ith elements to
i2. Since the memory
is byte wise addressable,
the memory pointer is
always incremented by
four. Since the latency of
the multiplication is two
clock cycles, a new it-
eration can be issued on
every clock cycle with-
out conflict of multiplier
resource if the result of
multiplier is read in the
same clock cycle when
it becomes available. The
pipelined loop is given
in Fig. 4(b). For sim-
plicity, the lowest level
details about bus and
interconnection network
socket identification are

244 P. Salmela et al.

excluded. The instructions 00, . . . , 03 start iterations and the instruction 03 contains
the last move of the first iteration. On the contrary to the example in Fig. 2 the first
iteration must be issued as a special case. The first iteration uses values of bypass vari-
ables, which are set in the init block in Fig. 4(a). The values are copied to the code of
the first iteration. Thereafter, during the rest of the iterations, the bypass variables have
new values, which are the results of function units. For this reason, each loop block is
read twice. The first pass sets initial values of bypass variables for the first iteration.
The second pass sets the values for rest of the iterations.

The instructions 04, . . ., 07 maintain full parallelism of four instances of loop it-
erations. All the instructions 04, . . . , 07 are identical. The reason for repeating four
instructions is the jump latency of the processor, i.e., the minimum size of the repeated
block must be four instructions. Instructions 08, . . ., 10 finish the iterations one by one
and the last result is stored in instruction 10. Loop control code is given in Fig. 4(c).
The control code is executed in parallel with the loop code in Fig. 4(b). Due to the
jump latency, the jump instruction is issued on instruction 04. The instruction 03 sets
the initial state of the loop counter.

For i loop iterations, the number of repetitions, R, for the loop kernel, whose length
is L instructions, is

R = max(0,�(i− 2L)/L�) (1)

and the number of extra loop iteration instances, e, is

e = i− (2L+ RL) . (2)

The extra iteration instances are required when the remainder of the division in (1) is
not zero. In practice, issuing extra iteration instances means that the loop is partially
unrolled. The total number of generated loop iteration instances, N, is

N = 2L+ e . (3)

Since each iteration instance spans over four instructions in Fig. 4(b), the instruction
number 10 contains the last moves.

The pipelining algorithm assumes that the next iteration can be started on the next
clock cycle. This is a justified assumption for tight signal processing kernels, where the
main computation resources are fully utilized, i.e., new operands are fed to the main
function units on every clock cycle. The second assumption is avoidance of resource
conflicts. Since all the moves of loop are issued in parallel, the function units in the
original loop must be separate. Furthermore, to avoid conflicts of intermediate values,
the generated outcomes, which are stored either in bypass or register variables, should
be used on the next clock cycle. If longer life-time is required a new copy instance of
the variable must be used on each clock cycle.

The jump latency and length of the loop control code in Fig. 4(c) set a minimum
loop length of four instructions. For example, in Fig. 4(a), the index variable could be
incremented in parallel with increment of addr variable, which results in loop kernel
of three instructions. However, even if they are issued sequentially in the original code,
both the operations are executed in parallel in the software pipelined code. In practice,
such short loop kernels are rare if there is a three clock cycles long latency of memory
load operations.

Software Pipelining Support for Transport Triggered Architecture Processors 245

5 Case Studies

The performance of the software pipelining is exemplified by applying the loop con-
struct to an iterative computation of two functions. In Table 1, the performance is given

bypass addr1, addr2, data1, data2, prod, sum;
init: {

addr1 = 0, addr2 = ’1024’, sum = 0;
}
main: loop(256) {

data1 = fu1.ld(addr1), data2 = fu2.ld(addr2),
addr1 = fu3.add(addr1, 4), addr2 = fu4.add(addr2, 4);
...;
...;
prod = fu6.mul(data1, data2);
...;
sum = fu5.add(prod, sum);

}
end: {

fu1.st(sum, 0);
}

a)
bypass addr1, addr2, data1, data2, prod, sum;
bool b1;
init: {

sum = fu5.add(0,0);
addr1 = fu3.add(0, 0), addr2 = fu4.add(’1024’,0);

}
main: {

data1 = fu1.ld(addr1), data2 = fu2.ld(addr2);
addr1 = fu3.add(addr1, 4), addr2 = fu4.add(addr2, 4);
jump = if(!b1) main:;
prod = fu6.mul(data1, data2);
b1 = fu50.eq(addr1, ’1020’);
sum = fu5.add(prod, sum);

}
end: {

fu1.st(sum, 0);
}

b)

Fig. 5. (a) Source code of the ∑255
i=0 aibi applying automat-

ically generated software pipelined loop. Three dots, . . . ,
is the mnemonic of the no-operation. Long immediates are
denoted with quotes, short immediates without quotes. (b)
Source code of the ∑255

i=0 aibi. No software pipelining is
applied.

as clock cycles per iteration.
The first function ∑255

i=0 aibi is
an inner product and the sec-
ond function ∑255

i=0(ai − bi)2

computes a sum of squares,
which is needed when comput-
ing distances of multidimen-
sional vectors. The samples ai

and bi are loaded from the
memory and a dual access to
the memory is enabled. The re-
sults are stored to the mem-
ory after the computation. The
source code of the pipelined
loop is shown in Fig. 5(a). Due
to the latencies of the function
units NOP instructions must be
used as shown in the source
code.

As a second case in Table 1,
the loop is created with a con-
ditional jump to the beginning
of code block, i.e., no soft-
ware pipelining is applied. The
program code for this func-
tion is shown in Fig. 5(b). As
a third method in Table 1 the
program is generated with C
compiler. The compiler uses a
modified version of gcc, which
generates analogous sequential
move instructions for typical
assembly instructions found
in general purpose processors.
Next, a dedicated program,
scheduler, is used to schedule
parallel moves and allocate re-
sources. Relatively modest per-
formance is obtained since not
even partial pipelining is ap-
plied. Therefore, the sequential
execution is slowed down by

246 P. Salmela et al.

Table 1. Clock cycles per iteration of inner product and sum of squared differences functions

∑255
i=0 aibi ∑255

i=0(ai −bi)2

Pipelined loop 1.04 1.05
Non-pipelined assembly loop 6.03 7.03
TTA compiled C code 7.04 8.04
C55x compiled C code 1.01 5.00

Table 2. Program source code size in the proposed language and parallel TTA assembly in bytes

Proposed Assembly Ratio

∑255
i=0 aibi pipelined 370 7954 0.05

non-pipelined 451 1752 0.25
∑255

i=0(ai −bi)2 pipelined 405 10270 0.04
non-pipelined 504 2067 0.24

the latencies of the function units, e.g., the latency of load operation is three clock
cycles and multiplication takes two clock cycles. Since not even partial pipelining
is used the operations cannot overlap and they are issued sequentially. In all the
TTA processor cases in Table 1, the processor contains sufficient resources, i.e.,
there is no performance bottleneck of lacking some computing resource. Thus, the
effect of processor configuration is excluded.

For comparison, the same functions are executed on TI TMS320C55x digital signal
processor [9] and the required clock cycles per iterations are shown in Table 1. The
inner product is such a function that it lends itself to the MAC instruction available
on C55x [10]. On the contrary, TTA processors in Table 1 use separate multiplier and
adder units for MAC operation. Since C55x is dedicated to signal processing tasks it
has an excellent performance on inner product and the C compiler is able to generate
a hardware loop, where a single MAC instruction is repeated on every clock cycle.
On the contrary, the second function requires sequential execution, which results in a
performance penalty.

Finally, the size of the generated code is observed to exemplify reduction in manual
programming work and the increase in abstraction level. The sizes of source code in
introduced language and generated low-level assembly code are given in Table 2, which
shows that when applying software pipelining the size of the original source is only
5% of the generated code. The tremendous decrease in code size justifies use of the
developed language and tool support, when software pipelining is required. The Table 2
shows also that, even if the software pipelining is not applied, the size of the source code
is only one fourth of the generated assembly code.

6 Conclusions

Parallel assembly programming is a demanding task calling for a support for automatic
code generation. Especially, the software pipelining results in extensive parallelism and

Software Pipelining Support for Transport Triggered Architecture Processors 247

long instruction words. However, to achieve adequate performance for signal processing
and telecommunication applications, the software pipelining is essential. Otherwise, the
resources are only partially utilized and the performance is degraded. In this paper, the
parallel language syntax for TTA processor was developed with intuitive presentation
without loosing the expressiveness of the language. The capability to generate software
pipelined code for the loops was the main achievement. The introduction of the by-
pass variables allowed imperative programming style without reserving extra registers,
thus, it results in lower complexity of the processor. The results showed that the effect in
performance was outstanding. Finally, the sizes of the source and generated code
showed the amount of saved manual programming work.

Acknowledgement

This work has been supported by the National Technology Agency of Finland under
research funding decision 40441/05.

References

1. Kokozinski., R., Greifendorf, D., Stammen, J., Jung, P.: The evolution of hardware platforms
for mobile ’software defined radio’ terminals. In: IEEE Int. Symp. Personal Indoor Mobile
Radio Commun. Volume 5., Freiburg, Germany (2002) 2389–2393

2. Keutzer, K., Malik, S., Newton, A.R.: From ASIC to ASIP: the next design discontinuity. In:
IEEE Int. Conf. Computer Design: VLSI in Computers and Processors, Freiburg, Germany
(2002) 84–90

3. Corporaal, H.: Microprocessor Architectures from VLIW to TTA. John Wiley & Sons Ltd
(1998)

4. Corporaal, H., Arnold, M.: Using transport triggered architecture for embedded processor
design. Integrated Computer-Aided Eng. 5 (1998) 19–38

5. Salmela, P., Järvinen, T., Sipilä, T., Takala, J.: Scalable FIR filtering on transport triggered
architecture processor. In: Int. Symp. Signals Circuit Syst., Iasi, Romania (2005) 493–496

6. Salmela, P., Järvinen, T., Sipilä, T., Takala, J.: 256-state rate 1/2 Viterbi decoder on TTA
processor. In: IEEE Int. Conf. Application-Specific Syst. Architectures Processors. Vol-
ume 2., Samos, Greece (2005) 370–375

7. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Computing
Surveys 27 (1995) 367–432

8. Fisher, J.A., Faraboschi, P., Young, C.: Embedded Computing: A VLIW Approach to Archi-
tecture, Compilers and Tools. Morgan Kaufman Publishers Inc. (2004)

9. Texas Instruments: TMS320C55x Technical Overview. (2000) SPRU393.
10. Texas Instruments: TMS320C55x DSP Mnemonic Instruction Set Reference Guide. (2002)

SPRU374G.

SAD Prefetching for MPEG4 Using Flux Caches

Georgi N. Gaydadjiev and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering, Mathematics and Computer Science Dept.,

EEMCS, TU Delft, The Netherlands
G.N.Gaydadjiev, S.Vassiliadis@ewi.tudelft.nl

http://ce.et.tudelft.nl

Abstract. In this paper, we consider flux caches prefetching and a me-
dia application. We analyze the MPEG4 encoder workload with realistic
data set in a scenario representative for the embedded systems domain.
Our study shows that different well known data prefetch mechanisms
can gain little reduction in the cache miss ratios when applied on the
complete MPEG4 application. Furthermore, we investigate the potential
improvement when dedicated prefetching strategies are applied to the
sum of absolute differences (SAD) kernels in MPEG4. We propose a flux
cache mechanism that dynamically invokes cache designs with dedicated
prefetching engines that can fully utilize the available memory band-
width. We show that our proposal improves the cache miss ratios by a
factor close to 3x.

Keywords: Flux caches, Prefetching mechanisms, Reconfigurable archi-
tectures, Multimedia.

1 Introduction

Flux caches [1] have been proposed as a microarchitectural alternative hardware
mechanism for improving the performance of memories when compared to the
hardwired caches. They are based on two main assumptions. The first assump-
tion regards the availability of technologies that can be reconfigured before and/or
during program execution. The second assumption regards the changing memory
access behavior from program to program and during program execution. Flux
caches are cache hierarchy designs that change dynamically their hardware orga-
nization to capture the memory access requirements of a given program/program
execution. Flux caches assume implicit and explicit dynamic cache calls to
“redesign and place” new hardwired caches instead of having permanent and un-
changeable caches. In order to establish the validity of the approach, this paper as-
sumes a real application and considers prefetching- one of the cache design aspects.
Our experiments with some well know prefetching mechanisms and dynamic exe-
cution suggest that the above conjunctures hold true. For the mechanisms consid-
ered we also provide guidelines of how to design a Flux cache for sum of absolute
differences (SAD) prefetching in MPEG4. It is noted that our investigation is not
intended to propose a novel cache prefetching mechanisms but it is rather focusing
on cache adaptation to ”fit” the application behavior.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 248–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SAD Prefetching for MPEG4 Using Flux Caches 249

The contributions of this paper can be summarized by the following:

– A careful investigation of the memory behavior of a real-life MPEG4 encod-
ing application working on a representative workload;

– Identification of potential kernels that can benefit from a dedicated prefetch
method;

– Special Flux cache organization to fully utilize the available main memory
bandwidth;

– Improvement of the cache miss ratios by a factor close to 3x.

The rest of this paper is organized as follows: Section 2 briefly reviews the
most relevant related work on prefetching. Section 3 describes our experimental
methodology and introduces the MPEG4 flux cache design for optimal prefetch-
ing of SAD8 and SAD16 data. In Section 4 the performance results that support
our idea are described. Finally, the discussion is concluded in Section 5.

2 Background

Fig. 1. Flux cache

In this section we will provide only the background in-
formation needed directly in the reminder of this paper.
It introduces the two major parts used in our work: the
flux cache concept and a very brief classification of cache
data prefetch mechanisms. This is mainly due to space
limitations and the fact that cache prefetching techniques
have been a topic of research for numerous years. The in-
terested reader can refer to overview papers such as [2, 3]
where an elaborated discussion is presented. In addition,
due to the subject we investigate, our background infor-
mation on cache prefetching will be limited to the data
cache prefetching only.

Flux caches: Flux caches are fully customizable memory
levels, envisioned for reconfigurable hardware implemen-
tation, that can be instantiated on demand. The flux cache reconfiguration can
be performed before or during program execution. Implementations of arbitrary
hardware cache design can be ”programmed” under software or hardware con-
trol at runtime. The specific flux cache implementations are pre-determined at
hardware/software co-design stage, i.e. by using application partitioning, moni-
toring, profiling or else. In its general form flux caches would require additional
ISA support, however it has being shown that this is not always necessary, e.g.
as in the MOLEN [4] polymorphic processor case (see [1]). The reconfiguration
of the intended cache design is expected to introduce some reconfiguration over-
head, although the benefits of using the flux cache during program execution
are likely to compensate for it. The general flux cache organization is depicted
in Figure 1.

The three main components of a flux cache are: the arbiter, the control unit and
the reconfigurable HW area available for different cache instantiations. The flux

250 G.N. Gaydadjiev and S. Vassiliadis

cache parameters are usually implicit, however explicit calls (as it will be shown
later in this text) can also be used. There is essentially a single put phase initiated
by the arbiter after detection of a put instruction that interrupts the processor
program flow until the hardware configuration is completed. The put instruction
will be redirected to the control unit and interpreted accordingly. More precisely,
the configuration microcode located at the targeted address will be loaded into
the configuration memory to ensure the flux cache hardware structure. After the
cache reconfiguration is completed (and all valid tags of the ”new” cache are in-
validated) the execution of the processor will continue with the execution of the
next instruction keeping the processor execution consistency intact.

Prefetching for Data Caches classification: Prefetching has been exten-
sively considered to improve cache performance. Data cache prefetching mecha-
nisms the subject of our investigation can be divided into three major classes:
Software, Hardware and Hybrid HW/SW data prefetching schemes. The soft-
ware data prefetching has the potential of issuing requests for only the data that
is expected to be used. This is due to the ability to have an application wide
(compiler) view. The major drawbacks of the software data prefetching are the
additional prefetch instructions overhead, the inability of the compiler to esti-
mate run-time cache miss latencies and difficulty with prefetching of addresses
unknown at compile time, e.g. pointer references. The hardware approaches have
a zero processor overhead and direct access to run-time (latency) information.
In addition, it has been shown that problems inherent to hardware prefetching
such as memory bandwidth contention and cache pollution can be addressed ef-
fectively [5]. On the other hand, the hardware has no direct knowledge of future
references and usually operates within a very limited scope. Furthermore, the
hardware based mechanisms always trade between accuracy and coverage and
can only exploit structured data access patterns. As expected, the hybrid hard-
ware/software data prefetching approaches gain in popularity lately. A variety
of schemes have been proposed ranging from prefetching of very specific access
patterns to more generally applicable approaches [6, 7, 8, 9]. It should be noted
that work in this area is often focused on multiprocessor machines.

The application of the flux caches for prefetching can benefit from the advan-
tages of both the software and the hardware approaches. More precisely they can
combine the compiler knowledge on references far ahead of the SW techniques
with the zero processor overhead and run-time latencies awareness of the hard-
ware approaches. Because flux caches will be called on demand (dynamically)
multiple HW/SW schemes can coexist for single program execution. In addition,
in respect to the proposed hybrid approaches, our proposal do not involve any
additional ISA extension (see [1] for more information) and can instantiate any
of the previously proposed schemes. In the next section we will show how specific
memory intensive MPEG4 kernels can benefit form our approach. It should be
noted that although here we focus on regular array accesses only, similar schemes
can be applied for speeding up memory access to complex pointer structures
(i.e. recursive pointers), sparse matrices or for support of novel vectorization
mechanisms [10, 11].

SAD Prefetching for MPEG4 Using Flux Caches 251

3 MPEG4 Encoder Prefetching Investigation

In this section, before focusing on the envisioned solution we provide discussion
of the methodology we used to perform our evaluation.

Methodology: We base our study on memory traces and the dinero IV [12]
trace driven cache simulator for L1 and L2. Although the traces used in this
study became rather huge (hundreds of gigabytes), we did not have the means
to perform direct hardware measurements - widely accepted as the second pre-
ferred method for cache performance evaluation [13]. The dinero style application
traces for this study where obtained using a modified in-order SimpleScalar 4.0
simulator [14].

As our benchmark we selected a complete MPEG4 encoder application and
a set of representative workloads. This in contrast with the widely used Medi-
abench and EEMBC benchmark suites that concentrate on small kernels and
limited datasets. In order to avoid library calls overhead we created a single sta-
tically linked executable based on xvidcore v.1.1.0 library and xvid encraw.c raw
format MPEG4 encoder. As dataloads we used five of the widely used video con-
ferencing test sequences: foreman, carphone, claire, miss america and grandma.
We obtained those from the Stanford Center for Image Systems Engineering web
site [15]. All video sequences used are in raw format, YUV concatenated with
sub-sampled UV components. The image dimensions are 144 lines x 176 pix-
els per line (or Quarter Common Intermediate Format (QCIF)) with 30 frames
per second as specified by ITU H.261 video conferencing standard [16]. The se-
quence lengths are: 400 (for foreman), 382 (carphone), 494 (claire), 150 (miss
america) and 870 (grandma) frames respectively. The produced MPEG4 output
is in ”raw” format m4v that was found sufficient for our study. We validated
the correctness of the compressed output by using ffmpeg [17]. We limited our
study to only five out of nine available sequences after we found that the data
loads play a minor role for the data miss ratios. As an example, the miss ratios
found vary from 0.26 (foreman) to 0.32 (claire) for exactly the same 2k direct
mapped data cache configuration. This is why only the best performing fore-
man.qcif encoding scenario will be considered in this study. This to investigate
our proposal under worst case conditions.

For our experimental cache we use 2k split instruction and data direct mapped
cache with 16 byte lines with no sub-blocks. This in attempt to evaluate the
effects of the proposed mechanisms instead of working at the noise levels. In
addition, we aim at a solution for simple embedded processors (without any
SIMD extensions) and MPEG4 encoding. The findings in the text hereafter are
general and will show similar relative improvements on arbitrary chosen realistic
data cache sizes, applications and workloads.

Performance Evaluation: To identify the potential targets that may benefit
from prefetching ”on demand” we used both code execution profiling as well
as memory trace analysis. Profiling results show that SAD8 and SAD16 are
responsible for 35.58% and 9.07% of the application cumulative execution time.
In addition, the memory trace analysis indicated that 39.7% of the total data

252 G.N. Gaydadjiev and S. Vassiliadis

Table 1. MPEG4 encoder cache miss ratios and memory fetches

miss ratios fetches
demand prefetch total prefetch total

always 0.265 0.2501 0.2582 1,754,619,345 3,822,878,836
load 0.2682 0 0.2682 0 2,068,259,491
miss 0.2649 0.8399 0.3717 471,670,789 2,539,930,280
OBLa 0.2682 0 0.1451 1,754,619,345 3,822,878,836
tagged 0.2645 0.84 0.3756 494,668,112 2,562,927,603
on demand 0.2682 - 0.2682 - 2,068,259,491

a in dinero VI prefetch distance 1 with sub-block placement disabled

Fig. 2. SAD8 and SAD16 cache impact

memory reads are due to SAD8 (and 11.06% for SAD16) that makes both kernels
primary candidates for prefetch optimizations.

We first started with evaluation of the existing prefetch techniques imple-
mented in dinero IV. Table 1 depicts the miss ratios of a 2k/16bytes direct
mapped data cache for our executable and video sequence (MPEG4 encoder
and foreman.qcif). This table shows that the traditional prefetch strategies do
not have significant impact on the miss ratios for the considered workload. The
only strategy that shows some improvement (reduction from 26.8 down to 14.5
%) is the one block look ahead (OBL). This scheme initiates a prefetch of block
a + 1 when block a is accessed. Such behavior fits well with the memory access
patterns of the investigated MPEG4 kernels as will be shown later in this paper.
A major drawback of OBL (as in the case with always prefetch) is the doubled
number of main memory accesses compared to the ”no-prefetch” scheme pre-
sented in the last row of Table 1. The always prefetch (25.8%) performs very
similar to a cache design without any prefetch (26.8%), while the prefetch on
miss (37.2%) and the tagged prefetch (37.5%) show degradation in the miss
ratios for this particular application. The prefetch on load (26.8%) is applying
essentially the demand fetch policy (no prefetch) since we have not defined any

SAD Prefetching for MPEG4 Using Flux Caches 253

sub-blocks in our experimental data cache. The latter fact will cause disabling of
the sub-block placement and respectively the load-forward-prefetch as explained
in the dinero IV documentation.

uint32_t sad8_c(const uint8_t * const cur,
const uint8_t * const ref,
const uint32_t stride)

{
uint32_t sad = 0;
uint32_t j;
uint8_t const *ptr_cur = cur;
uint8_t const *ptr_ref = ref;
for (j = 0; j < 8; j++) {

sad += abs(ptr_cur[0] - ptr_ref[0]);
sad += abs(ptr_cur[1] - ptr_ref[1]);
sad += abs(ptr_cur[2] - ptr_ref[2]);
sad += abs(ptr_cur[3] - ptr_ref[3]);
sad += abs(ptr_cur[4] - ptr_ref[4]);
sad += abs(ptr_cur[5] - ptr_ref[5]);
sad += abs(ptr_cur[6] - ptr_ref[6]);
sad += abs(ptr_cur[7] - ptr_ref[7]);
ptr_cur += stride;
ptr_ref += stride;

}
return sad;

}

Fig. 3. SAD8 C code

Next, we produced par-
tial memory traces to investi-
gate the relative behavior of
the SAD8 and SAD16 ker-
nels compared to the ”re-
minder” of the application
code. Again, we based out ex-
periments on the same cache
organization and size for the
sake of a common reference
for comparison. The main
question was how the differ-
ent parts of the investigated
workload will influence the
cache performance. The re-
sults are summarized in Fig-
ure 2. As it can be seen
on this figure, the identified
kernels perform worse than
the full application when us-
ing the same cache size. In
general, the ”overall” code
(/SAD16, read as not SAD16,
and /SAD8 on Figure 2)
shows a very minimal im-
provement of a couple of per-

cents compared to the complete application figures. Considering the significant
contribution of both kernels to the total number of MPEG4 encoder memory
reads, we took a closer look at their internal structure.

Fig. 4. SAD8 execution diagrams

The C-code of the SAD8
kernel is shown on Figure 3.
SAD16 loop has a similar
structure with twice as long
body and doubled number
of iterations. As it can be
seen the memory accesses
of the SAD operation are
predominately reads of ar-
ray elements. In addition, the
memory access pattern of the
complete loop is 100% deterministic and is basically predefined by the three
input parameters. This is an advantage that should be exploited.

254 G.N. Gaydadjiev and S. Vassiliadis

Please note that all software prefetching techniques will fail to fully schedule
the complete loop access pattern, since the stride is continuously adjusted from
call to call and not known at compile time. Although this loop can be optimized
by applying specific SIMD instructions (for ISA extensions like MMX, AltiVec
and 3DNow!), the memory bandwidth requirements will remain unchanged.

The solution: SAD Flux Cache. Taking into account that the stride is usually
much bigger than the cache line size, the SAD8 and SAD16 execution is envi-
sioned to involve many stall cycles due to the main memory latency as indicated
on Figure 4(a).

Fig. 5. SAD8 prefetch flux cache

In such case the proces-
sor is supposed to wait for
the main memory to provide
the requested data that is of-
ten not resident in the cache.
Please note that by process-
ing we mean the execution of
all instructions involved in a
single loop iteration. The ref-
erence to the ptr cur[0] and
ptr ref [0] will bring all of the
elements needed (and maybe
more data) into the cache line
(indicated as ”memory delay”
in our figure).

The optimal case will be
to have a prefetch strategy
in hardware (prefetch engine)

that mimics the memory access patterns of both SAD8 and SAD16 kernels. Con-
sidering the fact that the start addresses and the stride are changed dynamically,
it should be possible to pass this information to the prefetch engine on run-time
(every time the procedure call is initiated). This ideally should be done without
any additional burden for the processor ISA.

It should be noted that all of the above can be done fairly easy by applying a
specialized flux cache (a very small cache installed/deinstalled on demand). The
proposed organization is shown in Figure 5. It consists of two stream buffers that
are filled from the main memory locations indicated by the values stored in R1
and R2. The flux cache control is not only responsible for incrementing the two
pointers but will also check for the loop boundaries and apply the stride offset
when necessary. We apply the two stream buffers to fully utilize the available
main memory bandwidth by exploiting properties like interleaving. Since the
prefetching is completely decoupled from the program execution and there are
two ”channels” applied, the memory accesses can be performed in a back to back
fashion as shown in Figure 4(b).

SAD Prefetching for MPEG4 Using Flux Caches 255

uint32_t sad8_c(const uint8_t * const cur,
const uint8_t * const ref,
const uint32_t stride)

{
uint32_t sad = 0;
uint32_t j;
uint8_t const *ptr_cur = cur;
uint8_t const *ptr_ref = ref;
__asm("movtx xr1,cur");
__asm("movtx xr2,ref");
__asm("movtx xr3,stride");
__asm("movtx xr4,#8");
__asm("set $SAD_prefetch_flux");
for (j = 0; j < 8; j++) {

sad += abs(ptr_cur[0] - ptr_ref[0]);
...
sad += abs(ptr_cur[7] - ptr_ref[7]);
ptr_cur += stride;
ptr_ref += stride;

}
__asm("set $2k_16_DM_LRU");
return sad;

}

Fig. 6. Modified SAD8 C code

This is possible since both
data addresses are known at
advance (and are usually far
away from each other), so the
location of each memory read
can be perfectly predicted
and pre-scheduled. This all
results in a highly effective
prefetch strategy that in ad-
dition has a limited hardware
cost.

The proposed flux cache
will be installed before the ex-
ecution of the SAD loop and
its interface works as follows.
The R1 and R2 are the two
address pointers to the cur-
rent (cur) and the reference
(ref) arrays. These pointers
are passed to the hardware
prefetch engine together with
the stride (stride) and the
loop length (N = 8 or 16)
parameters on subroutine call
boundary. We envision an im-

plementation of the proposed engine in the MOLEN polymorphic processor sce-
nario: flux cache plus exchange registers bank for parameters passing. Please
note that this is a slightly more complicated MOLEN utilization than the one
described in [1]. The stream buffers size is limited and envisioned to be no more
than two loop iterations, e.g. 32 entries in case of SAD16. The required buffer
length can be estimated from the ratio of the average memory latency and the
expected loop execution time (both measured in processor cycles). In addition,
very limited control logic for scheduling of the fetches from the main memory is
required. The hardware complexity of such control logic is in the order of four
binary counters and one multiplexor. Please note that any specific memory burst
mode can be implemented into the prefetch controller to exploit the particular
memory bandwidth and resources (e.g. DMA controllers) available in the specific
targeted system. The latter does not necessarily increase the complexity of the
proposed control hardware.

The modified SAD8 loop for the MOLEN programming paradigm [18] is shown
in Figure 6. The four additional movtx MOLEN instructions at the beginning
are to ”instruct” the SAD prefetch engine about the array access pattern and
the loop boundaries as described earlier. We added the inline assembly code by
hand, however the generation and the scheduling process can be integrated in

256 G.N. Gaydadjiev and S. Vassiliadis

the MOLEN compiler [19]. Please note the mapping of the flux cache put onto
the MOLEN set instructions as previously proposed in [1].

As indicated earlier the same flux cache can be used for both SAD8 and
16 without any future modifications. The selection between the two kernels is
done by the constant stored in xr4 (8 or 16). After loop completion the cache
configuration used for the ”overall” MPEG4 application code is to be restored by
the second set instruction. Please note that the reconfiguration latency is not a
major point of concern. Assuming sufficient hardware resources are available, and
considering the limited size of the proposed SAD flux cache, both flux caches
(SAD prefetch flux and 2k 16 DM LRU) can be resident in the configuration
memory (the reconfigurable hardware) at the same time. This will reduce the
configuration overhead of the two set operations down to a trivial multiplexer
switch of the address and the data busses. In addition, such scenario will prevent
the cold start effects for the flux cache used for the ”overall” code. For the SAD
flux cache the cold start is a minor concern, since such a behavior is inherent to
its functionality, e.g. the pointers and the stride are reused in very rare situations
among two subsequent calls. The only overhead of the proposed flux cache will
remain the four additional register to register transfer movtx instructions that
have no impact on the main memory bus utilization.

4 Results

The improvements of the cache miss ratios of the proposed design are shown in
Figure 7. The four bars (from left to right) represent the following cases: no flux
cache (the base for the comparison), flux cache for SAD16 only, SAD8 flux cache
and general SAD (8 and 16) flux cache as proposed in Section 3. The ”remainder”
of the code is using a similar 2k/16 direct mapped data cache as in the reference
case (complete application without flux cache). It is interesting to note that 2k

Fig. 7. MPEG4 encoder 2K DM cache and flux cache for the kernels

SAD Prefetching for MPEG4 Using Flux Caches 257

direct mapped cache without prefetch in combination with a SAD flux cache for
the SAD8 kernel only performs better (cache miss ratio of 13%) than a 2k DM
cache with OBL prefetch strategy (14.5%) that is the best performing standard
prefetch mechanism for the complete application. In addition, when our flux
cache is applied to both kernels the miss ratios are reduced down to the range
4.5% (for OBL) - 9.5% (for tagged prefetch). That is an improvement by near
3x. When our flux cache is applied the number of prefetches (and their impact
on the main memory bus) will be reduced by a number close to the cumulative
SAD8 and SAD16 memory read accesses. This forms one additional advantage of
our proposal especially in the envisioned constrained embedded system context.

5 Conclusions

In this paper, we investigated the data memory access behavior of xvid MPEG4
encoder, identified kernels that can benefit form a dedicated prefetch mechanism
and proposed a flux cache design to cope with it. More precisely, we studied the
memory patterns of SAD8 and SAD16 during the MPEG4 encoding process. We
proposed a flux cache design that optimally utilizes the main memory bandwidth
with a trivial hardware complexity. We showed that our approach can reduce the
data cache miss ratios by a factor close to 3x and expect to significantly reduce
the number of main memory accesses when the proposed prefetching is applied.
Our study focused on rather small data cache sizes (the case for very small,
power constrained embedded systems) however similar relative improvements
are envisioned for any realistically chosen configuration.

References

1. Gaydadjiev, G.N., Vassiliadis, S.: Flux caches: What are they and are they use-
ful? In: Proceedings of the 5th International Workshop on Computer Systems:
Architectures, Modelling, and Simulation (SAMOS 2005). (2005) 93–102

2. VanderWiel, S.P., Lilja, D.J.: Data prefetch mechanisms. ACM Computing Surveys
32 (2000) 174–199

3. Smith, A.J.: Sequential program prefetching in memory hierarchies. IEEE Com-
puter 11 12 (1978) 7–21

4. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The molen polymorphic processor. IEEE Transactions on Computers (2004)
1363– 1375

5. Lin, W.F., Reinhardt, S.K., Burger, D.: Reducing DRAM latencies with an inte-
grated memory hierarchy design. In: HPCA. (2001) 301–312

6. Gornish, E.H., Veidenbaum, A.: An integrated hardware/software data prefetching
scheme for shared-memory multiprocessors. Int. J. Parallel Program. 27 (1999)
35–70

7. Chen, T.F.: An effective programmable prefetch engine for on-chip caches. In:
MICRO 28: Proceedings of the 28th annual international symposium on Microar-
chitecture, Los Alamitos, CA, USA, IEEE Computer Society Press (1995) 237–242

258 G.N. Gaydadjiev and S. Vassiliadis

8. Zhang, Z., Torrellas, J.: Speeding up irregular applications in shared-memory
multiprocessors: memory binding and group prefetching. In: ISCA ’95: Proceedings
of the 22nd annual international symposium on Computer architecture, New York,
NY, USA, ACM Press (1995) 188–199

9. Wang, Z., Burger, D., McKinley, K.S., Reinhardt, S.K., Weems, C.C.: Guided
region prefetching: a cooperative hardware/software approach. In: ISCA ’03: Pro-
ceedings of the 30th annual international symposium on Computer architecture,
New York, NY, USA, ACM Press (2003) 388–398

10. Corbal, J., Espasa, R., Valero, M.: Three-dimensional memory vectorization for
high bandwidth media memory systems. In: MICRO 35: Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, Los Alamitos,
CA, USA, IEEE Computer Society Press (2002) 149–160

11. Kuzmanov, G., Gaydadjiev, G.N., Vassiliadis, S.: Visual data rectangular memory.
In: Proceedings of the 10th International Euro-Par Conference (Euro-Par 2004).
(2004) 760–767

12. Edler, J., Hill, M.D.: Dinero IV trace-driven uniprocessor cache simulator. (1998)
http://www.cs.wisc.edu/˜markhill/DineroIV.

13. Smith, A.J.: Cache Memories. Computing Surveys 14 (1982) 473–530
14. Burger, D., Austin, T.M., Bennett, S.: Evaluating future microprocessors: The

simplescalar tool set. Technical Report CS-TR-1996-1308 (1996)
15. (http://ise.stanford.edu/labsite/ise_test_images_videos.html)
16. (http://www.itu.int/rec/recommendation.asp?lang=en\&parent=T-REC-H.261)
17. (http://ffmpeg.sourceforge.net)
18. Vassiliadis, S., Gaydadjiev, G.N., Bertels, K., Panainte, E.M.: The molen program-

ming paradigm. In: Proceedings of the Third International Workshop on Systems,
Architectures, Modeling, and Simulation. (2003) 1–10

19. Panainte, E.M., Bertels, K., Vassiliadis, S.: Compiling for the molen program-
ming paradigm. In: Proceedings of the 13th International Conference on Field
Programmable Logic and Applications (FPL’03). (2003) 900–910

Effects of Program Compression

Jari Heikkinen and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
{jari.heikkinen, jarmo.takala}@tut.fi

Abstract. The size of the program code has become a critical design constraint
in embedded systems, especially in handheld devices. Large program codes re-
quire large memories, which increase the size and cost of the chip. In addition,
the power consumption is increased due to higher memory I/O bandwidth. Pro-
gram compression is one of the most often used methods to reduce the size of
the program code. In this paper, two compression approaches, dictionary-based
compression and instruction template-based compression, were evaluated on a
customizable processor architecture with parallel resources. The effects on area
and power consumption were measured. Dictionary-based compression reduced
the area at best by 77% and power consumption by 73%. Instruction template-
based compression resulted in increase in both area and power consumption and
hence turned out to be impractical.

1 Introduction

Embedded systems are nowadays widely used in many consumer products, such as au-
tomobiles, home automation, and portable electronics. Portable embedded systems, like
cellular phones, personal digital assistants (PDA), game consoles, and media players,
are often limited by constraints on size, weight, battery life, and cost. Therefore, re-
ducing the chip area and its power consumption has become crucial in designing this
kind of embedded systems. As the embedded applications are becoming more complex,
the sizes of the programs are also increasing. This results in need for larger memories
and, consequently, to systems, where the memory might already consume more area
than the processor core [1]. Large memories also increase the power consumption, and
hence reduce the battery life. Therefore, minimizing the program size is important in
reducing the area and power consumption of embedded systems.

The increased complexity of embedded systems requires also more processing
power from the underlying processing hardware. Recently, very long instruction word
(VLIW) architectures have gained considerable popularity in embedded systems, espe-
cially in digital signal processing (DSP), due to their modularity and scalability. VLIW
architectures provide more processing power by exploiting the instruction level paral-
lelism (ILP). Operations are executed in parallel in concurrently operating functional
units (FU). The FUs are controlled by a long instruction word that contains dedicated
fields for each FU. This kind of an instruction encoding leads to poor code density as the
full processing power of the architecture cannot always be fully utilized [2]. Poor code
density increases the size of the program code even further. In addition, more power is
consumed as the long instructions increase the program memory I/O bandwidth.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 259–268, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 J. Heikkinen and J. Takala

The size of the program code can be reduced through program compression. The pro-
gram is compressed during compile-time and stored in compressed form in the program
memory. During execution, the compressed instructions are fetched from the program
memory and decompressed back to original form before they are decoded inside the
processor core. The decompressor can be located in or outside the processor core.

Several compression methods have been proposed for VLIW architectures. In one of
the earliest approaches, no-operations (NOP) were eliminated from the instructions [2].
A “mask” identifier, preceding each instruction, specified which fields were present in
the instruction word. A similar approach was presented in [3], where NOPs were elim-
inated by using multiple instruction formats, or instruction templates, that provided
operation slots for only a subset of all the functional units. In [4], a dictionary-based
compression method was applied to VLIWs. Frequently used instruction words were
stored into a dictionary and occurrences of these instructions in the program code were
replaced by codewords. Dictionary-based compression was also applied in [5], where
the non-time-critical part of the program was compressed using superinstructions that
correspond to frequently used instruction patterns. In [6], an approach to minimize the
number of dictionary entries was presented. The dictionary entries were chosen so that
all the instructions of the program code were at most a specified maximum Hamming
distance from a dictionary entry. Bit toggling information was used to restore the origi-
nal instruction. Entropy encoding is another fairly commonly used approach to improve
the code density. It exploits the fact that some symbols are used more frequently than
others. Therefore, the shortest codes are allocated to the most frequent symbols and
vice versa. Entropy encoding has been applied on VLIWs by means of arithmetic cod-
ing, e.g., in [7], and Huffman encoding, e.g., in [8].

In this paper, dictionary-based compression and instruction template-based compres-
sion approaches are implemented in hardware and evaluated in terms of area and power
consumption. These kind of statistics are rarely reported for the program compression
approaches. The two compression alternatives are evaluated on a customizable proces-
sor architecture, transport triggered architecture, that reminds VLIW architectures. Two
customized processors are designed for a set of applications from the DSP application
domain. The program codes of the applications, compiled on the two processors, are
then compressed using the two compression alternatives. The processor designs are im-
plemented in hardware and synthesized onto a 130nm technology to obtain the area and
power consumption statistics.

2 Dictionary Compression

Dictionary-based compression methods use the principle of replacing substrings, e.g.,
words in a text, with a codeword that identifies that substring in a dictionary [9]. The dic-
tionary contains a list of substrings and a codeword for each substring. As the codeword
is smaller than the original substring, compression is achieved. During decompression
the codeword is used to fetch the original substring from the dictionary.

Dictionary-based program compression is based on the fact that instructions in a pro-
gram code are typically highly repetitive [10]. Furthermore, often only a small part of
the instruction set provided by the processor is used. This indicates that the program can

Effects of Program Compression 261

be executed with a set of much shorter instructions. This can be achieved by storing all
the unique instructions of a program into a dictionary and by replacing the instructions
in the program code with indices to the dictionary. Given a program with N unique in-
structions, the length of the codeword is �log2|N|� bits. Thus, the size of the program
memory is reduced. During program execution the compressed instructions need to be
decompressed. Decompression is fairly straightforward. The codeword (dictionary in-
dex), fetched from the program memory is used to obtain the original uncompressed
instruction from the dictionary for decoding and execution. The dictionary, typically
implemented using ROM or standard cells, introduces an additional cost in the control
hardware of the processor core.

3 Instruction Templates

Most programs contain parallelism for the VLIW compiler to exploit. However, pro-
grams contain also parts where data dependencies limit the parallelism resulting in se-
quences of instructions that contain only few operations. As most VLIW architectures
are tailored for the highly parallel parts, the less parallel parts result in large number of
NOPs and waste of instruction bits.

A method using multiple instruction formats, or instruction templates, to avoid ex-
plicit specification of NOPs for VLIW and EPIC architectures has been proposed in [3].
An instruction template provides operation slots only for a subset of the functional units.
The rest of the functional units receive NOPs implicitly. For each instruction, a fixed-
width template selection field is added at the beginning of the instruction to specify the
used template. From its value the instruction decoder obtains the number of fields in the
template, their widths, and their bit positions.

This compression scheme results in variable-width instructions, and, consequently,
more complex instruction fetch and decompression. During decompression, the tem-
plate selection field is inspected and according to its value the bits of the instruction
template are forwarded to the decoder, supplemented with NOPs for the operation slots
that did not have a field in the template. The remaining bits are shifted at the begin-
ning of the instruction register and the bits of the next fetched program memory packet
are concatenated with the bits in the instruction register. A buffer is needed before the
decompressor to avoid overflow in the instruction register.

4 Evaluation Methodology

The compression methods were evaluated in terms of area and power consumption on a
customizable processor architecture, transport triggered architecture (TTA), which is a
class of statically programmed ILP architectures that reminds VLIW architectures [11].
In the TTA programming model, the program specifies only the data transports (moves)
to be performed by an interconnection network. Operations occur as a “side-effect”.
A TTA processor consists of a set of functional units and register files, which are con-
nected to an interconnection network consisting of buses through input and output sock-
ets, as illustrated in Fig. 1. The architecture is extremely flexible and modular and it
allows easy inclusion of special functional units with user-defined functionality.

262 J. Heikkinen and J. Takala

FU

FU

CNTRLRF RF

PROGR
MEM

FU LSUFU DATA
MEM

Fig. 1. TTA processor structure. FU: functional unit. RF: register file. LSU: load-store unit. CN-
TRL: control unit. Dots express connections between buses and sockets.

As TTA resembles VLIW, it also suffers from poor code density. The poor code den-
sity is mostly due to minimal encoding, which leads to long instruction words. Instead
of containing fields for the concurrently operating functional units like in VLIW, TTA
instruction word contains dedicated fields, called move slots, for each bus to define the
data transports. Each move slot contains three fields, as illustrated in Fig. 2. The guard
field provides means for conditional execution. The destination ID field contains the ad-
dress of the socket that reads data from the bus. The source ID field specifies the address
of a socket that is writing data on the bus. During decoding these addresses are com-
pared against the hardwired socket IDs. When the IDs match, a proper action is taken.
In addition, the instruction word usually contains at least one dedicated long immediate
field to define long immediate values, e.g., large constants and jump addresses. Another
reason for poor code density is that the hardware resources are typically tailored for the
highly parallel sections of the program. The less parallel parts result in large number of
null data transports that waste instruction bits.

The two compression methods, dictionary-based and instruction template-based
compression approaches have been evaluated theoretically on TTA in [12,13]. Accord-
ing to the theoretical evaluations, based on the program memory bit sizes, the instruction
template-based compression approach is more effective. However, practical hardware
implementations give more accurate statistics as the theoretical evaluation does not take
into account the actual implementations of the decompressor. Preliminary results of im-
plementing the dictionary-based compression on TTA have been reported in [14], but
with unoptimized decompression structures that have been optimized in this work.

For the hardware implementations of the two compression approaches, two TTA
processors were designed for four benchmarks from the digital signal processing do-
main. The benchmarks realized two versions of the discrete cosine transform (DCT);
two-dimensional (2-D) 8×8 DCT and 1-D 32-point DCT, and 1024-point Radix-4 fast
Fourier transform and Viterbi decoding. The two TTA processors were designed using
the design space explorer of MOVE framework [15], which is a semi-automatic design
environment for designing application-specific instruction set processors. Two config-
urations, a cost-efficient configuration (A) and a configuration being a compromize
between cost and performance (B) were chosen. The resources, i.e., buses, functional
units, and registers of these configurations are described in Table 1. The statistics of

Effects of Program Compression 263

S(9)G(3) D(5) S(9)G(3) D(7) LI(32)

move slot 1 move slot 2

S(9)G(3) D(6)

move slot 0

Fig. 2. Structure of instruction word. G: Guard field. S: Source ID field. D: Destination ID field.
LI: Long immediate field. (x): x-bit field.

the benchmarks compiled on the two processor configurations using the compiler of the
MOVE framework are illustrated in Table 2.

The program codes were compressed using the two compression methods. Dictio-
nary compression was applied at three different symbol granularity levels; at instruc-
tion level, at move slot level, and at ID field level. At instruction level, unique bit pat-
terns to be stored into a dictionary were searched inside full instructions. At move slot
level, instructions were divided into parallel streams according to move slot boundaries
and unique bit patterns were searched inside these streams. At ID field level, instruc-
tions were divided to even smaller streams, according to source and destination ID field
boundaries. For the instruction template-based compression, the cases of having 4 and
16 instruction templates were applied.

The structural hardware descriptions (VHDL) of the two TTA processor cores were
created using the hardware subsystem of the MOVE framework. The control paths of the
processors were then modified to decompress the compressed instructions back to the
original form. The decompressors for the both compression approaches were added to
the decode stage of the three-stage TTA pipeline [11] to avoid an additional pipeline stage
that would have increased the cycle count. In addition, for the instruction template-based
compression, a buffer had to be added to the instruction fetch stage to avoid overflow in
the instruction register. Data and program memories were configured so that the same
memories could be used for all the four benchmark applications. A single-ported, 1kB
data memory was chosen for the configuration A and a 1kB dual-ported data memory
for the configuration B. For the uncompressed program memories, a 512 word, 128-bit
memory (8kB) was used for the configuration A, and 512 word, 192-bit memory (12kB)
for the configuration B. The compressed program memories were configured to match
the widths and lengths of the compressed program codes.

The processors were synthesized using a 130nm CMOS standard cell technology
using the Synopsys Design Compiler version 2003.06. The processors were synthe-
sized with a timing constraint of 200MHz. Data and program memories (SRAM) were

Table 1. Hardware resources of the two TTA processor configurations

Conf. Buses Functional units Registers Instr. width [bits]
A 5 1 multiplier, 1 load-store, 1 ALU, 1 compare, 1

shifter, 1 logic, 1 sign extend
19 128

B 8 1 multiplier, 2 load-stores, 2 ALUs, 1 compare,
3 shifters, 1 logic, 2 sign extend

52 192

264 J. Heikkinen and J. Takala

Table 2. Statistics of the benchmark applications compiled on the two TTA processors

Application Conf. Instruction count Code size Clock cycles
32-point A 484 7744 466
DCT B 441 10584 423
2-D 8x8 A 163 2608 22959
DCT B 137 3288 19455
1024-point A 315 5040 282547
FFT B 149 3576 123667
Viterbi A 367 5872 2710738
decoding B 253 6072 1568227

included as presynthesized macro cells. The switching activities for the power analysis
were obtained from the gate-level simulations run on ModelSim.

Table 3 shows the areas of the uncompressed processor designs. The area of the in-
struction memory is comparable to the area of the processor core. In the configuration
A they are equal, in the configuration B the area of the instruction memory is approxi-
mately 60% of the area of the processor core. Data memory turned out to consume most
of the area. This was due to the lack of I/O support in the current architecture, which
meant that all the input and output data had to be stored into the data memory. The
average power consumptions, when running the four benchmarks, were on average 41
mW for the configuration A and 71 mW for the configuration B. Instruction memory
consumed on average 16.1 mW on configuration A and 25.7 mW on configuration B,
i.e., close to 40% of the total power consumption.

5 Experimental Results

The results of the evaluations are presented in Fig. 3 for the configuration A, and in
Fig. 4 for the configuration B. Figures 3(a) and 4(a) illustrate the results in terms
of area. Figures 3(b) and 4(b) illustrate the results in terms of power consumption.
The areas and power consumptions are shown for the program memory and the control
logic of the processor core as these were the only parts affected by the compression.
The results are presented for the four benchmark applications. In addition, an aver-
age over the four benchmarks is included. For the dictionary compression, results are
given for three symbol granularity levels; instruction level, move slot level, and ID field
level. For the instruction template-based compression, results are shown for the cases

Table 3. Areas of the reference designs

Configuration. data memory instr. memory Processor core Total
[kgates] [kgates] [kgates] [kgates]

A 104 32 31 167
B 410 48 80 538

Effects of Program Compression 265

Gates

0
10000
20000
30000
40000
50000
60000

Control logicProgram memory

T16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIref
32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

(a) Area

mW

0

10

20

30

40

50
Control logicProgram memory

T16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIref
32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

(b) Power consumption

Fig. 3. The obtained results on configuration A. The graph illustrates the areas and power con-
sumptions of the program memory and the control logic for the uncompressed case (ref), for the
dictionary-based compression at full instruction level (FI), at move slot level (MS), and at ID
field level (ID), and for the instruction template-based compression using 4 templates (T4) and
16 templates (T16).

of having 4 and 16 templates. The obtained results indicate that from the two experi-
mented compression alternatives the dictionary-based compression is effective in reduc-
ing both area and power consumption. On the other hand, the instruction template-based
compression turned out to be unusable as it resulted in increase in both area and power
consumption.

With dictionary-based compression, area and power consumption decrease remark-
ably on all symbol granularities. The best reduction in both area and power consumption
is achieved at full instruction level. The area is reduced on average 74% on configura-
tion A and 77% on configuration B. The power consumption is reduced on average
72% and 73%, respectively. Even though most of the instructions are stored into the
dictionary as the probability of finding exactly identical instructions is small, the syn-
thesis tool can efficiently minimize the logic of the dictionary, resulting only small
additional area and power consumption due to the dictionary. The drawback of this
approach is highly limited programmability. The program can be modified only if all
the instructions of the modified program can be found from the original dictionary. As
TTA instructions are long and are composed of several smaller fields, the number of
possible combinations is huge and the probability that all the instructions of the mod-
ified code can be found from the original dictionary is small. An alternative would be
to use RAM to implement the dictionary, but the results would be worse, as is shown
in [14].

266 J. Heikkinen and J. Takala

Gates

0

20000

40000

60000

80000

100000
Control logicProgram memory

T16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIref
32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

(a) Area

mW

0

20

40

60

80

100
Control logicProgram memory

T16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIrefT16T4IDMSFIref
32-point DCT 2-D 8x8 DCT 1024-point FFT Viterbi decoding Average

(b) Power consumption

Fig. 4. The obtained results on configuration B. The graph illustrates the areas and power con-
sumptions of the program memory and the control logic for the uncompressed case (ref), for the
dictionary-based compression at full instruction level (FI), at move slot level (MS), and at ID
field level (ID), and for the instruction template-based compression using 4 templates (T4) and
16 templates (T16).

The programmability can be maintained better when the dictionary-based compres-
sion is made at move slot level. As the bit patterns are smaller, the probability of finding
the correct bit pattern from the dictionary for the modified code is higher. Therefore, to
maintain the programmability at move slot level, it is sufficient that all the move slots
of the modified code can be found from the corresponding move slot dictionaries. The
area and power consumption reductions at move slot level are slightly worse compared
to compression at full instruction level. The area is reduced on average 62%, and power
consumption 56%, on both configurations. Even though the area and power consump-
tion of the control logic is smaller compared to compression at full instruction level,
the program memory is bigger and dissipates more power. This is due to the increased
width of the compressed instruction as it is composed of several dictionary index fields.

Even better possibilities to modify the program can be achieved when the compres-
sion is applied at ID field level as the bit patterns stored into the dictionary are even
smaller than at move slot level. At ID field level, the area is reduced on average 52%
on configuration A and 51% on configuration B. The power consumption is reduced on
average 46% on configuration A and 45% on configuration B. The area and power con-
sumption of the control logic is smaller compared to other levels of dictionary-based
compression, but the area and power consumption of the program memory are higher
because the compressed instruction word becomes wider as it is composed of several
indices to the source and destination ID dictionaries.

Despite the good theoretical compression ratios, instruction template-based com-
pression approach turned out to be unusable on TTA when it was implemented in

Effects of Program Compression 267

hardware as it resulted in increase in both area and power consumption. The increase
is mostly due to the complex decompression procedure. As the compressed instruc-
tions are variable-width, the decompression logic turns out to be fairly complex be-
cause it requires shifting and alignment logic to construct the original instruction. In
addition, a buffer is needed in the instruction fetch logic to avoid overflow in the in-
struction register. This additional logic results in larger area increase in the control unit
than is reduced in the program memory. The decompression logic consumes also a
significant amount of power. In addition, the power consumption of the program mem-
ory remains mostly unchanged even though its size decreases. This is due to the in-
creased width of the program memory and the fact that the power consumption of a
memory is more dependent on the width of the memory than its length. Due to these
two reasons, the instruction template-based compression turns out to increase power
consumption.

6 Conclusions

In this paper, dictionary-based and instruction template-based compression approaches
were evaluated in terms of area and power consumption. These two compression meth-
ods were evaluated on two customized processors that were designed for four bench-
marks from the DSP application domain. Dictionary-based compression was evaluated
with three distinct symbol granularities and instruction template-based compression
with two distinct numbers of templates.

Best reductions in area and power consumption were achieved when the dictionary-
based compression was applied at full instruction level. On average, the area was re-
duced 74% on configuration A and 77% on configuration B. Power consumption was
reduced on average 72% and 73%, respectively. The drawback of this approach is highly
limited programmability. The programmability can be maintained better when the com-
pression is applied at lower symbol granularity levels, but with worse area and power
consumption reductions.

The instruction template-based compression approach turned out to be unusable
compression approach, as it resulted in increase in both area and power consumption.
This was mostly due to variable-width instructions that resulted in complex decompres-
sor that required large area and consumed significant amount of power.

The practical hardware implementations of the compression approaches showed that
theoretical evaluations are not enough to fully evaluate the goodness of a compression
approach as they do not take into account the implementation details of the decom-
pression logic. According to theoretical compression ratios the instruction template-
based compression method was more effective than the dictionary-based compression,
but when the compression approaches were implemented in hardware, dictionary-based
compression significantly outperformed instruction template-based compression.

As TTA reminds VLIW architectures and the instruction formats are comparable,
similar results could be achieved also on customizable VLIW architectures where the
decompressor can be implemented inside the processor core. Because the compression
approaches consider only the occurrence of a group of bits, it does not matter whether
the bits actually represent an operation or a data transfer. VLIW instructions, just like

268 J. Heikkinen and J. Takala

TTA instructions, can be divided into smaller fields to experiment dictionary-based
compression on different symbol granularity levels. The division can be made, e.g., ac-
cording to operation slot boundaries, or divide the operation slots to even smaller fields
according to opcode and operand fields. The instruction template-based compression
may perform better on VLIW as it has been especially designed for it.

References

1. Araújo, G., Centoducatte, P., Azevedo, R., Pannain, R.: Expression tree based algorithms for
code compression on embedded RISC architectures. 8 (2000) 530–533

2. Colwell, R.P., Nix, R.P., O’Connel, J.J., Papworth, D.B., Rodman, P.K.: A VLIW architecture
for a trace scheduling compiler. IEEE Trans. Comput. 37 (1988) 967–679

3. Aditya, S., Rau, B.R., Johnson, R.C.: Automatic design of VLIW and EPIC instruction
formats. Technical Report HPL-1999-94, Hewlett-Packard Laboratories (2000)

4. Nam, S.J., Park, I.C., Kyung, C.M.: Improving dictionary-based code compression in VLIW
architectures. IEICE Trans. Fundamentals of Electronics, Commun. and Comput. Sciences
E82-A (1999) 2318–2124

5. Hoogerbrugge, J., Augusteijn, L., Trum, J., van de Wiel, R.: A code compression system
based on pipelined interpreters. Software - Practice and Experience 29 (1999) 1005–1023

6. Ros, M., Sutton, P.: A Hamming distance based VLIW/EPIC code compression technique.
In: Proc. Int. Conf. on Compilers, Architectures and Synthesis for Embedded Systems, Wash-
ington, DC, U.S.A. (2004) 132–139

7. Xie, Y., Wolf, W., Lekatsas, H.: A code decompression architecture for VLIW processors.
In: Proc. 34th Annual Symp. Microarchitecture, Austin, TX, U.S.A. (2001) 66–75

8. Larin, S.Y., Conte, T.M.: Compiler-driven cached code compression schemes for embedded
ILP processors. In: Proc. 32nd Annual Symp. Microarchitecture, Haifa, Israel (1999) 82–92

9. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann Publishers, San Francisco, CA, U.S.A. (1999)

10. Lefurgy, C., Mudge, T.: Code compression for DSP. Technical Report CSE-TR-380-98,
EECS Department, University of Michigan (1998)

11. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

12. Heikkinen, J., Cilio, A., Takala, J., Corporaal, H.: Dictionary-based program compression on
transport triggered architectures. In: Proc. IEEE Int. Symp. on Circuits and Systems, Kobe,
Japan (2005) 1122–1125

13. Heikkinen, J., Rantanen, T., Cilio, A., Takala, J., Corporaal, H.: Evaluating template-based
instruction compression on transport triggered architectures. In: Proc. 3rd IEEE Int. Work-
shop System-on-Chip for Real-Time Applications, Calgary, AB, Canada (2003) 192–195

14. Heikkinen, J., Takala, J., Corporaal, H.: Dictionary-based program compression on TTAs:
Effects on area and power consumption. In: Proc. IEEE Workshop on Sig. Proc. Systems,
Athens, Greece (2005) 479–484

15. Corporaal, H., Arnold, M.: Using transport triggered architectures for embedded processor
design. Integrated Computer-Aided Eng. 5 (1998) 19–38

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 269 – 278, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Integrated Instruction Scheduling and Fine-Grain
Register Allocation for Embedded Processors*

Dae-Hwan Kim and Hyuk-Jae Lee

School of Electrical Engineering and Computer Science, P.O.Box #054,
Seoul National University, San 56-1, Shilim-Dong, Kwanak-Gu, Seoul, Korea

dhkim@capp.snu.ac.kr, hjlee@ee.snu.ac.kr

Abstract. This paper proposes a new integration technique, called IRIS
(Integrated Register allocation and Instruction Scheduling), to combine instruction
scheduling and register allocation. Both register allocation and instruction
scheduling are performed simultaneously at each variable reference where the
selection between serialization by scheduling and spilling by register allocation is
determined. To make a right selection, the costs of serialization and spilling are
estimated with a cost model proposed to reduce the complexity of the estimation.
Experiments show that IRIS achieves significant improvements when compared
to widely-used existing techniques.

1 Introduction

For embedded systems, both speed improvement and code size reduction are
important goals of an optimizing compiler. An efficient instruction scheduling is
necessary for fast execution while an intelligent register allocator is required for code
size reduction. Instruction scheduling and register allocation make a significant
impact on each other. Therefore, even an efficient instruction scheduling or a register
allocation can reduce the overall performance of a program if they give a negative
effect on each other. In order to achieve the best optimization results, techniques of
integrating instruction scheduling and register allocation have been extensively
studied [1], [5], [8], [9].

Any register allocation is required to reduce register requirement to the number of
machine registers. To meet this requirement, a traditional register allocator spills an
instruction, i.e., does not allocate a register to an instruction. For a register allocator
integrated with an instruction scheduler, it has another option, called serialization
which prohibits overlapped live ranges of variables by adding precedence constraints
among instructions. For an integrated register allocator and instruction scheduler, the
decision to select spilling or serialization is important for its performance.

In previous approaches [5], [8], serialization is preferred to spilling. However,
serialization is not as efficient as spilling for certain architectures and/or program
contexts. For example, pipeline stalls caused by serialization in a heavily nested loop
are more expensive than the cost of spill in less frequently executed regions. To make

* This work was supported by Korea Research Foundation Grant (KRF-2003-003-D00341).

270 D.-H. Kim and H.-J. Lee

a right choice, a precise estimation of the costs of serialization and spilling is
essential. Berson et al. [1] compute the costs for both spilling and serialization, and
then selects the one with the minimum cost. However, the spill cost is computed for
the spill-everywhere technique which inserts a store after every definition and a load
before every use. Thus, the spill cost is somewhat overestimated since it assumes
more spill instructions than are necessary.

In addition to the imprecise comparison of spill and serialization, the limitation of
graph-coloring approach for global register allocation gives another source of severe
performance degradation. The main advantage of the graph-coloring approach is its
simplicity by abstracting each variable as a single node of an interference graph.
However, the simple abstraction results in the loss of information about program
context. Contrary to the global decision of the register allocation where variables are
allocated only once throughout a function, instruction scheduling is basically a local
transformation that is sensitive to the local order of instructions. The mismatch
between the global decision of register allocation and the local decision of instruction
scheduling often reduces the efficiency of the integration of register allocation and
instruction scheduling.

This paper proposes a new integration of global register allocation and local
instruction scheduling addressing the two issues described above. To overcome the
limitation of the graph-coloring register allocation, this paper employs the fine-grain
approach for register allocation recently proposed by Kim and Lee [6]. The fine-grain
approach performs register allocation at every reference of a variable in the order of a
variable reference flow. The register allocation becomes a local decision so that it can
be effectively combined with instruction scheduling. Thus, both register allocation
and instruction scheduling are performed simultaneously at each reference in the
variable reference flow. To address another issue of making a right decision between
spilling and serialization, the costs of various possible schedules and register spills are
estimated and the schedule and register allocation with the minimum cost are selected.
Henceforth, the proposed integration technique is referred as IRIS (Integrated
Register allocation and Instruction Scheduling).

The rest of this paper is organized as follows. Section 2 introduces the register
allocation proposed in [6]. Section 3 presents the proposed algorithm for the
integration of register allocation and instruction scheduling. Section 4 presents the
cost model of the integrated algorithm. Section 5 shows experimental results and
Section 6 presents conclusions.

2 Fine-Grain Register Allocation

Kim and Lee in [6] propose a fine-grain approach for register allocation such that
register allocation is performed at every reference of a variable in the order of a
variable reference flow. It improves the efficiency by using information about the
flow of variable references of a program. For each reference, the costs of various
possible register allocations are estimated by tracing a possible instruction sequence
resulting from the register allocations. A cost model is formulated to reduce the scope
of the trace. This section briefly introduces the register allocation.

For a given program, the fine-grain approach constructs a varef-graph (variable
reference flow graph) that represents a partial order of variable references in the

 Integrated Instruction Scheduling and Fine-Grain Register Allocation 271

program. Each node of this graph represents a variable reference and an edge
represents a control flow of the program, i.e., the execution order of the variable
references of the program. Fig. 1 shows an example program with the corresponding
varef-graph. For illustration, the number of each statement is given in the leftmost
column in the program. Each node in the graph represents the reference of a variable
whose name is given inside the circle. The number in the upper right of the circle is
the node number. Note that this number is different from the statement number
because one statement can have multiple variable references, and consequently,
correspond to multiple nodes in the varef-graph. In Fig. 1, the reference of variable ‘a’
at statement (1) is represented by node ‘1’. The program has two additional references
of variable ‘a’ that are represented by nodes ‘2’ and ‘5’, respectively. Variable ‘b’ is
referenced three times at statements (3), (4), and (5) and the corresponding nodes are
‘3’, ‘4’, and ‘6’, respectively. Note that statement (5) has references of two variables
‘a’ and ‘b’ which are represented by nodes ‘5’ and ‘6’, respectively. An edge
represents a partial execution order. Statement (1) is supposed to be executed first,
and the corresponding node ‘1’ is the root node. Statement (2) is supposed to be
executed next, and the corresponding node ‘2’ is the successor of node ‘1’. Statements
(3) and (4) are executed next to the statement (2), and therefore the corresponding
nodes ‘3’ and ‘4’ are successors of node ‘2’. Statements (3) and (4) must be executed
exclusively, and therefore, there is no edge between nodes ‘3’ and ‘4’. Statements (5)
and (6) are executed next in sequence.

Fig. 1. Fine-grain register allocation (a) example program (b) variable reference flow graph
(varef-graph)

With the order given by the varef-graph, register allocation is performed at every
reference of a variable (i.e. every visit of a node in the varef-graph). The visit order
is a modified breadth-first order that is the same as the breadth-first order with the
modification that guarantees a successor node to be always visited later than its
predecessor. The register allocation continues until all nodes in the varef-graph are
visited. When no register is available, the fine-grain allocator preempts a register
from a previously assigned variable if the preemption reduces the execution cost of
a program. To select the register with maximum cost reduction, the preemption cost
and benefit are analyzed for all possible registers for preemption. The cost
estimation often requires large computation with exponential complexity. Thus, a

(1) a = 1;

(2) if (a)
(3) b = 1;

else
(4) b = 2;

(5) return a + b;

(b) (a)

1
a

2
a

3
b

4
b

5
a

6
b

272 D.-H. Kim and H.-J. Lee

mathematical model for the simple estimation of an approximated cost is derived
and a heuristic with a reasonable amount of computation is developed based on the
cost model [6].

3 Integrated Register Allocation and Instruction Scheduling

Consider the program with the flow graph shown in Fig. 2. It consists of four basic
blocks, B1, B2, B3, and B4. The four boxes in the figure represent the basic blocks.
The contents of each basic block are given inside the box for B1, B3, and B4. For B2,
the program code and its dependence dag are shown separately in the right. In the left
of each box, the number in the parenthesis represents the number of iterations of a
basic block. Basic block B2 is iterated 100 times and needs to be carefully optimized.
In the dag of B2, each statement corresponding to the node is given below the circle
and the statement number is given inside the circle. The cost of an edge is also given
to represent the required latency between instructions. It is assumed that a multiply
instruction takes 3 cycles, a load/store instruction takes 4 cycles, and all the other
instructions are executed in a single cycle. If the number of registers is sufficient, one
possible optimal schedule is ‘1’ ’2’ ’4’ ’3’ ’5’ ’6’, and it requires 6 cycles. If
the number of registers is five, this schedule runs out of registers at statement ‘4’
because the number of live-in variables is three, ‘x’, ‘y’, and ‘z’, and each of nodes
‘1’, ‘2’, and ‘4’ requires a new register. In this case, previous approaches attempt to
reduce register demands by serialization. One approach, called integrated prepass
scheduler (IPS) [5] schedules node ‘3’ instead of node ‘4’. Similarly, another
approach called a scheduler-sensitive global register allocator (SSG) [8] adds a dag
edge from node ‘3’ to node ‘4’. The final schedule is ‘1’ ’2’ ’3’ ’4’ ’5’ ’6’.
This rescheduling requires 7 cycles with one pipeline stall between ‘2’ and ‘3’.
Considering 100 iterations of B2, the total execution cycles of B2 is 700.

Serialization is not the only choice that the integrated scheduler can make. Register
spilling is the alternative. Consider the case when ‘y’ in node ‘2’ is spilled partially,

Fig. 2. Example program and a dependence dag

B1 def x
def y
def z

B2

B3 use x
use y
use z

B4 use x
use y
use z

a = x * z c = x + z

1 2 4

3 5

6

b = y + 1

d = a + b e = c + 3

f = d - e

11

113

B2

(1)

(1

(10)

(100)

 Integrated Instruction Scheduling and Fine-Grain Register Allocation 273

i.e., it is spilled not in the entire program but only in a certain part of the program. For
example, ‘y’ is spilled after the execution of ‘2’. In this spilling, a load of ‘y’ in B3
and a store of its reaching definition of ‘y’ in B1 are required. Note that no load is
required for ‘y’ at node ‘2’ because it is guaranteed to be in a register until the
execution of node ‘2’. Because this selection frees one register after the execution of
node ‘2’, the fastest schedule, ‘1’ ’2’ ’4’ ’3’ ’5’ ’6’, is allowed. Although the
partial spilling requires spill code of ‘y’ in less frequently executed blocks, B1 and
B3, it achieves the optimal schedule for the most frequently executed block of B2 and
does not require spill code in B2 and B4. Thus, the partial spill results in the better
performance than serialization.

IRIS, a new integrated instruction scheduling and register allocation, extends the
register allocation presented in the previous section and performs instruction
scheduling and register allocation at the same time at an every visit of a node in the
varef graph. When there are enough registers, IRIS focuses on instruction scheduling
and selects an instruction to reduce pipeline stalls. This scheduling scheme is the
same as CSP (Code Scheduling for Pipelined processors) presented in [5]. The
instruction scheduling based on the CSP scheme continues until the scheduler runs
out of registers. When no register is available, IRIS selects one between serialization
and spilling. The choice of spilling avoids the possibility of instruction rescheduling
and searches a register to be assigned to the current instruction. In this case, the
register should be preempted from another instruction. The preemption requires the
insertion of spill instructions resulting in the increase of execution cycles. Among
many registers, the one with the minimum increase of execution cycles is selected.
The other choice of serialization avoids a register preemption and reschedules another
instruction that does not increase register pressure. This selection may introduce extra
pipeline stalls. To make the best selection between the two possible choices, it is
essential to have a cost model to allow a fair comparison between serialization and
spilling. The cost model for register allocation defined in [6] is modified and extended
to have a new cost model. More details of the cost model are discussed in Section 4.

4 Cost Estimation

The success of IRIS heavily depends on the precise cost analysis of serialization and
spilling. However, the problem of analyzing this cost is equivalent to the problem of
finding both the optimal schedule and the register allocation. Since this problem is
NP-complete [7], an approximated cost with reasonable complexity is derived in this
section.

Suppose that no register is available when a node ‘m’ is considered for scheduling.
IRIS needs to select between serialization and spilling. With the choice of spilling,
IRIS schedules the node ‘m’ first and preempts a register from another node. The
additional execution time due to the preemption is represented by a preemption
penalty and denoted as PenalyPreempt(m) where ‘m’ is the node which is supposed to
acquire a register preempted from another node. Here, the term, preemption instead of
spill is used in order to use the same terminology as [6]. With the other choice of
serialization, IRIS searches a new node ‘n’ that does not increase register pressure,
and therefore, does not require a preemption. However, scheduling of this node may
cause an additional pipeline stall. The increase of the execution time caused by the
additional pipeline stall is represented by a stall penalty and denoted as

274 D.-H. Kim and H.-J. Lee

PenalytStall(n). Then, ScheduleCost(n) represents the additional execution time
caused by both a preemption and a pipeline stall and is defined as the summation of
the preemption penalty and the stall penalty.

ScheduleCost (n) = PenaltyStall(n) + PenaltyPreempt(n). (1)

For the derivation of Eq. (1), consider, first, the stall penalty. A node is called ready
when all its predecessors are scheduled, and called the first-ready node when it is the
first node in the CSP order among ready nodes. The scheduling of the first-ready node
demands no additional scheduling cost. Thus, the stall penalty of the first-ready node is
defined as zero. For a node, ‘n’, that is not the first-ready node, its stall penalty is
defined as follows. If the node ‘n’ is not ready or increases register pressure,
PenaltyStall(n) is defined as infinity. This definition prevents the schedule of the node
that is neither ready nor good for register allocation. For ready nodes that do not
increase register pressure, the stall penalty is defined as the increased execution cycles,
i.e., the execution cycles of the new schedule subtracted by that of the CSP schedule.
Let G be unscheduled nodes in the dependence graph. Let CSP(G) be the schedule in
the CSP order and CSPn(G) be the schedule where ‘n’ is scheduled first and the
remaining unscheduled nodes in G are scheduled in the CSP order. Let Cycles(S) be
the execution time of schedule S. Then, PenaltyStall of a node ‘n’ is defined as:

PenaltyStall(n) = 10d * [Cycles(CSPn(G)) - Cycles(CSP(G))]
if n is ready and does not increase register pressure,

∞ otherwise.

(2)

Here, d is the loop depth for the node ‘n’ and is zero if the node ‘n’ is not inside a
loop. The term, 10d is multiplied in order to give a weight to a nested loop. Any
local instruction scheduling can be used for the proposed integrated approach with
Eq. (2) by replacing CSP() with the appropriate cost model of the local schedule.
List scheduling [4] based on the CSP scheme is one of the most widely-used
techniques for local instruction scheduling. In this technique, a priority is assigned
to each node to determine which ready node to be scheduled next. A common
strategy for priority assignment uses the latency weighted depth of a node [4] which
is the longest weighted path from ‘n’ to a leaf node. The weight of a node is the
latency of the operation associated with the node. Then, the priority of a node ‘n’ is
defined as:

priority(n) = max (∀ l∈leaves(G), ∀ p∈paths(n,…,l)
∈=

l

pp n,p ii

i)latency(p) (3)

where latency(pi) is the latency of node ‘pi’, leaves(G) represent all leaf nodes, and
paths(n,…,l) does all paths from node ‘n’ to node ‘l’. With Eq. (3), Cycles (CSP(G))
is replaced by priority(k) where k is the first-ready node in the CSP order. In addition,
Cycles (CSPn(G)) is replaced by priority(n) . Thus, the stall penalty becomes

PenaltyStall(n) = 10d * [priority(n) – priority(k)]
if n is ready and does not increase register pressure,

 ∞ otherwise,

(4)

where node ‘k’ is the first-ready node in the CSP order.

 Integrated Instruction Scheduling and Fine-Grain Register Allocation 275

Now, consider the derivation of PenaltyPreempt(n). For this derivation, the cost
model proposed for the fine-grain register allocation in [6] is modified for the
comparison with serialization. First, PenaltyPreempt(n) is set to zero if node ‘n’ does
not increase register pressure. If node ‘n’ increases register pressure, the node ‘n’
must preempt a register ‘r’ assigned to another node. Let VarHold(n,r) denote the
variable that holds register ‘r’ when the register allocation is performed for node ‘n’,
and NodeHold(n,r) denote the set of nodes that reference VarHold(n,r) and precede
‘n’ while no other nodes referencing VarHold(n,r) exist between NodeHold(n,r) and
‘n’. The nodes that are most likely to be spilled by the register preemption are the
ones that reference VarHold(n,r) next to NodeHold(n,r). Therefore, this set of nodes is
defined as the preemption impact set denoted by ImpactSetPreempt(n,r) and spill
costs are estimated for the nodes in this set. If there is no path from NodeHold(n,r) to
a next reference of VarHold(n,r) including node ‘n’, the next reference is not included
in the preemption impact set. This is because the insertion of a reload instruction is
not necessary at the next reference. Reference [6] explains more details about the
preemption impact set.

Let PenaltyPreempt(n,r) denote the preemp-
tion penalty for the case when node ‘n’
preempts register ‘r’. All the nodes in the

preemption impact set are likely to be spilled. Thus, PenaltyPreempt(n,r) is defined as
the summation of the execution times of the nodes in the preemption impact set

PenaltyPreempt(n,r) = Σ m∈ ImpactSetPreempt (n,r) cost(m). (5)

Here, cost(m) represents the estimated execution cycles of the additional load/store
instructions when node ‘m’ is spilled. In the estimation of cost(m), a load/store
instruction is necessary not only for the execution of the node ‘m’ itself but also for
reaching definitions of the node’s referencing variable. Therefore, the execution times
caused by the insertion of the store instructions for the reaching definitions should
also be included in cost(m). Let ReachingDef(m) denote the set of reaching
definitions of node ‘m’. Let NodeCost(m) denote the estimated execution time of each
node ‘m’. Then, cost(m) is defined as follows:

cost(m) = NodeCost(m) +
Σ k∈ReachingDef(m), k∉ ImpactSetPreempt (n,r)NodeCost(k). (6)

Note that reaching definitions in ImpactSetPreempt(n,r) are not included in Eq. (6)
because they should be added just once in the evaluation of PenaltyPreempt(n,r).

Consider the evaluation of NodeCost(k). If node ‘k’ is already spilled, no additional
cost is necessary. Thus, NodeCost(k)=0 in this case. In the other cases when the node

2 1

3

5

7

4

6

a a

b

b

n

c

a

Consider the varef-graph in Fig. 3. Assume
that both nodes ‘1’ and ‘2’ hold register ‘r1’,
and the register allocator visits node ‘5’. Then,
VarHold(5,’r1’) = ‘a’, and NodeHold(5,’r1’)=
{1,2}. The next reference of VarHold(5, ‘r1’)
is {7}. For both nodes ‘1’ and ‘2’, there exists
a path to ‘7’ that includes node ‘5’. Thus,
ImpactSetPreempt(5, ‘r1’) = {7}. This indi-
cates that the preemption of ‘r1’ at node ‘5’
causes node ‘7’ to be spilled.

 Fig. 3. Example varef-graph for preemp-
tion impact set

276 D.-H. Kim and H.-J. Lee

is not visited yet or allocated to the same register, the cost is simply the estimated
execution time of the node. Thus, the NodeCost(k) is defined as follows:

NodeCost(k) = 0 if ‘k’ is already visited and spilled,

time(k) otherwise,
(7)

where time(k) is the estimated execution time of node ‘k’. For a fair comparison with
Eq. (4), the execution time should be estimated in the same manner as Eq. (4). Thus,
time(k) is defined as

time(k) = latency(k)* 10d (8)

where d is the loop depth. Eq. (5) gives the preemption cost for a register r. Assume
that a target processor has R registers, r0, r1, …, rR-1. Among the R registers, the one
with the minimum preemption penalty is chosen. Thus, the preemption penalty of a
node ‘n’ is defined as:

PenaltyPreempt(n) = mini ∈ {0, 1, …, R-1} PenaltyPreempt(n, ri). (9)

5 Evaluation

To evaluate the efficiency, IRIS is implemented in the intermediate code of lcc [3]
targeted for a hypothetical machine. This target assumes a load/store, register-oriented,
three-address instruction format, and pipelined with interlock architecture that is similar
to the one used by previous research, IPS in [5] and SSG in [8]. Two different
simulations are performed for low latency and high latency architectures, respectively.
For the low latency, delays are similar to IPS; an add instruction takes 2 cycles, a
multiply/divide instruction takes 3 cycles, a load/store instruction takes 4 cycles, and all
the other instructions are executed in a single cycle. The high latency architecture
assumes 3, 6, and 8 cycles for add, multiply/divide, and load/store instructions,
respectively. The benchmark programs are the livermore program, linpack program,
DCT computation, inverse DCT computation, huffman computation, stanford bench-
mark, and jccoefct program that controls the JPEG coefficient buffer.

The simulation is for the comparison with other integrated scheduling and allocation
techniques, IPS and SSG. For SSG, a BMW approach is used. Postpass scheduling
(POSTPASS) is also implemented because it is widely used for comparison.
POSTPASS performs list scheduling [4] first and then processes Briggs’ graph-coloring
register allocation next [2]. Fig. 4 shows the speed-ups over POSTPASS for the low
latency architecture. The number of registers is changed from 12, 16, to 20. As the
number of registers increases, the average improvement of IRIS over POSTPASS
changes from 29%, and 36%, to 34%, respectively. When compared to SSG and IPS,
the average improvements of IRIS are 14.5% and 25.9%, respectively.

The improvement over IPS is achieved because IRIS selects the better choice
between serialization and spilling while IPS always chooses serialization. Another
reason for the improvement is the support of the partial spilling by IRIS while spilling
is not allowed in IPS. Thus, in IPS, when no ready instruction can reduce register
pressure, register pressure can be increased continuously, which degrades the overall
performance. After IPS is completed, spilling is handled by a postpass register
allocator with a spill-everywhere technique. SSG also employs the spill-everywhere

 Integrated Instruction Scheduling and Fine-Grain Register Allocation 277

12 16 20
Number of registers

1.5

1.4

1.3

1.2

1.1

1

SS
G
IPS

IRIS

Sp
ee

d-
up

s
ov

er
 P

O
ST

PA
SS

Fig. 4. Speed-up of IRIS, SSG and IPS over
POSTPASS for the low latency architecture

Sp
ee

d-
up

s
ov

er
 P

O
ST

PA
SS

1

1.1

1.2

1.3

1.4

1.5

IRIS

SSG

12 16 20
Number of registers

IPS

Fig. 5. Speed-up of IRIS, SSG and IPS over
POSTPASS for the high latency architecture

approach and prefers serialization. In addition, the serialization of SSG often adds
unnecessary constrains on scheduling. It also prefers the original sequential ordering
of instructions in serialization while other ordering may be more beneficial.

Fig. 5 shows the speed-ups over POSTPASS when latencies are high. As the
number of registers increases from 12, and 16, to 20, the average improvement of
IRIS changes from 25%, and 38%, to 50%, respectively. When compared to SSG and
IPS, the average improvements of IRIS are 20.5% and 27%, respectively. This result
shows that greater improvements are achieved when the latencies are high.

Consider the complexity of IRIS. The variable flow graph can be constructed by
classical reaching definition analysis [7]. The complexity of a dependence dag build is
O(n2) where n is the number of instructions in a program. The worst-case complexity of
scheduling is O(n2) because it requires each unscheduled instruction to be inspected at
each scheduling of a node. Note that the complexity of scheduling is O(n) in most real
applications. The complexity of the register allocation is O(N2) [6] where N is the
number of nodes in the varef-graph. For the derivation of a preemption impact set, the
search space is localized because the next reference of a variable is generally close to
the node. Thus, the complexity may not increase as N increases in many programs and
the time complexity of the proposed approach is close to O(N) in these programs. As n
is generally larger than N, the total complexity of IRIS is O(n2), and O(n) in practice.

6 Conclusions and Future Work

The proposed integration of register allocation and instruction scheduling improves
the posspass scheduling, IPS proposed in [5], and SSG proposed in [8] by an average
of 35.3%, 26.5%, and 17.5%, respectively. Although the widely-used list scheduling
is employed in this paper, other instruction schedulers can also be used for the
proposed integration approach. Evaluation for the integration with various other
instruction schedulers remains as future work. The instruction scheduling in IRIS is
limited to the local level, and the integration with a global scheduler is another topic
for future work.

278 D.-H. Kim and H.-J. Lee

References

1. Berson, D. A., Gupta, R., and Soffa, M. L.: Integrated instruction scheduling and register
allocation techniques. In Proceedings of LCPC 1998 (1998), 247-262.

2. Briggs, P., Cooper, K.D., Kennedy, K., and Torczon, L.: Coloring heuristics for register
allocation. In Proceedings of ACM PLDI’89 (1989), 275-284.

3. Fraser, C.W., and Hanson, D.R.: A Retargetable C Compiler: Design and Implementation.
Benjamin/Cummings (1995).

4. Gibbons, P.B, and Muchnick, S.S.: Efficient instruction scheduling for a pipelined architecture. In
Proceedings of CC’86 (1986), 11-16.

5. Goodman, J. R., and Hsu, W. C.: Code scheduling and register allocation in large basic blocks. In
Proceedings of Supercomputing’88 (1988), 442-452.

6. Kim, D. H. and Lee, H. -J.: Fine-Grain Register Allocation based on a Global Spill Costs
Analysis. In Proceedings of SCOPES’2003 (2003), 255-269.

7. Muchnick, S. S.: Advanced compiler design and implementation. Morgan Kaufmann,
SanFrancisco CA (1997).

8. Norris. C., and Pollock. L. L.: An experimental study of several cooperative register allocation
and instruction scheduling strategies. In Proceedings of MICRO’95 (1995), 169-179.

9. Pinter, S.: Register allocation with instruction scheduling: A new approach. In Proceedings of
ACM PLDI’93 (1993), 248-257.

Compilation and Simulation Tool Chain for Memory
Aware Energy Optimizations �

Manish Verma1, Lars Wehmeyer1, Robert Pyka1, Peter Marwedel1, and Luca Benini2

1 Department of Computer Science XII, University of Dortmund, 44221 Dortmund, Germany
2 DEIS, University of Bologna, 40136 Bologna, Italy

Abstract. Memories are known to be the energy bottleneck of portable embed-
ded devices. Numerous memory aware energy optimizations have been proposed.
However, both the optimization and the validation are performed in an ad-hoc
manner as a coherent optimizing compilation and simulation framework does not
exist as yet. In this paper, we present such a framework for performing memory
hierarchy aware energy optimization. Both the compiler and the simulator are
configured from a single memory hierarchy description. Significant savings of up
to 50% in the total energy dissipation are reported.

1 Introduction

Contemporary portable devices are experiencing an ever-increasing spiral of feature en-
hancement and device convergence. Today’s mobile devices, besides acting as phones,
also serve as PDA, MP3 player, digital camera and also as a video game console. Fast
processors, large memories and aggressive energy optimization techniques are required
to support all the aforementioned features in a portable device. It is expected that fu-
ture devices will have even faster processors and larger memories, both of which are
extremely power hungry. As a consequence, a lot of research effort is being directed
towards energy optimizations.

The memory subsystem has been identified as the energy and performance bottle-
neck of the entire system. This problem is expected to aggravate in the future as the
performance gap between the processor and the memory is growing. This phenomenon
is also known as the “Memory Wall Problem” [1]. Memory hierarchies are constructed
to improve the energy dissipation and the performance of the memory subsystem. In
addition, the application is optimized to efficiently utilize the memory subsystem.

In order to perform a fast and efficient design space exploration, a coherent frame-
work for code-optimization and system simulation is required: A framework which
can optimize the application code for a given memory hierarchy and also evaluate the
optimization by simulating the optimized executable on the same memory hierarchy.
Unfortunately, most contemporary memory optimizations are performed at the source-
level with a complete disregard to the compiler generating the executable. Often, the
simulation framework is also a stopgap solution such that every new memory hierarchy
requires manual intervention and recompilation of the entire simulation framework.
In this paper, we present a coherent framework called Memory Aware C Compilation
(MACC) framework.

� This work has been partially supported by the European ARTIST Network of Excellence and
the German Research Foundation (DFG).

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 279–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

280 M. Verma et al.

Fig. 1. Workflow of MACC Framework

Figure 1 presents the workflow of the MACC framework. The MACC framework is
partitioned into the compilation and the simulation framework, both of which share the
memory hierarchy description and the energy database. The compilation framework,
depending upon the memory hierarchy, optimizes the application code and generates
the executable binary. This binary is then simulated and profiled by the simulation
framework and the system statistics are reported. These statistics are used to evalu-
ate the system and the optimizations. The main advantages of the MACC framework
are that it includes the only energy optimizing compilation framework known to the re-
search community and a highly configurable processor independent memory hierarchy
simulator. We start by explaining the compilation framework of the MACC framework.

2 Compilation Framework

The compilation framework shown in the upper half of Figure 1 provides the user with a
rich set of memory optimizations. It optimizes the energy consumption of the system by
efficiently utilizing the memory hierarchy. Besides the application source file, it requires
the memory hierarchy description file, an XML representation of the memory hierar-
chy, as input. The memory hierarchy can also be designed by the user with the help of a
GUI (cf. Section 4.1 for additional details). In addition, the compilation framework has
access to the energy database which contains the instruction-level energy model of the
processor as well as the energy and timing models of various memories. The compi-
lation framework supports the ARM7 processor and includes numerous optimizations
supporting memories viz. SRAM/Scratchpad, Cache, Loop Cache, DRAM and Flash.
The framework is being extended to support an ARM based Multi-processor SoC [2].
The compilation framework is divided into the following tools:

1. Source-Level Memory Optimizers: perform memory related optimization at the
source code level.

2. Front-End: converts the application source code into an intermediate representation
(IR) and performs several traditional optimizations (e.g. dead code elimination)

Memory Aware Compilation and Simulation Tool Chain 281

3. Code Selector: converts the IR into the assembly code of the application and per-
forms several low-level optimizations (e.g. peephole optimization).

4. Backend Memory Optimizer: performs memory optimizations at assembly level in
cooperation with the linker to generate the executable binary of the application.

The memory aware compilation framework started as a research endeavor and has ma-
tured into a fairly stable framework. It is based upon ICD-C [3] and Lance [4] com-
pilation frameworks. It supports all ANSI-C data types and can compile and optimize
applications from Mediabench, MiBench, DSPStone and UTDSP benchmark suites.

All optimizations are performed on the set of memory objects (MO). A memory ob-
ject is a part of the application program (e.g. variable, array tile, function, basic block
etc.) whose mapping onto the memory hierarchy enables various memory optimiza-
tions. Subsections 2.1 and 2.2 describe the source-level and the backend memory opti-
mizations, respectively.

2.1 Source-Level Memory Optimizer

The source-level memory optimizer is the highest level optimization phase of the com-
pilation framework. It includes several optimizations also present in the backend mem-
ory optimizer, albeit at a coarser granularity level. The main benefit of the source-level
optimizer is its inherent retargetability. The optimized application can be compiled for
any other processor resulting in similar gains.

The source-level memory optimizer is based primarily on the ICD-C framework. It
features a lossless object oriented intermediate representation for C programs. Most im-
portant for our optimizer is the capability to write out the IR to a file conforming to the C
standard. The set of memory objects considered by the optimizations consists of global
variables and functions. The memory optimizer includes the following optimizations:

1. Non-Overlayed Scratchpad Allocation [5]
2. Scratchpad Overlay (with support for DMA) [6]
3. Array Partitioning [7]
4. Array Tiling

The first two approaches are also present in the backend memory optimizer and will be
presented in detail in the following section. The focus of array partitioning approach
are applications containing large arrays which are accessed through irregular index
functions. These arrays cannot be allocated onto small and energy efficient scratch-
pad memories. Consequently, the array partitioning approach divides the large array
into two smaller partitions such that the allocation of one of the two partitions to the
scratchpad memory is guaranteed. Additionally, the application source code is modi-
fied such that the irregular index functions correctly access the two array partitions. If
the application under consideration contains only arrays with affine index functions,
the array tiling optimization can be used. It generates several equal sized partitions or
tiles of the arrays. These tiles are then swapped in and out of the scratchpad memory at
runtime, based upon their live-ranges.

2.2 Backend Memory Optimizer

The backend memory optimizer includes numerous optimizations for various memo-
ries. Unlike most of the current approaches, the optimizations consider both the data

282 M. Verma et al.

and instructions for optimization. The memory optimizer includes optimizations for
scratchpad, instruction cache, loop-cache, DRAM and Flash memory. Scratchpad al-
location approaches reduce the energy dissipation of the system through the improved
utilization of the scratchpad memory. Trace generation based instruction cache opti-
mization is used to improve the spatial locality of the application.

The backend memory optimizer is the last optimization step of the compilation
framework. It works in conjunction with the assembler and the linker and produces
the optimized executable by mapping all the memory objects to the assigned memories.
The optimizations are performed at a finer level than in the source level memory opti-
mizer as the set of memory objects is composed of global variables, basic blocks and
the stack. Some of the important memory optimizations are enumerated below:

1. Non-Overlayed Scratchpad Allocation [5]
2. Partitioned Scratchpad Allocation [8]
3. Scratchpad Overlay (with DMA support) [6]
4. Instruction Cache Optimization [9]
5. Pre-loaded loop cache Optimization [9]
6. DRAM memory optimization [10]
7. XIP Flash Memory Optimization [10]

Non-overlayed scratchpad allocation [5] maps the best set of memory objects onto the
scratchpad memory which remain allocated onto the scratchpad for the entire execution
time of the application. Each memory object mo has two parameters: (a) Epro f it(mo)
quantifies the energy reduction that can be achieved by assigning the memory object
on the scratchpad memory and (b) size(mo) returns the size of the memory object. The
best set of memory objects is chosen such that the total energy benefit is maximized
and the aggregate size of the memory objects in the best set is less than the scratchpad
size. The allocation problem can be formulated as the following:

Maximize: ETotal
pro f it = ∑mo Epro f it(mo)∗ xmo

xmo ∗ size(mo) ≤ ScratchpadSize ∀mo ∈ MO xmo ∈ {0,1}

It can be easily seen that the non-overlayed scratchpad allocation is the well-known
knapsack problem. If a number of partitioned scratchpad memories are being used in-
stead of one single scratchpad, additional savings are possible since smaller memories
are faster and consume less energy per access. The above equations have to be reformu-
lated to take into account the increased freedom of allocating the memory objects to a
number of scratchpad memory partitions. Additionally, the leakage energy dissipation
of a large number of scratchpad memories was also studied in our experiments to let the
compiler choose those memory partitions that are most profitable in order to minimize
the overall system energy dissipation.

The scratchpad overlay optimization uses the fact that a memory object is not re-
quired by the application for its entire execution time. In other words, memory objects
also have live-ranges. Therefore, memory objects with non-conflicting live-ranges can
be assigned to the same location onto the scratchpad. The approach also takes into ac-
count the spilling of memory objects to the main memory in order to maximize the total
energy reduction. The overlay approach [6] was found be similar to the global register
allocation approach and both optimal and near-optimal solutions were presented.

Memory Aware Compilation and Simulation Tool Chain 283

The memory optimizations [9] for a cache based architecture are also present in
the backend memory optimizer. The included approaches improve the spatial locality
of the application code by generating traces. Additionally, scratchpad and loop cache
allocation approaches are also included. These approaches utilize a scratchpad or a
loop-cache as an instruction buffer and map the instruction sequences to minimize the
number of cache misses and the total energy dissipation of the system.

If a DRAM main memory is used in the system, considering per-access costs for
memory accesses is insufficient due to the state-dependent behavior of a dynamic RAM.
A corresponding energy model is integrated into our evaluation framework. It also sup-
ports the power management features commonly found in DRAM chips today. This can
be exploited in an optimization that allocates memory objects to a scratchpad memory
in order to maximize the time that the main DRAM memory can be kept in the power
down state.

Most embedded systems today carry Flash memories to permanently store configu-
ration information or the application’s binary code. In contrast to the prevailing “Store-
and-Download” approach, where code and data is first copied and then accessed from
the faster main memory, the “eXecute-In-Place” (XIP) feature allows the memory ob-
jects to be accessed directly from the Flash memory. The corresponding optimization
determines a trade-off between the copy costs and the slower Flash memory access
times. The main benefit of this optimization is that it significantly reduces the main
memory requirements of the system.

3 Energy Database

A fine-grained, accurate and exhaustive energy database is an essential component
of the entire MACC framework. An evaluation board (AT91EB01) [11] featuring an
ARM7 processor was chosen to generate an accurate energy database. Current mea-
surements were performed on the board to determine an instruction level energy model
for the ARM7 processor. A measurement based energy model was also determined for
the SRAM main memory of the board. The energy model for the processor and the
memory was found to be 98% accurate [12]. Behavioral energy models for memories
have also been found to be very accurate. Consequently, we used behavioral models for
the memories whose current consumption could not be measured. The accurate energy
model for the MPSoC, accounting for the processors, memories and the interconnect,
was obtained from ST Microelectronics.

4 Simulation Framework

The presented simulation framework allows simulation of a system consisting of an
ARM7 processor attached to a customizable memory hierarchy. The processor simula-
tor provided by ARM Ltd. is used to generate the instruction trace. The instruction trace
is fed into the memory simulator which simulates the specified memory hierarchy. The
profiler accesses the instruction trace, the memory simulator and the energy database to
compute the system statistics (e.g. execution time in CPU cycles and energy dissipated
by the processor and the memory hierarchy). In addition, it computes the application
statistics (e.g. number and type of accesses to each global variable). Currently, we are
integrating the ARM-based MPSoC [2] into the simulation framework.

284 M. Verma et al.

Fig. 2. Example MEMSIM memory hierarchy configuration

4.1 Memory Simulator

In order to efficiently simulate different memory hierarchy configurations, a flexible
memory hierarchy simulator (MEMSIM) was developed. Memory regions with different
access characteristics, a number of different cache parameters, loop caches and scratch-
pad memories are currently supported. MEMSIM reads the XML description of the
memory hierarchy and a memory access trace of a program. The development of MEM-
SIM enabled us to overcome limitations of pure instruction set simulation and also of
the currently available cache and memory simulation frameworks. The technical re-
quirements for MEMSIM, e.g. cycle true simulation, flexibility and configurability were
achieved by using object oriented design principles in the design and implementation
phase. All components of the memory hierarchy are derived from one uniform base class,
which enables the easy and seamless integration of memory models into the simulation
framework. Since the overall structure of MEMSIM is comparable to a subset to the
simulation framework offered in SystemC and this modeling language has evolved to a
fairly stable tool, it would be also possible to develop such a simulator in SystemC.

While a variety of cache simulators are available, none of them seemed suitable for
an in-depth exploration of the design space of a memory hierarchy. In addition, scratch-
pad memories, loop caches and DRAM memories should also be considered. This flex-
ibility is missing in previously published memory simulation frameworks which tend
to focus on one particular component of the memory hierarchy. Therefore, the devel-
opment of this new memory simulator was necessary. To avoid the high complexity of
implementing a cycle-true instruction set simulator for a particular processor, MEM-
SIM runs as a post-pass to processor simulation. The sequence of executed instructions
and memory accesses is fed into MEMSIM and the accesses to each memory are com-
puted accordingly. By encapsulating the trace reader functions in classes of their own
with a defined interface, it is possible to use a variety of available processor simula-
tors by only adjusting the internal implementation of the trace reader functions. The
trace based approach introduces a constrain to the way the simulator has to generate
the memory access log. Since in a suitable tracefile each entry represents a completed
memory access, no interleaving of accesses is allowed.

Memory Aware Compilation and Simulation Tool Chain 285

All components of the simulated memory hierarchy are implemented as abstract
components. All instantiated components inherit from virtual C++ base classes and
implement the functionality required to perform as a part of the memory hierarchy. To
connect the different components to each other, the concept of so-called hubs is used.
Compared to real hardware hubs serve as a kind of addresspace selector and multiplexer.
Using hubs, it is only necessary to consider the connection of each memory compo-
nent to its neighboring hub, which in turn connects to other memory components. An
example memory hierarchy is shown in Figure 2. Memory accesses in MEMSIM are
first considered at the level of the processor and are subsequently passed to the corre-
sponding memory hierarchy elements. The decision about which component an access
is routed to is taken by the hubs, considering e.g. the address of the access. When it is
availble, the requested memory element is then passed back to the processor.

A graphical user interface is provided so that the user can comfortably select the
components that should be simulated in the memory hierarchy. The GUI generates a de-
scription of the memory hierarchy in the form of an XML file which is then processed by
MEMSIM in order to instantiate the memory components, connect and simulate them.

4.2 MPSoC Simulator

The MPSoC simulation framework, presented in Figure 3, is a SystemC based cycle
true simulator. It is capable of simulating a runtime configurable number of processing
units, which are connected through a single bus to memories and I/O devices. The most
common setup is to use a simulation of an ARM7 core for the processing unit, and an
AMBA bus simulation for the interconnection. There are also other combinations of
buses (i.e. STbus) and processing units available.

As shown in the figure, each ARM-based processing unit has its own private mem-
ory, which can be a unified cache or separate caches for data and instructions. A wide
range of parameters may be configured, including the size, associativity and the num-
ber of wait states. Besides the cache, a scratchpad memory of configurable size can
be attached to each processing unit. The recent development of the simulator targets
the hardware requirements in streaming media applications, therefore offering “smart
memories” which are basically scratchpad memories accompanied by DMA units.

The MPSoC simulator does not support a configurable multilevel memory hierarchy.
The memory hierarchy consists of caches, scratchpads and the shared main memory.
Currently, an effort is being made to integrate MEMSIM into the simulator. Finally, it
provides a number of semaphores which may be used to synchronize inter-processor
communications.

The simulator offers various reporting and tracing facilities. At the lowest level it
may report waveform diagrams of the performed bus actions. It is further able to report
memory access traces. This feature is most important for the integration into the MACC
simulation framework. Besides the simple access based trace files, sophisticated statis-
tics may be generated, including precise information about the amount of cycles spent
in bus actions, processing and waitstates.

4.3 Profiler

The profiler uses the trace file, the memory hierarchy simulator and computes the access
to each memory in the memory hierarchy. These accesses are then mapped to timing and

286 M. Verma et al.

Bus (AMBA STBus)

Private

MEM

Private

MEM

Private

MEM

Shared

MEM
SEM

ARM

SPM

IRQ

ARM

SPM

ARM

SPM

Fig. 3. Multi-process SoC (MPSoC) Simulator

energy models of the processor and the memories to compute the execution time and
the energy dissipation of the entire system during the execution of a given application.
The profiler also receives as input a mapping of the memory objects present in the
application source code and their addresses in the application executable. Therefore, the
profiler is able to back-annotate each fetched or executed address within the system to
the corresponding memory object. This enables the profiler to gain in-depth knowledge
about the application and the system under simulation. This extensive information as
a tabulated report file is then presented back to the users. Some of the contents of the
report file are enumerated below:

1. Energy consumption, number of accesses and size of every function and basic block
2. Energy consumption, number of accesses and size of every variable
3. Execution order of the basic blocks
4. Energy Consumption and number of accesses to each memory
5. Energy Consumption of the processor
6. Number of executed instruction and execution time (CPU Cycles)

5 Experimental Results

In this section, we first compare the scratchpad overlay and the non-overlayed scratch-
pad allocation approaches. The values shown in Figure 4 are average values over vary-
ing scratchpad size in the range of 128 to 1024 bytes. According to the figure, applying
a more sophisticated allocation strategy, which takes into account the temporal distri-
bution of memory object usages, results in a significant reduction in energy consump-
tion and execution time. Average reductions of more than 40% and 20% in the energy
dissipation and the execution time, respectively, related to the 100% baseline of the
non-overlay approach, for the edge detection benchmark are reported.

Furthermore a comparison of the scratchpad overlay memory optimization technique
included in the MACC against a cache based system is presented in Figure 5. Similar
to the previous figure, these are average values for each benchmark obtained by varying
scratchpad and cache sizes in the range of 128 to 1024 bytes. In this case as well, the
scratchpad overlay approach demonstrates energy savings of over 30% for the adpcm
benchmark. Average performance improvement of about 20% is also reported for the
same benchmark.

Memory Aware Compilation and Simulation Tool Chain 287

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

adpcm dsp edge detection histogram media mpeg avg.

Energy (Near-Opt. SO) Energy (Opt. SO)

Exec. Time (Near-Opt. SO) Exec. Time (Opt. SO)

Fig. 4. SPM overlay vs. Non-Overlayed allo-
cation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

adpcm dsp edge detection histogram media mpeg avg.

Energy (Near-Opt. SO) Energy (Opt. SO)

Exec. Time (Near-Opt. SO) Exec. Time (Opt. SO)

Fig. 5. SPM overlay vs. Cache based system

0%

20%

40%

60%

80%

100%

120%

140%

adpcm epic g721 media mpeg average

Energy (Opt. CASA) Energy (Near-Opt. CASA)

Exec. Time (Opt. CASA) Exec. Time (Near-Opt. CASA)

Fig. 6. Instruction Cache optimization vs. Pre-
loaded loop cache optimization

0%

20%

40%

60%

80%

100%

120%

IDCT Sort G.721 FIR Media ADPCM MPEG

Rel. Main Mem Size

Rel. Energy

Rel. Perforamnce

Fig. 7. Results for XIP Optimization

The memory optimization using the scratchpad as an instruction buffer achieves sig-
nificant energy and runtime savings compared to the preload loop cache optimization.
The memory optimizations reduce the number of conflict cache misses while the loop
cache optimization buffers frequently executed instructions. In this particular case, we
achieve energy savings of about 50% and execution time reductions of close to 20%
for the mpeg benchmark. The results are illustrated in Figure 6, which shows the av-
erage values for each benchmark. The scratchpad size has been varied in the range
from 128 to 1024 bytes. The size of the direct mapped instruction cache has been fixed
to 2048 bytes. Exploiting the reduced energy dissipation of a DRAM memory in the
power down state leads to significant energy savings. By allocating memory objects to a
scratchpad memory in such a way as to maximize the power down periods of the DRAM
main memory, substantial energy savings of up to 80% compared to a system without
scratchpad memory and no power down times for the used DRAM were achieved. Since
both allocation results and obtainable savings are similar to the static scratchpad alloca-
tion scheme that uses energy per access as the cost function (in contrast to maximizing
the power down time of the main memory), no specific results are given for the sake
of brevity.

Figure 7 shows the obtained results when the Flash memory used in an embedded
system is capable of executing code using the XIP technique. An intrapage access time
of 20ns is assumed for the used Flash memory. The leftmost bar shows the percentual
amount of DRAM main memory that is still required despite also using Flash memory
to execute instructions: for the mpeg benchmark, 65% of the previously used DRAM
main memory is not required when XIP is being used. The gains concerning energy and
performance of XIP compared to an execution from the faster DRAM are marginal, as
shown by the second and third bars in the figure. For the mpeg benchmark, both the
energy dissipation and the number of executed cycles are reduced by a maximum of

288 M. Verma et al.

about 2%. This shows that the large savings with respect to the required main memory
capacity do not incur any overhead concerning energy or performance for the consid-
ered setup. Taking into account that the amount of main memory is an important cost
factor for embedded systems, the exploitation of XIP functionality should be considered
during the design and optimization of embedded systems.

6 Conclusions and Future Work

In this paper, we presented the MACC framework, a coherent compilation and simu-
lation framework for performing and evaluating memory aware energy optimizations.
The framework features an energy optimizing compilation framework for the Uni- or
Multi-process ARM SoCs and a highly configurable simulation framework. In addition
to optimization of the application for a given memory hierarchy, the framework enables
fast and efficient memory hierarchy design space exploration. In the future, we would
like to extend the MACC framework for homogeneous and heterogeneous MPSoCs.

Additional information and a complete list of publications concerning MACC can be
found at [13].

References

1. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious. IEEE
Computer Architecture News 23 (1995)

2. Francesco, P., Marchal, P., Atienza, D., Benini, L., Catthoor, F., Mendias, M.: An Integrated
Hardware/Software Approach for Run-Time Scratchpad Management. In: Proc. of DAC,
San Deigo, CA, USA, DAC (2004)

3. ICD: Informatik Centrum Dortmund e.V.: ICD-C Compiler Development Framework,
(http://www.icd.de/es/icd-c/icd-c.html)

4. ICD: Informatik Centrum Dortmund e.V.: LANCE Retargetable C Compiler,
(http://www.icd.de/es)

5. Steinke, S., Wehmeyer, L., Lee, B.S., Marwedel, P.: Assigning program and data objects to
scratchpad for energy reduction. In: Proc. of DATE, Paris, France (2002)

6. Verma, M., Wehmeyer, L., Marwedel, P.: Dynamic Overlay of Scratchpad Memory for En-
ergy Minimization. In: Proc. of CODES+ISSS, Stockholm, Sweden (2004)

7. Verma, M., Steinke, S., Marwedel, P.: Data Partitioning for Maximal Scratchpad Usage. In:
Proc. of ASPDAC. (2003)

8. Wehmeyer, L., Helmig, U., Marwedel, P.: Compiler-optimized Usage of Partitioned Mem-
ories. In: Proceedings of the 3rd Workshop on Memory Performance Issues (WMPI2004),
ACM International Conference Prodeedings Series, ISBN: 1-59593-040 (2004) 114–120

9. Verma, M., Wehmeyer, L., Marwedel, P.: Cache-aware Scratchpad Allocation Algorihm. In:
Proc. of DATE, Paris, France (2004)

10. Wehmeyer, L.: Fast, Efficient and Predictable Memory Accesses – Optimization algorithms
for memory architecture aware compilation. Ph.D.-thesis, unpublished (2005)

11. ATMEL: Atmel Corporation, (http://www.atmel.com)
12. Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An Accurate and Fine Grain

Instruction-Level Energy Model Supporting Software Optimizations. In: Proc. of PATMOS,
Yverdon-Les-Bains, Switzerland (2001)

13. Department of Computer Science XII, University of Dortmund: MACC: Memory Aware C
Compilation Framework,
(http://ls12.cs.uni-dortmund.de/research/macc/)

A Scalable, Multi-thread, Multi-issue Array Processor
Architecture for DSP Applications Based on Extended

Tomasulo Scheme

Mladen Bereković1 and Tim Niggemeier2

1 IMEC, Belgium, and TU Delft, Netherlands
mladen.berekovic@imec.be

2 IBM Deutschland Entwicklung GmbH, Germany
niggemei@de.ibm.com

Abstract. A scalable, distributed micro-architecture is presented that empha-
sizes on high performance computing for digital signal processing applications
by combining high frequency design techniques with a very high degree of par-
allel processing on a chip. The architecture is based on a superscalar processor
model with out-of-order execution, that supports specialized, complex DSP func-
tion units, and simultaneous instruction issue from multiple independent threads
(SMT). Consequent application of fine clustering reduces the cycle-time for wire-
sensitive building blocks of the processor like the register file and leads to a dis-
tributed architecture model, where independent thread processing units, ALUs,
registers files and memories are distributed across the chip and communicate with
each other by special networks, forming a ”network-on-a-chip” (NOC) [1]. The
communication protocol is a modified version of Tomasulo’s scheme [2], that
was extended to eliminate all central control structures for the data flow and to
support multithreading. The performance of the architecture is scalable with both
the number of function units and the number of thread units without having any
impact on the processors cycle-time.

1 Introduction

Today’s typical embedded DSP systems are built around system-on-chip architectures
[3], [4], consisting of one or more DSP and RISC cores, that are interconnected by a
standardized on-chip peripheral bus like the ARM-AMBA [5], Multi-AMBA, or a simi-
lar proprietary busses.. These system architectures favor a model of lower-performance,
lower-power, embedded processor cores that are assisted by one or more hardwired ac-
celerators for specialized tasks like filter or bitstream processing. Making the hardwired
coprocessors more programmable leads to a ”softening of hardware” [6], with many
small, configurable processors and DSPs on a single-chip that share several custom
function specific coprocessors or even reprogrammable and reconfigurable hardware
blocks [7]. An on-chip communication network is needed to keep as many of these
cores busy as possible, leading to networks-on-chip architectures [1].

We propose a different architecture framework for network-on-chip architectures that
offers a very high parallelization potential for DSP applications. It is based on a simul-
taneously multithreaded processor model where multiple independent thread units si-

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 289–298, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

290 M. Bereković and T. Niggemeier

multaneously issue multiple instructions to a large array of function units, where they
are processed in a dataflow-manner.

Although this work fits nicely into Meerbergen’s definition of an NOC, it differs in
three terms. First, it is based on a different processor model, a superscalar, out-of-order
processor with SMT extensions instead of a static VLIW architecture. Second, the dy-
namically scheduled processors use switched router networks for both resource sharing
and explicit communication between the processors or thread units. Third, function spe-
cific accelerator units that are embedded as application specific instructions are shared
between all threads, leading to a higher utilization of these modules. The following
section discusses the details of the overall microarchitecture and explains the devel-
oped modifications to the scheduling mechanism in contrast to the classical Tomasulo
scheme. The third section discusses related work. Finally, Section 4 summarizes the
main conclusions of this work.

2 Extending Tomasulo’s Scheme for Clustered Architectures with
Explicit Operand Transport

The proposed architecture takes on Tomasulo’s original design and extends it with su-
perscalar and SMT features. Fig. 1 shows the resulting architecture that is distributed
along the FUs that serve as basic building blocks. The heterogeneous array of small
processing units is connected by a network for operand and instruction communica-
tion. In contrast to classic centralized schedulers, forwarding of result tags is replaced
with dedicated operand transport instructions. Each FU forms a separate cluster with a
private register file. The register files of the thread units are distributed to the local reg-
ister files of the FU-clusters. This offers two advantages: First, every local register file
needs only 2 write and one read port, independent of the number of threads and issue
slots. This makes the architecture more scalable in terms of issues per cycle and cycle

Fig. 1. Distributed SMT processor overview. RF= register file, ROB= reorder buffer, FU= func-
tion unit.

A Scalable, Multi-thread, Multi-issue Array Processor Architecture 291

time. The second is that the total number of registers can be significantly increased,
paving the way for large instruction windows that typically support a large number of
”in-flight” instructions, without having effecting the cycle time.

This work makes some essential modifications to Tomasulo’s original scheme to
eliminate the costly tag matching process: After the register renaming table is read
during instruction decode stage, all dependence information is available to build the
dynamic signal-flow graph. In analogy to the ”Transport Triggered Architectures” [28],
or TTAs, the instruction is then split into three subinstructions: a (mathematical) func-
tion and two helper instructions that move the two source operands from the place of
their generation, i.e. the physical reservation station (=register, cluster) read from the
renaming table, to the place where the operation is performed, i.e. the destination reser-
vation station (register/cluster) in the function unit to which the instruction has been
dynamically assigned. These helper transport instructions inherently have knowledge
of the physical location of both, their source and their destination operands, since these
are directly reflected by their reservation station numbers and function units. The helper
transport instructions, consisting of a simple pair of reservation station or rename reg-
ister numbers (src, dest), are sent to the physical address of the source. As soon as the
source data gets available the helper transfer instruction is executed, i.e. the data is send
to the destination register via the switched operand network. This way, a precise point-
to-point communication link is established between producer instruction and producing
function unit on one side and consumer instruction and consuming function unit on the
other side. The dependence graph is early resolved into a signal-flow graph during the
rename stage. This reduces the complexity of the transform process significantly when
compared with a central instruction scheduler implementation. The central instruction
scheduler checks all completing versus all waiting instructions for all threads using a
content addressable memory (CAM), whereas the renaming logic only needs to perform
a (renaming) table access for all decoded instructions within a single thread.

To explain the mechanism of the helper copy instructions, consider the following
example sequence of 4 instructions:

a : R4 < − R0 + R8; b : R2 < − R0 ∗ R4

The physical registers are addressed with two index sets: one for the FU and one for
the register number within the FU. So (5,10) denotes the 10th register in FU (cluster) 5.
Suppose that FU1 is an adder and FU2 is a multiplier unit.

After the first clock cycle, logical register R4 is assigned to FU1, register 1 (=R(1,1)),
and instruction a is moved to FU1 (adder). A set of copy instructions for the two source
operands is generated. After the second cycle, instruction b is moved to FU4 (multiplier)
and R2 is assigned to FU4, R1 (=R(4,1). A second set of copy instructions are generated.
So the first two instructions become after renaming:

a : R(1,1) < − R0 + R8; b : R(2,1) < − R0 ∗ R(1,1);
a1 : cp R0 − > R(1,1); b1 : cp R0 − > R(4,1);
a2 : cp R8 − > R(1,1); b2 : cp R(1,1) − > R(4,1);

The cp instructions are sent to their appropriate source operand destinations, e.g. b2 is
sent to FU1, register 1 and stored in the appropriate field of the cp operand buffer for

292 M. Bereković and T. Niggemeier

Fig. 2. Timing Estimates for different scheduler configurations using CACTI 3.0

Fig. 3. Modified Tomasulo architecture with distributed registerfile and instruction scheduling

R(1,1). Once the data is available, the cp instruction is executed and the data send to
R(4,1) and stored in its input operand buffer.

Fig. 2 shows the simulated timing estimates for different configurations for the fully
associative (CAM-based) instruction-scheduler (window) obtained from CACTI 3. What
can be seen is the superlinear increase in delay with the number of ports. Also, large
register file sizes lead to significantly higher delay. From these numbers it can be con-
cluded that an optimized clustered architecture is built using memory blocks with only
few ports and issue slots. Fig. 3 shows the resulting cluster data path architecture. The
local register file stores the function unit’s result data that is addressed by the destination
register. Each register file entry has two associated entries in the operand buffer mem-
ories, that replace the original reservation stations. A third memory, the cp instruction
buffer, contains entries to store a cp instruction for the register’s result. This way, a pre-
cise point-to-point communication link is established between producer instruction and
producing function unit on one side and consumer instruction and consuming function
unit on the other side. The dependence graph is early resolved into a signal-flow graph
during the rename stage. This reduces the complexity of the transform process signif-
icantly when compared with a central instruction scheduler implementation. The in-
struction scheduler checks all completing versus all waiting instructions for all threads
in a content addressable memory (CAM), whereas the renaming logic only needs to
perform a (renaming) table access for all decoded instructions within a single thread.

The cluster memories are of small size and have a limited port number, e.g. 2 ports
for the reservation stations that serve as input buffers. An architecture with 16 function

A Scalable, Multi-thread, Multi-issue Array Processor Architecture 293

Fig. 4. Pipelining scheme

units (=clusters) with a moderate 32 registers each would already have 512 physical
registers, which is more than any available processor offers.

The encapsulation of the whole processing logic in small clusters with local inter-
connects and fully pipelined in- and outbound communication makes very high fre-
quency realisations possible. A recent implementation of a comparable execution core
cluster (2x 32bit ALU, 32-entry x 32-bit register file, 8 entry x 2 scheduler loop)
on a 130nm, six-metal, Dual VT CMOS technology consumed 2.3 mm2 and yielded
5 GHz [29].

Fig. 4 shows the basic steps pipelining scheme, although not in full cycle-true details,
the delays between the operand transfers are left out for example. The basic pipeline
steps are:

1. The Function Units post their free resources via a global resource broadcasting net-
work (FU2Rename network) to the Thread Units (TUs). The TUs pick up these
resources autonomously according to their individual needs. A free resource con-
sists of a package containing

– a free (destination) register
– An associated entry in the two operand buffers (typically the same register

address)
– An entry in the local instruction window

2. The instruction renaming stage consumes the free resources and the corresponding
sub-instructions are created on-the-fly in the decode Issue and Plan stages, where
tzey are also sent to the FUs via the Rename2FU Network

3. In the FUs the instructions are stored in the local instruction windows and the
necessary data transfer operations are performed (on availability of their source
operands) and the data is axchanged directly between the FUs on the FU2FU data
network.

4. The FUs notify back the TUs via the FU2Retire network that the instructions have
executed and are ready for retirement.

5. The Retire stage in the Tus retires the instructions and notifies back the FUs about
the release of the overwritten destination register (from prvious valus, that has to
be stored in the rename tables as well).

294 M. Bereković and T. Niggemeier

3 Simulation Results with MPEG-4 Kernels

Cycle-true simulations of two typical and computation-intensive DSP kernels from
MPEG-4 [3] were performed on an RT-level simulator of the architecture: global mo-
tion compensation (GMC), which is equivalent to an affine warping of a 16x16 pixel
block and deblocking. The benchmarks were hand-optimized in Assembler for the
architecture.

Fig. 5 and Fig. 6 show the results for the MPEG-4 GMC subtask, which is equivalent
to an affine warping of a 16x16 pixel block. The GMC is one of the most performance
critical kernel loops of the MPEG-4 standard. The benchmarks were hand-optimized in
Assembler for the architecture without compiler-support and exploit multi-threading.
This approach is different from General-Purpose processors, but is typically employed
on DSPs.

For all simulation runs the same configuration with 64 FUs was used except that
the number of thread units was increased to the number of parallel running threads.
The register-files size is 256 registers each, as is the reorder buffer size (and hence
the instruction window). Each thread has a local L1 I-cache of 32kB, and a maximal
fetch and issue bandwidth of 16 instructions. There is a shared L1-D-cache, that is
connected to the Load/Store units. All L1-caches are backed up by a larger 4MB L2-
cache. However, for the current simulations, the L1-D cache hit-rate was set to 100%
to explore the full performance potential. The branch prediction uses a simple shared
array of 2-bit counters.

The simulation results show that if enough data bandwidth is available, the per-
formance scales with the number of threads. The lower single-thread performance is
caused by inter-cluster latencies and branch miss-predictions. This benchmark had a
40% miss-prediction rate, which results in significant IPC losses (30%) between issue
and retire stages (see the two difference between the red and the blue rows), even in
a multi-threaded environment. It is interesting to note that this loss gets smaller as the

Fig. 5. GMC simulation results for 1 to 128 threads. The left bar shows the Issue-IPC, the right
bar retire-IPC.

Fig. 6. Simulated Thread IPC results for 1..128 threads

A Scalable, Multi-thread, Multi-issue Array Processor Architecture 295

Fig. 7. Simulation results: 32 FUs, 1 to 128 threads. Left: GMC. Right: MPEG-4 Deblocking
filter. The different bars represent different network bandwidth.

number of threads increases, which is caused by the fact that resource contention be-
tween the thread units leads also to lower issue rates per thread and therefore to fewer
unsued or wasted execution cycles. The high utilization rates of the FUs in the above
simulations show however that multi-threading effectively compensates the high laten-
cies for data-forwarding between dependent instructions. Another conclusion is that,
in the presence of multiple available threads to run, speculation does not yield better
results.

The simulations results shown in Fig. 7 were obtained from simulations with differ-
ent bandwidth configurations of the internal networks. With 1 denoting a single word
bandwidth and 16 denoting 16 word bandwidth, for example for the data communica-
tion network.

The simulation results show that if enough network bandwidth is available, the per-
formance scales with the number of threads. The lower single-thread performance is
caused by inter-cluster latencies and branch miss-predictions. The high utilization rate
of the FUs for higher thread numbers (IPC>15) shows however, that multi-threading
effectively compensates the high latencies for data-forwarding between dependent in-
structions.

4 Related Work

Previous work on DSP processor architectures has mainly been focused instruction-level
parallelism, particularly on statically scheduled, VLIW processing. These architectures
offer good compiler support for a moderate parallelism of 2-8 (peak) instructions per
cycle, but run out of steam for larger parallelisms. Furthermore, their main advantage, the
simpler hardware compared to dynamically scheduled ooo-execution models diminishes
with the huge demand for registers and for more register file ports. A main disadvantage
of VLIW architectures is their inability to dynamically react to cache misses and resource
contention leading to frequent performance-limiting stalls [30], and making it inadequate
for simultaneous multithreading.

Only few studies have been performed so far that investigate multithreading, out-of-
order execution, or SMT for digital signal processing applications [31]. With the rapid
increase of the transistor budget that is available on chips, DSP chip multi-processors
are beginning to surface and it is to be expected that this trend is going to continue.

Previous studies [32] have identified the instruction window design to be a major lim-
iter for more (future) processor speed. Several studies have advocated improvements for

296 M. Bereković and T. Niggemeier

larger window sizes and higher frequency designs [33], while other designs eliminate
associative compares altogether from the instruction scheduling [34].

Clustering has been proposed by many researches to address the complexity prob-
lems of large instruction windows and register files and it is employed in several recent
processor designs. Studies of clustered architectures include the Multi-Scalar project,
Trace Processors, EDF [35], Hierarchical Scheduling Windows, and Transport Trig-
gered Architectures (TTAs) [36]. In contrast to this work TTAs are based on static
VLIW techniques and compiler-generated scheduling. Other approaches include array
processors like the UT/Austin Grid architecture [37], MIT’s RAW project [38], and
Stanford’s IMAGINE stream processor project.

5 Conclusion

We propose a distributed SMT processor architecture as a scalable network-on-chip
platform for dynamically reconfigurable digital signal processing. Although well suited
for multiprocessing, it combines all characteristics needed by DSP applications in a sin-
gle processor framework. Like the very popular VLIW processors it supports multiple
instruction issue and offers a very large number of registers, but it avoids the perfor-
mance degrading stalls in instruction issue due to cache misses. Just as VLIW proces-
sors it supports the embedding of special function units that can perform parallel vector
instructions, or complex functions like filtering. Also, fine-clustering offers a path to
high frequency implementations, but unlike VLIW processors, multithreading effec-
tively compensates the related IPC losses. The architecture shares the system-on-chip
processing model with multiple heterogeneous ASIP cores on a chip, each specialised
for a specific task, communicating with each other over specialised on-chip networks.
However, it offers more flexibility for resource sharing especially for the costly, high-
performance, specialised function units. Furthermore, it offers fast context switches
and a fine-grained and fast communication scheme between threads that is based on
hardware CSPs channels. Large scale clustered SMT processors with many shared spe-
cialised or configurable function units come very close to the ideal of a softening of
hardware and offer an attractive alternative to both, pure FPGA implementations and to
costly ASIC designs.

References

1. L. Benini, G. de Micheli, ”Networks on chip: A New SOC Paradigm,” IEEE Computer, Vol.
35, no. 1, Jan. 2002, pp. 70-78.

2. R. M. Tomasulo, ”An efficient algorithm for exploiting multiple arithmetic units”, IBM Jour-
nal on Research and Development, Vol.11, no.1, January 1967, pp. 25-33.

3. M. Berekovic, H.-J. Stolberg, P. Pirsch, ”Multi-Core System-On-Chip Architecture for
MPEG-4 Streaming Video,” Transactions on Circuits and Systems for Video Technology
(CSVT), Vol. 12, No. 8, August 2002, pp. 688-699.

4. P. Pirsch, M. Berekovic, H.-J. Stolberg, J. Jachalsky, ”VLSI Architectures for MPEG-4
Video,” VLSI Conference, Taipei, April 2003.

5. ARM AMBA Specification, www.ARM.com.

A Scalable, Multi-thread, Multi-issue Array Processor Architecture 297

6. F. Vahid, ”The Softening of Hardware,” IEEE Computer, Vol. 36, no. 4, April 2003, pp.
27-34.

7. H. Zhang, J.M. Rabaey et al., ” A 1V Heterogeneous Reconfigurable Processor IC for Base-
band Wireless Applications,” Proc. Int’l. Solid-State Circuits Conference (ISSCC), San Fran-
cisco, February 2000.

8. J. L. van Meerbergen, ”Lecture slides: Complex Multiprocessor architectures,”
www.ics.ele.tue.nl/ jef/education/5p520/index.html.

9. ISO/IEC JTC/SC29/WG11 N4668, ”Overview of the MPEG-4 standard,” Jeju, March 2002.
10. M. Berekovic, P. Pirsch, J. Kneip, ”An Algorithm-Hardware-System Approach to VLIW

Multimedia Processors,” Journal of VLSI Signal Processing Systems, Vol. 20, No. 1-2, Oc-
tober 1998, pp. 163-180.

11. A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, and Y. Zorian, ”2001 Tech-
nology Roadmap for Semiconductors,” IEEE Computer, Vol. 35, no. 1, January 2002, pp.
42-53.

12. M. H. Lipasti and J. P. Shen ”Modern Processor Design”, McGrawHill, 2002.
13. M. Berekovic, H. J. Stolberg, M. B. Kulaczewski, P. Pirsch, H. Moeller, H. Runge, J. Kneip,

B. Stabernack, ”Instruction Set Extensions for MPEG-4 Video,” Journal of VLSI Signal
Processing Systems, Vol. 23, No. 1, October 1999, pp. 7-50.

14. J. P. Wittenburg, W. Hinrichs, J. Kneip, M. Ohmacht, M. Berekovic, H. Lieske, H. Kloos, P.
Pirsch, ”Realization of a Programmable Parallel DSP for High Performance Image Process-
ing Applications,” Design Automation Conference (DAC) 1998, June 1998, pp. 56-61.

15. R. Lee, ”Accelerating Multimedia with Enhanced Microprocessors,” IEEE Micro, Vol.15,
no. 2, March/April 1995, pp. 22-32.

16. N. Slingerland, and A. J. Smith, ”Measuring the Performance of Multimedia Instruction
Sets,” IEEE Transactions on Computers, Vol. 51, no. 11, November 2002, pp. 1317-1332.

17. Texas Instruments, ”TMS320DM642 Technical Overview,” Application Report SPRU615,
Sep. 2002.

18. M. S. Lam, and R. P. Wilson, ”Limits of Control Flow on Parallelism”, Proc. 19th Ann. Int’l
Symp. on Computer Architecture, June 1992, pp. 46-57.

19. D. M. Tullsen, S. J. Eggers, and H. M. Levy, ”Simultaneous Multithreading: Maximizing
On-Chip Parallelism”, Proc. 22th Ann. Int’l Symp. on Computer Architecture, June 1995,
pp. 392-403.

20. R. P. Preston, et.al ”Design of an 8-wide Superscalar RISC with Simultaneous Multi-
threading”, Solid-State Circuits Conference (ISSCC2002), San-Francisco, Ca, Febr. 2002,
pp.469-471.

21. S. Palacharla, N.P. Jouppi, J. Smith, ”Complexity Effective Superscalar Processors”, Proc.
24th. Int’l. Symp. on Computer Architecture, June 1997, pp. 206-218.

22. B. Ackland et al., ”A Single Chip, 1.6-Billion, 16-b MAC/s Multiprocessor DSP,” IEEE J.
Solid-State Circuits, Mar. 2000, pp. 412-424.

23. H.-J. Stolberg, M. Berekovic, L. Friebe, S. Moch, S. Fluegel, X. Mao, M. B. Kulaczewski,
H. Klussmann, P. Pirsch, ”HiBRID-SoC: A Multi-Core System-on-Chip Architecture for
Multimedia Signal Processing Applications,” Proceedings Design, Automation and Test in
Europe (DATE2003) - Designer’s Forum, March 2003, pp. 8-13.

24. K.I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, ”The Multicluster Architecture: Reduc-
ing Cycle Time through Partitioning”, Proc. 30th. Int’l. Symp. On Microarchitecure, Dec.
1997, pp.149-159.

25. R. E. Kessler, ”The Alpha 21264 Microprocessor”, IEEE Micro 19(2), March 1999,
pp. 24-36.

26. R. Ho, K. W. Mai, M. A. Horowitz, ”The Future of wires”, Proceedings of the IEEE, 89(4):
490-504, Apr. 2001.

298 M. Bereković and T. Niggemeier

27. V. Agarwal, M.S. Hrishikesh, S. W. Keckler, and D. Burger, ”Clock Rate versus IPC: The End
of the Road for conventional Microarchitectures”, Proc. 27th Ann. Int’l. Symp on Computer
architecture, June 2000, pp. 248-259.

28. H. Corporaal, ”Microprocessor Architectures from VLIW to TTA,” John Wiley & Sons,
1998.

29. S. Vangal et. al., ”5-Ghz 32-bit Integer Execution Core in 130-nm Dual-VT CMOS,” IEEE
Journal of Solid-State Circuits, vol. 37, no. 11, November 2002.

30. M. Berekovic, P. Pirsch, J. Kneip, ”An Algorithm-Hardware-System Approach to VLIW
Multimedia Processors,” Journal of VLSI Signal Processing Systems, Vol. 20, No. 1-2, Oc-
tober 1998, pp. 163-180.

31. Y.-K. Chen, R. Lienhart, E. Debes, M. Holliman, and M. Yeung, ”The impact of SMT/SMP
Designs on Multimedia Software Engineering: A Workload Analysis Study,” Fourth Interna-
tional Symposium on Multimedia Software Engineering, December 2002.

32. David W. Wall, ”Limits of Instruction-Level Parallelism”, Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, April 1991,
pp. 176-188.

33. M. Brown, J. Stark, and Y. Patt, ”Select-Free Instruction Scheduling Logic, ” Micro-34, 2001,
pp. 204-213.

34. S. Weiss, and J.E: Smith, ”Instruction Issue Logic in Pipelined Supercomputers,” IEEE Trans.
on Comp., vol. C 33, No. 11, Nov. 1984, pp. 1013-1022

35. T. Sato, Y. Nakamura, and I. Arita, ”Revisiting Direct Tag Search Algorithm on Superscalar
Processors,” in Workshop on Complexity-Effective Design, June 2001

36. H. Corporaal, ”Microprocessor Architectures from VLIW to TTA,” John Wiley & Sons,
1998.

37. R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, ”Design Space Evaluation of
Grid Processor Architectures, ” Micro-34, 2001, pp.40-53.

38. M. B. Taylor et al., ”The RAW Microprocessor: A Computational Fabric For Software
Circuits and General-Purpose Programs,” IEEE Micro, Vol. 22, no. 2, March/April 2002,
pp. 25-35.

Reducing Execution Unit Leakage Power
in Embedded Processors

Houman Homayoun� and Amirali Baniasadi

Electrical and Computer Engineering Department
University of Victoria, Victoria, Canada

houman@houman-homayoun.com, amirali@ece.uvic.ca

Abstract. We introduce low-overhead power optimization techniques
to reduce leakage power in embedded processors. Our techniques im-
prove previous work by a) taking into account idle time distribution for
different execution units, and b) using instruction decode and control de-
pendencies to wakeup the gated (but needed) units as soon as possible.
We take into account idle time distribution per execution unit to detect
an idle time period as soon as possible. This in turn results in increas-
ing our leakage power savings. In addition, we use information already
available in the processor to predict when a gated execution unit will be
needed again. This results in early and less costly reactivation of gated
execution units. We evaluate our techniques for a representative subset
of MiBench benchmarks and for a processor using a configuration similar
to Intels Xscale processor. We show that our techniques reduce leakage
power considerably while maintaining performance.

1 Introduction

The goal of this work is to reduce leakage power in embedded processors. In
recent years, we have witnessed a rapid complexity increase in the embedded
space. As a result, embedded processors power dissipation has become one of
the major barriers in their deployment in mobile devices. Meantime, as the
semiconductor technology scales down, leakage (standby) power will account for
an increasing share of processor power dissipation [1, 2].

In most processors, including embedded processors, computational units power
dissipation accounts for a considerable share of total power dissipation. However,
and as we show in this work, computational units may be idle for long periods of
time depending on the applications required resources. During such idle periods,
execution units consume energy without contributing to performance.

We investigate embedded processors and show that there is an opportunity to
reduce leakage power dissipated by idle execution units. In particular, we show
that execution units may be idle for long periods of time. Identifying such idle
periods accurately provides an opportunity to reduce power while maintaining
performance.
� The author was with the University of Victoria, Electrical and Computer Engineering

Department when this work was done.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 299–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

300 H. Homayoun and A. Baniasadi

To reduce power dissipation, we turn off the voltage supply for execution units
that are detected to be in their idle time.

One way to detect idle execution units is to monitor the units and to gate
them if they are idle for a consecutive number of cycles [3]. This is referred to
as time-based power gating. This approach has two inefficiencies. First, the time
overhead associated with this method could be costly. Particularly the energy
savings are very sensitive to the time needed to wakeup gated units. Second, as we
show in this work, different functional units have different idle time distributions.
While some execution units may be idle for long periods there are others that
stay idle for short periods. Therefore, a one-size-fits-all approach fails to provide
optimal results across all units.

In this work we introduce new heuristics to address both inefficiencies. We
improve previously suggested techniques by using different idle time detection
thresholds and by using control dependency and decode information to wakeup
gated execution units early in embedded processors.

In particular we make the following contributions:

1. We show that there is an opportunity in the embedded space to reduce
leakage power by identifying idle execution units.

2. We improve previously suggested leakage reduction techniques as we detect
idle periods more effectively. Consequently we increase energy savings.

3. We reactivate gated (but needed) units earlier than the time they are re-
activated using previously suggested methods. Consequently, we reduce the
performance cost.

Note that there is a timing overhead associated with power gating. We take into
account this overhead in this study.

The rest of the paper is organized as follows. In section 2 we discuss related
work. In section 3 we discuss power gating in more detail. In section 4 we discuss
our motivation and present our techniques. In section 5 we review methodology,
present our analysis framework and present performance and power savings re-
sults. Finally, in section 6 we offer concluding remarks.

2 Related Work

Leakage power may become a more serious issue in embedded processors where
applications may require long periods of inactivity [4, 5]. Accordingly, previous
study has introduced many techniques to reduce leakage in different processor
units (e.g., [6,7,8,9,10]). Powell et al., explored an integrated architectural and
circuit level approach to reducing leakage energy dissipation in instruction caches
[6]. Kaxiras et al. proposed an approach to reduce the L1 cache leakage energy
by turning off the cache line not likely to be reused [11]. Bai et al optimized
several components of on-chip caches to reduce gate leakage power [12]. Kao and
Chandrakasan suggested dual-threshold voltage techniques for reducing standby
power dissipation while still maintaining high performance in static and dynamic
combinational logic blocks [7]. Johnson et al., modified circuits considering state

Reducing Execution Unit Leakage Power in Embedded Processors 301

dependence. They identified a low leakage state and inserted leakage control
transistors only where needed [8]. Durate et al., studied and compared three
leakage power reduction techniques: Input Vector Control, Body Bias Control
and Power Supply Gating. They investigated their limits and benefits, in terms
of the potential leakage reduction, performance penalty and area and power
overhead [9]. Rele et al.,introduced an approach to combine compiler, instruction
set, and microarchitecture support to turn off functional units that are idle for
long periods of time for reducing static power dissipation by idle functional
units using power gating [10]. Our work is different from previous work as it
targets embedded processors. We show that there is a motivating opportunity
in the embedded space to apply power gating. Moreover, we take advantage
of embedded processor characteristics such as in-order execution to improve
previously suggested gating techniques.

3 Power Gating

Power dissipation in a CMOS circuit can be classified to dynamic and static.
Dynamic power dissipation is the result of switching activity while static power
dissipation is due to leakage current. Among all factors influencing the static
power the subthreshold leakage is considered to be an important contributor.
Subthreshold leakage current (Ileakage) flows from drain to source even when the
transistor is off (see figure 1(a)). Static power dissipation can be computed using
the following:

Pstatic = Vcc.Ileakage = Vcc.N.Kdesign.Ktech.10
−VT

St (1)

The parameters in equation 1 are divided to two categories: technology depen-
dent and design dependent. Vcc, N and Kdesign are technology independent and
may be varied independently targeting a specific design model. VT is a technol-
ogy dependent parameter. As the technology scales down, VT decreases which
results in an increase in static power.

Fig. 1. a) Turned off transistor dissipating leakage power b) Schematic showing major
blocks exploited in power gating

302 H. Homayoun and A. Baniasadi

Fig. 2. Transition states in power gating

We use power gating to block Vcc and reduce leakage power to zero. In figure
1(b) we present how power gating is achieved using a header transistor to block
voltage supply from reaching a circuit unit. The power gate detection circuit
decides when is the appropriate time to turn off the voltage supply. Once the
sleep signal is generated, and after a transition period, the Vcc signal will be
blocked from reaching the functional unit.

Applying power gating comes with timing overhead. To explain this in more
detail in figure 2 we present transition states associated with power gating.

As presented, the power gating process includes three separate intervals. We
refer to the first interval as the active to sleep transit period (ASP). ASP starts
the moment we decide to power gate a unit and ends when the voltage supply is
completely blocked. We refer to the second interval as the deep sleep period or
DSP. This is the period where the functional unit is gated and therefore does not
dissipate power. Power dissipation reduction depends on how often and for how
long units stay in DSP. We have to wakeup a unit as soon as its idle period ends.
For example, in the case of integer ALU, this is when an instruction requires the
unit to execute. Turning on the voltage supply to wakeup a unit takes time. The
third interval presented in figure 2 represents this timing overhead and is the
time needed to reactivate a unit. We refer to this period as the sleep to active
transition period (SAP).

While saving leakage power during ASP and SAP is possible, in this study we
assume that power reduction benefits are only achievable when a unit is in DSP.
As such we refer to ASP and SAP as timing overheads associated with power
gating. Hu et. al, provide a detailed explanation of the three intervals [3].

4 Motivation and Heuristics

Through this study we report for a representative subset of MiBench benchmarks
[13] and for a processor similar to that of Intels XScale processor (more on this
later in section 5).

In figure 3 we present energy savings achievable by ideal (but not practi-
cal) power gating. We assume that the percentage of execution units idle cycles

Reducing Execution Unit Leakage Power in Embedded Processors 303

Fig. 3. Leakage power reduction achieved by ideal power gating

indicates maximum leakage power reduction possible by using power gating.
We also assume that the timing overhead with power gating is zero. As a re-
sult the data presented in figure 3 serves as an upper bound for our leakage
power savings. Bars from left to right report average savings for integer ALU,
integer multiplier/divider, memory ports, floating point ALU and floating point
multiplier/divider.

In figure 3, and as an indication of potential leakage power savings, we report
how often each of the five units used in the Intels XScale are idle. On average,
three of the units, i.e., integer multiplier/ divider, floating point ALU and floating
point multiplier/divider are idle more than 95% of cycles. Average idle period is
least for integer ALU (40%). We conclude from figure 3 that there is motivating
opportunity in embedded processors to exploit idle times and to power gate
execution units to reduce leakage power dissipation. However, identifying idle
times early enough is a challenging problem. Moreover, reactivating the gated
execution units soon enough is critical since stalling instruction execution could
come with a performance penalty.

As explained earlier time-based power gating monitors the state of each exe-
cution unit and turns it off after the number of consecutive idle cycles exceeds
a pre-decided threshold. We refer to this threshold as the idle detect threshold
(IDT). In the following sections we extend time-based power gating to reduce
leakage power further.

4.1 Multiple IDTs (MIDT)

In figure 4 we report how changing the idle detect threshold or IDT impacts
power gating. We assume that the active to sleep period is 3 cycles. We also
assume that returning an execution unit from sleep to active takes 5 cycles [3].

In 4(a) bars from left to right report average percentage of cycles each execu-
tion unit is gated for the benchmarks studied here for IDT values 5, 10, 20, 50,
100 and 150.

304 H. Homayoun and A. Baniasadi

Fig. 4. a) Average leakage power savings achieved by power gating for different IDT
values for ASP=5 and SAP=3. Higher is better. b) Performance cost associated with
power gating for different IDT values for ASP=5 and SAP=3. Lower is better.

In 4(b) we report performance cost for the benchmarks studied here for dif-
ferent IDT values. Average performance slowdown is 10.9%, 4.1%, 1.9%, 0.9%,
0.3%, 0.3%, for IDT values 5, 10, 20, 50, 100 and 150 respectively.

A closer look at figure 4 reveals that none of the IDT values provide acceptable
results across all execution units and for all applications. Lower IDT values (i.e.,
5, 10 and 20) provide high power savings but come with high performance cost.
Higher IDT values (i.e., 50 and 100), on the other hand, maintain performance
but can reduce power savings dramatically. This is particularly true for integer
ALU and memory port.

To provide better insight in figure 5 we report idle time distribution for each
execution unit. As presented, idle time distribution is quite different from one
execution unit to another. As such using a single IDT for all execution units
is inefficient. To address this issue we use a different IDT for each execution
unit. We refer to this method as multiple IDT or MIDT. To pick the right IDT
for every execution unit we took into account many factors including how often
the execution unit becomes idle and how long it stays idle. After testing many
alternatives we picked IDT values 20, 80, 40, 100 and 140 for integer ALU,
integer multiplier/divide, memory ports, floating point ALU and floating point
multiplier/ divider respectively. Note that multiple IDT could be implemented
easily by using programable registers.

4.2 Early Wakeup

In figure 6 we report how changes in SAP impact performance. Note that SAP
is the time required to reactivate an execution unit by turning on the power
supply. SAP depends on the circuit parameters and may change from one design

Reducing Execution Unit Leakage Power in Embedded Processors 305

Fig. 5. Idle time distribution for different execution units

Fig. 6. Performance cost associated with power gating for different SAP values for
IDT=20 and ASP=5. Lower is better.

to another. We assume that IDT and ASP are 20 and 5 respectively. Bars from
left to right report for SAP values of 1, 2, 3 and 4 respectively. As expected the
longer it takes to reactivate a gated execution unit the higher the performance
penalty would be. Average performance cost is 0.5%, 1.2%, 1.9% and 2.7% for
different SAP values.

We conclude from figure 6 that long wakeup periods can harm performance
seriously. One way to reduce performance cost is to reactivate gated units as early
as possible. To reactivate gated execution units sooner we suggest two methods:

First, we use control dependencies to wakeup execution units in advance. We
refer to this method as the branch-aided wakeup or BAW technique.

Second, we use information available at the decode stage to wakeup the needed
execution units at least one cycle earlier than when they become active in con-
ventional power gating. We refer to this technique as the decode-aided wakeup
or DAW.

Branch-Aided Wakeup (BAW). Note that embedded processors such as
Intels XScale use inorder issue. As such once a branch instruction is issued,
the following basic block should issue sequentially. To take advantage of in-
order instruction issue we store information regarding whether integer ALU and
memory ports are used inside a basic block. We limit the stored information to

306 H. Homayoun and A. Baniasadi

the these two execution units since our study shows that long wakeup periods for
the two units impact performance more seriously compared to other execution
units. Moreover,limiting the technique to the two units will reduce the overhead
associated.

We use an 8-entry table to record the required information. The table is
indexed using the branch instruction address associated with the basic block.
Each entry stores two bits. The first bit records if any instruction within the
basic block uses the integer ALU and the second bit records if any instruction
uses the memory port.

At fetch, and in parallel with accessing the branch predictor, we probe the
8-entry table. We reactivate the execution units if the table indicates that they
will be needed by the following basic block. We take no action if the execution
units are already active. Note that possible misspeculations are not costly from
the performance point of view since all they do is to reactivate an execution unit
which will not be used.

We use a 3-bit register to store the index associated with the latest fetched
branch. For example, when an issued instruction is dispatched to the integer
ALU, we update the entry associated with the last branch fetched, i.e., we set
the first bit in the entry to 1 indicating that the integer ALU will be used by
the basic block. We use the 3-bit register to find and update the table entry
associated with the last fetched branch.

The area overhead associated with this techniques is very small. We use a
3-bit register and an 8- entry table which contains eight 2-bit fields. The total
area requirement is equivalent to 19 bits which is negligible.

Decode-Aided Wakeup (DAW). In this method we start the activation
process of the gated execution units at decode and immediately after recog-
nizing the opcode. Note that in conventional power gating execution units are
activated when a ready to execute instruction is detected. DAW, on the other
hand, uses the already available information at decode and starts reactivation
at least one cycle before the instruction becomes ready. This in turn reduces the
timing overhead associated with power gating.

5 Methodology and Results

In this section we report our analysis framework and simulation results. To
evaluate our optimization techniques we report performance and leakage power
reduction. We use a subset of MiBench benchmark suite [13] compiled for MIPS
instruction set. In this work, similar to earlier studies [3], we assume that the
percentage of cycles a functional unit stays in DSP indicates net leakage savings
achieved by using power-gating.

For simulation purpose we used a modified version of simplescalar v3.0 toolset
[14]. We modeled a single issue in-order embedded processor with an architecture
similar to Intels XScale core. Table 1 shows the configuration we used.

In figure 7 we report how our optimizations impact performance and leakage
power savings. We also report results for a combined technique where multiple

Reducing Execution Unit Leakage Power in Embedded Processors 307

Table 1. Configuration of the processor model

Issue Width In-Order:2 Inst/Data TLB 32-entry,full-associative
Functional 1 I-ALU, 1 F-ALU,1 I-MUL/ L1 - Instruction/ 32K, 32-way SA,
Units DIV 1 F-MUL/DIV Data Caches 32-byte blocks, 1 cycle
BTB 128 entries L2 Cache None
Branch Bimodal, 128 entries Register Update 8 entries
Predictor Unit
Main Memory Infinite, 32 cycles Load/Store queue 8 entries

Fig. 7. a) Performance cost. b) Leakage power reduction for the methods discussed.

IDT, BAW and DAW are applied simultaneously. We refer to the combined
technique as CMB. For the sake of comparison we also include results achieved
when all execution units use the same IDT. Bars from left to right report for IDT
values 5, 10, 20, 50, 100, 150, multiple IDT (MIDT), BAW, DAW and CMB.

We limit our discussion to comparing the CMB method to methods where
a single IDT is used across all execution units. Nonetheless, it is important to
note that similar comparisons could be made for each of the three optimizations.
Note that as explained earlier single IDT results in either high performance cost
(for low IDTs) or low energy savings (for high IDTs). CMB, however, maintains
performance for all benchmarks (see figure 7(a)). While average performance
costs are 10.9% and 4.2% for IDT values 5 and 10, average performance cost is
reduced to 0.3% for CMB.

Average leakage energy savings are 0.1% and 3% for integer ALU and memory
ports for IDT values 100 and 150 respectively. For CMB, average savings for integer

308 H. Homayoun and A. Baniasadi

ALU and memory port are increased to 6.5% and 11% respectively (see figure
7(b)). Note that CMB maintains high energy savings for other execution units.

6 Conclusion

In this paper we analyzed how power gating could be exploited in embedded
processors to reduce leakage power. We extended previous work by introducing
three optimization techniques to reduce leakage power while maintaining perfor-
mance. Our techniques used control dependency, instruction decode information
and idle time distribution. We showed that it is possible to reduce leakage power
while maintaining performance for an embedded processor similar to Intels Xs-
cale and for a representative subset of MiBench benchmarks.

References

1. Borkar, S.: Design challenges of technology scaling. IEEE Micro 19 (1999) 23–29
2. Butts, J.A., Sohi, G.S.: A static power model for architects., In Proceedings of the

33rd Annual IEEE/ACM International Symposium on Microarchitecture (Decem-
ber 2000)

3. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zuyuban, V., Jacobson, H., Bose, P.:
Microarchitectural techniques for power gating of execution units., In proceedings
of ISLPED (2004)

4. Unsal, O.S., Koren, I.: System-level power-aware design techniques in real-time
systems. Volume 91, NO. 7., In proceedings of the IEEE (July 2003)

5. Jejurikar, R., R., G.: Dynamic voltage scaling for systemwide energy minimization
in real-time embedded systems., In proceedings of ISLPED (2004)

6. Powell, M., Yang, S., Falsafi, B., Roy, K., Vijaykumar, T.: Gated-vdd: A circuit
technique to reduce leakage in deepsubmicron cache memories., In proceedings of
ISLPED (2000)

7. Kao, J., Chandrakasan, A.: Dual-threshold voltage techniques for low-power digital
circuits. IEEE Journal of Solid State Circuits 35 (2000)

8. Johnson, M., Somasekhar, D., Cheiou, L., Roy, K.: Leakage control with efficient
use of transistor stacks in single threshold cmos. IEEE Transactions on VLSI
Systems 10 (2002)

9. Durate, D., Tsai, Y.F., Vijaykrishnan, N., Irwin, M.J.: Evaluating run-time tech-
niques for leakage power reduction., ASPDAC (2002)

10. Rele, S., Pande, S., Önder, S., Gupta, R.: Optimizing static power dissipation by
functional units in superscalar processors., In International Conference on Compiler
Construction (2002)

11. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior
to reduce cache leakage power., In proceedings of ISCA (2001)

12. Bai, R., Kim, N., Sylvester, D., Mudge, T.: Total leakage optimization strategies
for multi-level caches., ACM Great Lakes Symposium on VLSI (2005)

13. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
Mibench: A free, commercially representative embedded benchmark suite, IEEE
4th Annual Workshop on Workload Characterization (WWC-4) (December 2001)

14. Burger, D., Austin, T.M., Bennett, S.: Evaluating Future Microprocessors: The
SimpleScalar Tool Set.Technical Report CS-TR-96-1308, University of Wisconsin-
Madison. (July 1996)

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 309 – 320, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Memory Architecture Evaluation for Video Encoding
on Enhanced Embedded Processors

Ali Iranpour and Krzysztof Kuchcinski

Lund University, Department of Computer Science,
SE-22100 Lund, Sweden

{ali.iranpour, krzystof.kuchinski}@cs.lth.se

Abstract. In this paper we investigate the impact of different memory
configurations on performance and energy consumption of the video encoding
applications, MPEG-4 and H.264. The memory architecture is integrated with
SIMD extended embedded processor, proposed in our previous work. We
explore both dedicated memories and multilevel cache architectures and
perform exhaustive simulations. The simulations have been conducted using
highly optimized proprietary video encoding code for mobile handheld devices.
Our simulation results show that the performance improvement of dedicated
memories on video encoding applications is not very significant. The multilevel
cache-based architecture processes approximately 17 frames/s compared to 19-
22 frames/s for 512 KB dedicated on-chip zero-wait state memory. Thus it is
difficult to justify using dedicated memory for this kind of embedded systems,
when energy consumption and cost of implementation are also considered.

1 Introduction

The video encoding applications implementing standards such as MPEG-4 and H.264 are
computationally and memory intensive. These applications are becoming a dominant
portion of today’s computing workloads for handheld embedded devices. Since,
embedded devices have limited energy supply and size they need to be designed
carefully to fulfill these confined demands. With this in mind, these devices have other
design challenges than high-performance designs. The key is to increase the performance
just enough to meet the requirements with as little cost overhead as possible.

An important characteristic of video processing applications is the presence of data
localities. This provides the possibility to use a special memory architecture that
reuses data efficiently. Choosing the right memory solution is important in order to
provide sufficient performance and manageable energy consumption. The memory
solutions range from dedicated memories [1-4] to standard memory hierarchies [5-7].

The research on data reuse in media applications provides contradicting conclusions.
Some authors argue that data reuse is ineffective for these applications [8]. They
however concentrate on computational kernels only. Other authors draw different
conclusions when the whole video processing application is considered [7]. Their paper
confirms the existence of data locality for video encoding applications such as MEPG-4
for non-SIMD architecture, and the authors state that specific memory system
optimizations fails to improve MPEG-4 performance. In this paper we examine Single

310 A. Iranpour and K. Kuchcinski

Instruction Multiple Data (SIMD) enhanced embedded processor and video encoding
applications specifically developed for mobile applications.

We use two proprietary video encoding applications provided by Ericsson AB
specifically developed with focus on very low complexity algorithms, which influences
both computations and memory traffic. This is important when evaluating memory
architecture.

In our previous work [12] we have proposed SIMD extension for embedded
processor to address the problem of high computation requirements for video encoding.
In this paper we examine the impact of different memory architectures on performance
and energy consumption of our architecture. We evaluate standard multilevel cache
hierarchy against dedicated memory because the standard code can be run without
rewriting that provides system flexibility.

The structure of the paper is as follows. Section 2 describes our video encoding
applications. In Section 3 basic information of our extended processor architecture is
given and in section 4 the memory architecture is discussed. Section 5 presents the
method used in our approach. In section 6 we present and discuss our experimental
results. In Section 7, we discuss related work and in Section 8 we give some
concluding remarks.

2 Video Application

The two video standards used in our research are MPEG-4 [9] and H.264 [13]. Both
are block based and one could view H.264 as the next step after MPEG-4. Looking at
the optimized implementations of H.264/AVC encoders, time complexity is about 3.4
times higher for H.264 than MPEG-4 [14]. There are different phases involved in
video encoding, such as Motion Estimation (ME), Motion Compensation (MC),
Discrete Cosine Transform (DCT), quantization (Q) and variable length coding
(VLC) [9]. The MPEG-4 and H.264 implementations selected for our research are full
proprietary video encoding applications provided to us by Ericsson AB [11].

By profiling both MPEG-4 and H.264 video encoding applications we have identified
the main computationally intensive operations. Our MPEG-4 application allows for full
search (FS) and optimized search (OS) modes, with the last being more realistic for
mobile devices. In MPEG-4 the most time consuming operations are in motion
estimations Sum-of-Absolute-Differences (SAD), DCT as well as SAD_Intra. These
operations account for 25-80% of the entire encoding time in case of MPEG-4 [15].

Two different H.264 implementations were evaluated. H.264 Ultra light (UL)
comparable in quality to MPEG-4 and H.264 FAST comparable to the reference
implementation [10]. The profiling of H.264 FAST and UL while performing
encoding of the foreman test sequence shows the suitable operations for data
parallelism account for approximately 40% of encoding time. These operations are
Sum-of-Absolute-Transformed-Differences (SATD) and interpolation where they are
significant part of the overall encoding time.

The main difference between our two implementations of H.264 encoder is the
time complexity of the encoders and the quality of the encoded video sequence. The
H.264 UL implementation is the simpler of the two and on average performs more
efficiently than MPEG-4. The H.264 FAST encoder is more computationally

 Memory Architecture Evaluation for Video Encoding 311

demanding. This encoder performs well against the H.264 reference code [10] even
though the time complexity of our encoder is significantly lower, approximately a
speedup with a factor of 100 with an average bit-rate increase of less than 20%, than
the reference encoder. This corresponds to approximately 700 times fewer SAD calls
and 35 times fewer SATD calls [11].

The most often executed operation of video encoding, as identified by our
profiling, use pixel arrays that represent frames. Macroblock (MB) is the main block
of data where in MPEG-4 it consists of 8x8 pixels or 16x16 pixels. H.264 uses
variable block sizes where macroblocks are partitioned into smaller MB 16x8, 8x8,
8x4 and 4x4. The frames are allocated in consecutive memory locations represented
as pixel arrays. The allocated size for each frame is the frame size plus a border of 16
pixels surrounding the frame to deal with edge macroblocks when these are moved.
The allocated memory for each section with screen size, QCIF (176x144) is 35 KB,
CIF (352x288) is 122 KB and VGA (640x480) is 343 KB.

3 Processor Architecture

For the purpose of this study we have extended an embedded processor (MIPS based)
with a specialized SIMD unit. This unit is designed in such a way that it supports
specific operations found in video encoding algorithms such as MPEG-4 and H.264.
Media applications and in particular video encoding is well tailored for SIMD based
solutions, as there is abundance of data-level-parallelism [8,16,17]. In addition, SIMD
design is highly efficient in exploiting the structure and resources of the processor.

Our SIMD unit proposed in our previous work [12] is a pipelined unit with specific
instructions that increase the overall performance. The baseline architecture contains a
MIPS CPU with SIMD unit as well as the cache hierarchy and the main memory. The
second architecture extends the baseline architecture with dedicated memory
SIMDMeM. A more detailed schematic of the MIPS core and the SIMD unit
microarchitecture is depicted in fig. 1. SIMD unit is integrated in the flow of the

Fig. 1. The proposed SIMD architecture

312 A. Iranpour and K. Kuchcinski

instruction pipeline of the processor. At the instruction decode stage, SIMD
instructions are identified and redirected to SIMD unit. The SIMD unit executes load
and arithmetic instructions. It has two vector registers VR1 and VR2 that can be
configured either as 16X8-bits or 8X16-bits registers. The bandwidth of the memory
interface is 64-bits, thus resulting in two or three load accesses for loading each vector
register. Three accesses are needed for alignment of data.

Five arithmetic and five memory instructions have been added to the MIPS ISA to
support the SIMD extension. The new instructions follow the same ISA as the other
processor instructions. The load instructions perform the loading of vector registers
(VR1 and VR2). The arithmetic instructions work on the two vector registers.

Instruction SIMDSAD16 performs first 16 absolute value operations in parallel and
then a tree of adders (together 15) sums all these values. SIMDSAD8 performs two
8x8 MB SAD operations. SIMDSATD first performs a Hadamard transform and then
calculates SAD on the difference array. SIMDFIR performs a FIR filtering in half
pixel interpolation. SIMDAVG performs average value for two pixel values for
quarter-pixel calculation. The vector-processing unit is pipelined and has several
stages, depending on used adders and technology. The speed-up for our SIMD using
different SIMD instructions is approximately 6-7 times for SIMDSAD/SIMDSATD,
three times for SIMDFIR and two times for SIMDAVG.

4 Memory Architecture

The memory system and cache utilization stands out as one of the main issues, when
introducing our SIMD support. As this affects many parts of the system, we need to
investigate the architectural design tradeoffs. We investigated three different
solutions, one using the standard memory hierarchy, the other introducing a zero-wait
state separate memory for the SIMD unit, SIMDMeM, and a third using a dedicated
zero-wait state frame memory. As the impact of this memory on the overall encoding
performance was the focus, we evaluated a memory sufficiently large to hold all data
we need.

We evaluated both the impact of level-1 and level-2 caches on the overall
performance. Caches provide good performance for video encoding applications,
since these applications have good spatial locality. Many procedures in these
applications access data sequentially in blocks of 16 bytes.

Our SIMD memory SIMDMeM, acts as a tightly coupled memory (TCM), holding
all data used by the SIMD unit. This provides a zero-wait state memory for SIMD
calculations, thus removing memory latencies from the memory hierarchy.
SIMDMeM also use the same address space as the main memory. We do not discuss
any specific organization of this dedicated memory but our assumptions provide an
ideal model. A real dedicated memory cannot provide better performance than the
model used in our studies. As we will show even with this assumption, the overall
performance of the encoder is not improved very much comparing to the standard
cache hierarchy.

An alternative solution would be an on-chip zero-wait state frame memory. The
minimum size for this on-chip memory is dependent mainly on frame size and
number of reference frames used. The memory footprint for our H.264 encoder with

 Memory Architecture Evaluation for Video Encoding 313

screen size of QCIF (176x144) and four reference frames is at least 512 KB. This
solution reduces the energy costs of off-chip communication, at the same time, a 512
KB for on-chip fast memory might be difficult to justify in an embedded system.

5 Methodology

For verification of our architecture we used the two proprietary video encoding
applications presented in section 2. Instruction Set Simulator (ISS), which is based on
SimpleScalar toolset was used for the evaluation. This toolset provides an
infrastructure for architectural modeling [18]. To estimate power we integrated the
power estimation tool Wattch [19] into our system. The switching information for
registers, functional units and buses was collected and used by Wattch for power
calculation. The SimpleScalar cycle accurate model sim-outorder, modeling an in-
order processor, with MIPS ISA has been chosen. We compile our video applications
with the MIPS gcc compiler included in SimpleScalar toolset at optimization level –
O3. Three memory configurations were used in our experiments: a separate level-1
instruction and data cache together with a unified level-2 cache, dedicated memory
SIMDMeM, and on-chip frame memory. Table 1 illustrates configuration of the
system with the underlined values representing the memory architecture configuration
proposed after our investigation presented in section 6.

We evaluated two different architectures, baseline SIMD extended with standard
memory hierarchy and SIMD extended with dedicated memory. The processor clock
speed was set at 650 MHz in all the simulations with 90 nm process power model.
The energy model for the off-chip memory includes the memory and communication
energy consumption. The memory hierarchy latency for the system is 6 cycles for
level-1 cache miss for the first chunk of data and 1 cycle for the consecutive chunks.
A cache level-2 miss gives 45 cycles latency for the first chunk of data and 5 cycles
for the consecutive data chunks when fetching data from the main off-chip memory.

Table 1. Cache architecture, dedicated memory SIMDMeM and on-chip frame memory with
the chosen size and configurations (underlined in the table)

 Size (KB)
Line size
(Bytes)

Associativity
Replacement

policy

Inst. Cache 8/16/32/64 16/32 2 LRU
Data Cache 8/16/32/64/128/256/512/1024 8/16/32 1/2/4/8/16 LRU

Unified Cache 64/128/265/512/1024/2048 32/64/128 4 LRU

SIMDMeM 128 - - -
On-chip Frame

memory
512-768 - - -

Table 2. MPEG-4 and H.264 configuration

 Screen size Quantization Search algorithm Comments

MPEG-4 QCIF/CIF 15
Full Search/
IGRADD

Half-pixel enabled

H.264 Ultra Light (UL) QCIF 30 IGRADD Ref. frames 4
H.264 FAST QCIF 30 IGRADD Ref. frames 4

314 A. Iranpour and K. Kuchcinski

Table 2 illustrates the configuration chosen for the MPEG-4 and H.264 encoders.
The screen resolutions chosen was QCIF (176x144) and CIF (352x288). H.264 is
restricted with the screen resolution of QCIF as our encoder for the moment supports
this size. Test sequences chosen in our experiments were foreman, mobile and news
[20]. The main difference between these sequences is the amount of processing they
need to encode the sequences. The mobile sequence is the most demanding sequence
in terms of processing. In order to measure the overall performance of the system we
used frames per second, which in our case is more relevant as we are performing
video encoding. As we are dealing with handheld, battery driven embedded devises
we use total energy consumption rather than power consumption. For evaluating
cache performance we use miss rate, which is a common practice. But as we will
point out later, blindly using miss rate alone can be misleading, as cache accesses
influence the total energy consumption.

6 Experimental Results and Discussion

In sub-section 6.1, we evaluate the level-1 instruction and data cache size and their
configurations for video encoding. In sub-section 6.2 we present our evaluation of the
level-2 cache and its impact on performance and cache miss rate. Sub-section 6.3
deals with the energy consumption of the architecture. The results obtained in section
6.1-6.3 are then used to select an appropriate cache configuration when comparing
with dedicated memory. In sub-section 6.4, we present the performance results for
encoding applications on the evaluated architectures for both standards cache
hierarchy and dedicated memory. Finally, we discuss experimental results and their
implications in sub-section 6.5.

6.1 L1 Cache Configuration

To find the optimal cache configuration for our two encoding applications we
performed extensive simulations for different cache configurations. We have chosen
separate instruction and data cache architecture. The evaluated data cache sizes for

Fig. 2. a) Frame rate for MEPG-4 and H.264 with different level-1 cache sizes. b) Miss rate for
MEPG-4 and H.264 with different level-1 data cache sizes.

 Memory Architecture Evaluation for Video Encoding 315

level-1 cache were 8, 16, 32 and 64 KB, which are the most common sizes used. The
increased data cache size has positive effect on encoded frames per second (frames/s)
as shown in fig. 2a, but this comes at the expense of increased energy (fig. 5a) as
discussed later. Based on the analyses of miss rate for level-1 data cache, fig. 2b, we
can conclude that the level-1 data cache already at 32 KB has a miss rate between 1.2-
3.1% for all applications. This provides a performance of 30 frames/s for most
applications except H.264 FAST.

Fig. 3a shows performance for 4, 8 and 16 KB instruction cache sizes. Caches
larger than 16 KB are not shown in figures, but we have observed that there is no
significant miss rate improvement and are not realistic for embedded systems.
Looking at the frame rate depicted in fig. 3a, going from 8 to 16 KB instruction cache
gives a significant improvement for our application. An important factor is the level-1
instructions cache miss rate, which is as high as 29% for 4 KB and 20% for 8 KB
going down to 4.3% for 16 KB instruction cache.

Fig. 3. Frame rate for H.264 FAST and UL with different level-2 and level-1. a) Instruction
cache sizes and b) data cache sizes.

Cache associativity is another key issue for cache performance. The number of
cache accesses decrease when we go from direct mapped to 2-way, 4-way
associativity. Our experiment shows that going beyond this to 8-way and above
provides no significant improvement. As our results show, the low miss rates in level-
1 cache indicates the high reuse of data in level-1 cache. The main bandwidth
bottleneck is between level-1 cache and processing unit. In our architecture a 64-bits
bus handles this. Our simulations indicate 16 KB being right size for level-1
instruction and 32 KB for level-1 data cache.

6.2 L2 Cache and Its Impact

Fig. 3b illustrates the impact of level-2 cache for encoding foreman test sequence.
This test sequence can be considered as good average since similar results were
observed for both mobile and news test sequence. As in previous sub-section the
presented results are for H.264 encoding. The results of MPEG-4 indicate a similar
pattern. We observe the potential benefits of reducing the size of level-1 cache with

316 A. Iranpour and K. Kuchcinski

small performance degradation on the overall encoding. If the size of level-1 is
below 8 KB the size of level-2 cache has no impact on overall performance. Cache
level-1 of 16 KB and above provides significant improvement with added level-2
cache. The optimal size, when taking into account miss rate as well as energy
consumption and performance, of level-2 cache is 128 KB. This is true for all test
sequences.

The impact of introducing a level-2 cache, which is significantly slower but
larger than level-1 cache, is apparent on overall performance. We observe a miss
rate improvement when going from 20-16% for 64 KB level-2 cache to 8-4% for
128 KB and below 1.5% for 512 KB. An important issue is the impact of level-1
cache on level-2 cache. The observation made for instruction cache, that a larger
level-1 cache gives a higher miss rate in level-2 cache, is also true for level-1 data
cache.

In fig. 3b there is a break at 128 KB where the curve flattens and we observe less
noticeable improvement with increased level-2 cache size. The same results were also
obtained and verified for encoding MPEG-4, but due to space limitations we only
present H.264 encoding results.

Fig. 4. a) Frame rate and energy consumption for different level-2 cache line sizes. b) The
impact of level-2 cache on performance while encoding foreman with H.264 UL and FAST.

As shown in fig. 4a the optimal line size for level-2 cache, which in our study was
64-bytes. The positive impact of increased level-2 line size both saves energy as well
as lowers the miss rate. At the same time the number of accesses are almost identical.
This has more impact on the overall system performance than level-1 line size. Going
beyond 64-bytes does not give any significant improvement on the overall perfor-
mance and has negative impact on the overall energy consumption.

Fig. 4b shows the overall improvement in video encoding performance that can be
obtained by introducing a level-2 cache. The significant performance jump can be
observed when we use level-2 cache together with a large enough level-1 cache. In
our case this is at 32KB for level-1 data cache and 128 KB level-2 unified cache.
Going beyond this has no significant overall improvement.

 Memory Architecture Evaluation for Video Encoding 317

6.3 Energy Consumption

Fig. 5a depicts the total energy consumption of the system with caches and off-chip
memory. The total energy consumption includes also our SIMD unit but it is usually
lower for SIMD enhanced architecture even though we have introduced a new
component in the processor architecture [11]. The energy consumption of different
cache configurations while performing video encoding on the foreman test sequence
shows that the optimal point is at 128 KB level-2 cache, 32 KB level-1 data cache and
16 KB level-1 instruction cache sizes. As can be seen this is true both for H.264
FAST and H.264 UL, similar results were obtained for MPEG-4 as well. Fig. 5b
shows the energy consumption when encoding MPEG-4 as well as H.264 with the
final memory architecture. The overall energy consumption is almost identical for
both SIMD and SIMDMeM.

Fig. 5. a) Energy consumption for H.264 (FAST) and (UL) for encoding foreman test
sequence with different level-2 data cache sizes. b) Energy consumption for MPEG-4 (FS) (OS)
and H.264 (FAST) (UL) for test sequences foreman, mobile and news.

6.4 Dedicated Memory vs. Cache

The three memory configurations were standard cache hierarchy as discussed earlier
and dedicated memory SIMDMeM for SIMD unit, as well as dedicated frame
memory. The optimal cache configuration we found in previous sub-sections was
used for our evaluation (see table 1). Fig. 6 shows the performance of our two
memory architectures for H.264 FAST and UL as well as MPEG-4 when encoding
the three different test sequences foreman, mobile and news.

The performance of SIMD and SIMDMeM are almost identical which shows the
impact of adding a dedicated memory to SIMD unit has no significant impact over
standard cache memory organization. With regards to energy consumption in fig. 5b
we do not see any significant difference between the two memory architectures.

We have also evaluated the most optimistic data memory hierarchy, where all
frame data used for encoding is in dedicated zero-wait state frame memory. The
encoding of foreman results in 22 frames/s compared to 17.5 frames/s for SIMD and
18.6 frames/s for the SIMDMeM solution. The increased energy consumption from
using a standard memory hierarchy with off-chip frame memory compared to using

318 A. Iranpour and K. Kuchcinski

an on-chip zero-wait state frame memory is 0.35 J. This includes off-chip memory
and communications for our chosen standard memory hierarchy configuration (see
table 1). As stated before, the main arguments against an on-chip solution is the added
costs in terms of size and practicality of having at least 512KB for on-chip zero-wait
state memory. The justification for this solution in an embedded system is extremely
hard especially when the gains are still relatively small.

Fig. 6. Frame rates for MPEG-4 (FS) (OS) and H.264 (FAST) (UL) while encoding the test
sequences foreman, mobile and news

6.5 Summary

The addition of dedicated memory for the SIMD unit has no significant benefit when
performing video encoding, both for H.264 as well as MPEG-4, and regardless of the
test sequence used. The benefit of increasing the size of level-1 data cache beyond 32
KB has no substantial improvements on the overall performance, as well as it may
even reverse affect for the energy consumption. The introduction of level-2 cache, to
hide the latencies between the level-1 cache and main memory, has more significant
impact on the overall performance as well as energy consumption. This has also the
positive side effect of being able to reduce level-1 cache size. In terms of using a
dedicated SIMDMeM or dedicated on-chip frame memory the increase in
performance is relatively small only by 4.5 frames for the dedicated frame memory.

7 Related Work

Most work on video encoding has been done using kernels [8,21], or using non-
optimized code [3,4,7,22,23]. This approach makes it difficult to draw right
conclusions for how an entire video encoding application behaves. In our study we
use proprietary video encoding applications, ensuring that we have correct workloads
for evaluation of our memory architectures.

The high bandwidth requirements of video encoding applications are important
architectural design issues [22]. Multilevel caches, together with special instructions
for computationally intensive application kernels, are discussed in [21] as important

 Memory Architecture Evaluation for Video Encoding 319

performance boosters. The authors of [6,7] propose to use bandwidth hierarchy to
address the memory bandwidth problem. By removing the latency through usage of
memory hierarchy the performance degradation was negligible and thus illustrated the
potential of balanced memory architecture. We also use cache hierarchy but we test it
with the SIMD unit that has higher bandwidth requirements. Our approach of using
the standard memory hierarchy has the added benefit of not needing to optimize the
data placement and having the added cost of dedicated memory.

Utilizing a level-2 cache has been a performance improvement factor in high
performance processors. As more computationally demanding applications are executed
on embedded systems, level-2 cache has been proposed for embedded domain as well.
There are though not many studies done in this regard. In [6] the authors briefly discuss
CPU utilization and transaction traffic when introducing level-2 cache for video
decoding. Their finding is that both CPU utilization and transaction traffic decrease with
increased level-2 cache size. In [7], the authors study performance of non-SIMD high
performance processors for MPEG-4. Their architectures utilize large 1-8 MB level-2
cache, which improves the overall performance through reduction of traffic to main
memory. In none of these works the emphasis has been on evaluating the actual impact
of level-2 cache. The work has been on high performance general purpose processors
using MPEG-4 reference code. In [6] there is a study on performance improvement for
embedded processors when introducing level-2 cache. This work looks at MPEG-4
decoding which has some similarities to encoding but is much less performance
demanding. We use video encoding and an embedded processor with an SIMD unit.
This puts different requirements on memory bandwidth.

Dedicated memories have been proposed to improve performance of application
specific systems, for example in [3,4]. The authors in [24] propose a HiBRID multi-
core system on chip architecture with 4KB dedicated memory to compute
macroblocks. In our work we have evaluated dedicated memory architectures against
multilevel cache hierarchies.

8 Conclusions

In this paper we have performed extensive simulations on our SIMD extended
processor and show that using standard multilevel cache hierarchy achieve almost the
same performance as a dedicated memory for the SIMD processing unit for video
encoding. As video encoding is highly data centric the importance of a well-balanced
memory is crucial. An important issue for this exploration is the use of realistic
application workloads specifically implemented for handheld embedded devices when
exploring different design trade-offs. We examine two solutions, one that utilizes the
standard cache hierarchy (two levels) and the other one that uses a dedicated zero-
wait-state memory. Our results show, against common belief, that the use of the
standard cache based architecture achieves almost the same performance as SIMD
dedicated memory architecture for full video encoding applications. We have made
conservative assumptions in our energy models for dedicated memory but the overall
difference in energy consumptions was negligible.

320 A. Iranpour and K. Kuchcinski

References

1. V.A. Chouliaras et al., “A Multi-Standard Video Accelerator based on a Vector
Architecture,” IEEE Trans. Consum. Elec., Vol.51, No.1, Feb. 2005.

2. J.L.Nunez. and V.A. Chouliaras, “High-performance Arithmetic Coding VLSI Macro for the
H264 Video Compression Standard,” IEEE Trans. Consum. Elec., Vol.51, No.1, Feb. 2005.

3. Y.-W.Huang, B.-Y.Hsieh, T.-C.Chen and L.-G.Chen, “Hardware Design for H.264/AVC
Intra Frame Coder,” in Proc. of IEEE ISCAS’04, Vol. 2, II-269-272, 2004.

4. R.G.Wang, J.T.Li and C.Huang, “Motion Compensation Memory Access Optimization
Strategies for H.264/AVC Decoder,” in Proc. of IEEE ICASSP’05, Vol. 5, pp.97-100, 2005.

5. A.Stevens, “Level 2 Cache for High-performance ARM Core-based SoC System,” White-
paper ARM, Jan. 2004, http://www.arm.com/.

6. A.Asaduzzaman et al., “Cache Optimization for Mobile Devices Running Multimedia
Applications,” in Proc. IEEE ISMSE’04, pp. 499-506, 2004.

7. S.A.McKee, Z.Fang and M.Valero, “An MPEG-4 Performance Study for non-SIMD,
General Purpose Architectures,” in Proc. of IEEE ISPASS 2003, pp. 49-57, 2003.

8. J.D.Owens et al., “Media Processing Applications on the Imagine Stream Processor”, in
Proc. of IEEE ICCD’02, pp. 295-302, 2002.

9. MPEG-4: ISO/IEC JTCI/SC29/WG11, “ISO/IEC 14469:2000-2: Information on technology-
coding of audio-video objects–Part 2:Visual,” ISO/IEC, Genf, Switzerland, Dec. 2000.

10. H.264/AVCSoftwareCoordination,JM,http://iphome.hhi.de/suehring/tml/
11. C.Priddle, “H.264 video encoder optimization with focus on very low complexity

algorithms,” M.S. thesis, Uppsala University, April 2005.
12. A.R..Iranpour and K.Kuchcinski, “Evaluation of SIMD Architecture Enhancement in

Embedded Processors for MPEG-4,” in Proc. IEEE DSD’04, Sep. 2004.
13. Joint Video Team (JVT) of ISO/IEC MPEG, ITU-T VCEG “Text of ISO/IEC 14496 10:2004

Advance Video Coding Standard (second edition)”, ISO/IEC JTC1/SC29/WGII/N6359,
Munich, Germany, March 2004.

14. V.Lappalainen, et al., “Performance of H.26L Video Encoder on General-Purpose
Processor,” Kluwer Journal of VLSI Sig. Proc., Vol. 34, No. 3, pp. 239-249, 2003.

15. A.R.Iranpour and K.Kuchcinski, “Analyses of Embedded Processors for Streaming Media
Applications,” in CAECW-8, Feb. 2005.

16. V.Lappalainen, T.D.Hämäläinen and P.Liuha, “Overview of Research Efforts on Media
ISA Extentions and Their Usage in Video Coding” IEEE Trans. Circuit and System for
Video tech., Vol. 12, No. 8, Aug. 2002.

17. S.Vassiliadis, B.Juurlink and E.Hakkennes, “Complex Streamed Instructions: Introduction
and Initial Evaluation” in Proc. 26th Euromicro Conference, Vol.1, pp. 400-408, 2000.

18. T.Austin et al., “SimpleScalar: An infrastructure for computer system modeling,” IEEE
Computer, Vol. 35, Issue 2, pp. 59-67, Feb. 2002.

19. D.Brooks, V.Tiwari and M.Martonosi, “Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations,” in Proc. ISCA’00, pp. 83-94, June 2000.

20. Test sequences, http://www.chiariglione.org/mpeg/
21. F.Franchetti, S.Kral, J.Lorenz and C.W.Uberhuber, “Efficient Utilization of SIMD

Extensions,” in IEEE Proceedings, Vol. 93, No. 2, Feb. 2005.
22. J.-C.Tuau, T.-S.Chang and C.-W.Jen, “On the Data Reuse and Memory Bandwidth

Analysis for Full-Search Block-Matching VLSI Architecture,” in IEEE Trans. Circuit and
Syst. For Video tech., Vol. 12, No.1, Jan. 2002.

23. C.-Y.Cho, S.-Y.Huang and J.-S.Wang, “An Embedded Merging Scheme for H.264/AVC
Motion Estimation,” in Proc. of ICIP 2003, Vol. 1, I-909, 2003.

24. H.J.Stolberg et al., “HiBRID-SoC:A Multi-Core SoC Architecture for Multimedia Signal
Processing” Journal VLSI Signal Processing System, Vol. 41, pp. 9-20, 2005.

Advantages of Java Processors in Cache
Performance and Power for Embedded

Applications

Antonio Carlos S. Beck, Mateus B. Rutzig, and Luigi Carro

Instituto de Informática – Universidade Federal do Rio Grande do Sul
Caixa Postal 15064 – 90501-970 – Porto Alegre, RS, Brazil

{caco, mbrutzig, carro}@inf.ufrgs.br

Abstract. Java, with its advantages as being an overspread multiplat-
form object oriented language, has been gaining popularity in the em-
bedded system market over the years. Furthermore, because of its extra
layer of interpretation, it is also believed that it is a slow language while
being executed. However, when this execution is done directly in hard-
ware, advantages because of its stack nature start to appear. One of these
advantages concerns the memory utilization, impacting in less accesses
and cache misses. In this work we analyze this impact in performance
and energy consumption, comparing a Java processor with a RISC one
based on a MIPS with similar characteristics.

1 Introduction

While the number of embedded systems does not stop growing, new and different
ones, like cellular phones, mp3 players and digital cameras, keep arriving at
the market. At the same time, they are getting more complex, smaller, more
portable and with more stringent power requirements, posing great challenges
to the design of embedded systems. Additionally, another issue is becoming more
important nowadays: the necessity of reducing the design cycle.

This last affirmative is the reason of why Java is getting more popular in
embedded environments and replacing day by day traditional languages. Java
has an object oriented nature, which facilitates the programming, modeling and
validation of the system. Furthermore, being multiplatform, a system that was
built and tested in a desktop can migrate to different embedded systems with a
small number of modifications. Moreover, Java is considered a safe language and
has a small size of code, since it was built to be transmitted through internet.

Not surprisingly, recent surveys reveal that Java is present in devices such as
consumer electronics (digital TV, mobile phones, home networking) as well as
industrial automation (manufacturing controls, dedicated hand held devices). It
is estimated that more then 600 million devices will be shipped with Java by
2007 [1][3]. Furthermore, it is predicted that more then 74% of all wireless phones
will support Java next year [2][4]. This trend can be observed nowadays, where
most of the commercialized devices as cellular phones already provide support to
the language. This means that current design goals might include a careful look

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 321–330, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

322 A.C.S. Beck, M.B. Rutzig, and L. Carro

on embedded Java architectures, and their performance versus power tradeoffs
must be taken into account.

However, Java is not targeted to performance or energy consumption, since it
requires an additional layer in order to execute its bytecodes, called Java Virtual
Machine (JVM), responsible for the multiplatform feature of Java. And that is
why executing Java through the JVM could not be a good choice for embedded
systems.

A solution for this issue would be the execution of Java programs directly in
hardware, taking off this additional layer, but at the same time maintaining all
the advantages of this high level language. Using this solution highlights again
another execution paradigm that was explored in the past [5]: stack machines.
Since the JVM is a stack machine, obviously a hardware for native Java execution
should follow the same approach, in order to maintain full compatibility.

Furthermore, embedded applications today are not as small to fit in the cache
and, at the same time, they are not as large to use configurations of traditional
desktop environments either. Nevertheless, in nowadays embedded systems they
can consume until 50% of the total energy of the system [6] and occupy a signif-
icant part of the total area of the chip. Adding these facts to all the constraints
cited before explains why cache memories have gained more importance in the
embedded domain.

Hence, in this paper we show the advantages of Java machines regarding
energy consumption and performance of the cache memory when comparing to
traditional RISC ones, considering the particularities of embedded systems. We
demonstrate that, thanks to the particular execution method based on a stack,
these machines have less memory accesses and less cache misses concerning the
instruction memory. This way, the designer can take advantage of all benefits
of a high level language such Java, shrinking the design cycle and at the same
time increasing the overall performance - proving that Java can also be a high
performance and low power alternative when executed directly in hardware.

This work is organized as follows: Section 2 shows a brief review of the existing
Java processors and some recent works concerning cache memory for embedded
systems. In Section 3 we discuss the processors used in the evaluation and its
particularities. Section 4 presents the simulation environment and shows the
results regarding performance of the cache memory on the systems with various
configurations. The last section draws conclusions and introduces future work.

2 Related Work

In the literature, one can rapidly find a great number of Java processors aimed
at the embedded systems market. Sun’s Picojava I [7], a four stage pipelined
processor, and Picojava II [8], with a six stage pipeline, are probably the most
studied ones. Even though the specifications of such processors allow a variable
size for the data and instruction caches, there is no study about the impact of
stack execution on these cache memories.

Advantages of Java Processors in Cache Performance and Power 323

Furthermore, we can cite some works regarding cache memory specifically for
embedded systems. In [9], compiler techniques, memory access transformations
and loop optimizations are used in order to decrease the number of cache ac-
cesses, hence increasing performance and saving power. In [10] a technique aimed
at reconfiguring the cache by software in order to change its associativity config-
uration with the objective of saving power is presented. In [11], taking advantage
of the frequent values that widely exist in a data cache memory, a technique is
proposed to reduce the static energy dissipation of an on-chip data cache. Other
approaches, such as the use of scratchpads in the embedded domain [12], have
been applied as well.

In this specific work, we study the effect of cache memories in Java based
embedded systems, and why it differs from traditional ones because of its stack
machine architecture.

3 Architectures Evaluated

It is very hard to compare two different architectures, even when they are of
the same family. Comparing two different hardware components that execute
instructions in a different way is even more difficult. As a consequence, in this
work we try to make general characteristics, such as number of pipelines stages,
equivalent.

3.1 Architeture Details

The RISC processor used is based on the traditional MIPS-I instruction set
[13]. It has a five stages pipeline: instruction fetch, decode and operand fetch,
execution, memory access and write back. This MIPS implementation has 32
registers in its bank.

The Java processor used is the Femtojava [14], which implements a subset
of Java instructions. It does not support dynamic allocation of objects neither
garbage collection. Consequently, all objects are statically allocated in Java pro-
grams. This processor has the same number of pipeline stages that the RISC
one has. However, the structure of the pipeline is a little different, as showed in
Figure 1.

The first stage is instruction fetch, as in the MIPS processor. The second stage
is responsible for decoding instructions. The next one is the operand fetch. It is
important to note that, in opposite to the MIPS processor, operand fetch cannot
be made at same time as decoding, because it is not known previously which
operands to fetch (this data is not intrinsically available in the opcode), as in
MIPS architecture. On the other hand, there is no instruction that accesses the
register bank and the memory at the same time. As a consequence, the memory
access, which is a separated pipeline stage in the MIPS, is made in the forth
stage together with the execution. The write back to the register bank is the last
stage, as in the MIPS processor. The stack in the Java processor is implemented
in an internal register bank. In our benchmark set, the stack does not increase
more than 32 values. Hence, there are 32 registers in the bank implementing the

324 A.C.S. Beck, M.B. Rutzig, and L. Carro

Fig. 1. Differences in the pipeline stages between the two processors

stack, the same number of registers used in the MIPS processor. However, it is
important to mention that local variables in the Java processor are also saved in
the stack (hence, in the internal register bank). It facilitates passing parameters
between methods, since Java uses the concept of frames. On the other hand,
local variables in the MIPS processor are saved in the main memory, not in the
register bank. In order to keep the comparison as fair as possible, in all our
benchmark set we implemented these local variables as global. This way, there
will be accesses to the main memory in both processors. Moreover, data in the
memory will also be accessed in static variables (such as vectors) and information
about methods.

3.2 Computacional Methods

To better illustrate the difference between these two paradigms, let’s start with
an example. In RISC machines, to make a sum of two operands, just one in-
struction is needed:

add r1, r2, r3

where r2 and r3 are the source operands and r1 is the target. In stack machines,
however, this operation needs three different instructions:

push OP1, push OP2, add

At first sight, this characteristic could be considered as a disadvantage. How-
ever, stack machines keep the operands always in the stack. This means that the
next instructions will use operands that are already present in the stack, gener-
ated by the instructions executed before. Hence, the push instructions are not
needed anymore. As more operations are executed, more data is reused from the
stack. Since it is well known that each basic block usually has more than just
on single operation, stack machines can be very economic concerning number
of instructions. This characteristic will reflect in the instruction cache hits and
misses, as it will be shown in next section.

Another important issue is the size of the instructions. In Java, they have a vari-
able length: 1, 2 or 3 bytes; in opposite to the MIPS instructions, with a fixed size
of 4 bytes. This way, the Femtojava is implemented to fetch 4 bytes at each cycle,
in order to avoid bubbles in the pipeline. This makes also the comparison easier:
the size of each word in the cache memory has exactly the same size. Adding the
smaller size of the instructions with the stack paradigm leads to an incredible dif-
ference in the number of instruction cache misses, as we show in the next section.

Advantages of Java Processors in Cache Performance and Power 325

4 Results

Three steps were necessary to gather the results. Firstly, using a SystemC de-
scription of both processors, traces of memory accesses for each application were
generated. Then, another simulator, which in turn uses the traces generated be-
fore, was used. It has as additional inputs: cache size, associativity and spatial
locality, in order to better explore the design space. After that, the cache sim-
ulator gives as output the number of cache misses and hits depending on the
input’s configuration.

Finally, using this information, the ECACTI tool [15] was used for the power
consumption evaluation. It is very important to mention that this simulation
also takes into account the static power. Statistics for the off-chip memory con-
sumption as the bus were taken from [17], considering this memory working at
50Mhz, 2V, implemented in a 0.25 technology. Five different types of algorithms
were chosen and simulated over the architectures described in Section 3: Sort
(bubble, heap, select and quick); IMDCT - an important part of the MP3 (plus
three unrolled versions); algorithm to solve the Crane problem; the Cordic, a
shift-add algorithm for computing trigonometric; and three algorithms that be-
long to the Java Grande Benchmark set [16]: Lufact, that solves a N x N linear
system using LU factorization followed by a triangular solve; SOR, performs 100
iterations of successive over-relaxation on a N x N grid; and Sparse, which is a
sparse matrix multiplication. Each algorithm has two versions, in Java and C,
compiled by Sun´s Java Compiler [18] and GCC [19], respectively.

First of all, we analyze the number of memory accesses of both processors. Re-
member that, as explained earlier, the stack in the Femtojava is implemented in a
register bank instead of using the main memory. Table 1 demonstrates the number
of accesses in the data and instruction memories. Dividing the table, the first and
second columns show the number of accesses of each architecture, and the last
column demonstrates the relative difference of accesses that the RISC architec-
ture has, when compared to the Femtojava. As it can be seen, in the average, the
Femtojava has fewer accesses in instruction memory and almost the same in data
one. There is an enormous difference concerning the instruction memory, and the
reason for that was explained in the last section. In the next sub-sections we an-
alyze the impact of this fact in the performance and power consumption. For the
experiments with the cache, we analyzed instructions and data caches separately,
varying its size (64, 128 and 2048 lines); spatial locality (one and two words per
line); and associativity (direct mapped, 2-way and 4-way associative).

4.1 Performance

Firstly, we demonstrate in table 2 the number of instruction and data cache
misses in both processors, using different cache configurations (because of space
limitations, we are considering direct mapped and 4-way associative cache with
64 and 2048 lines without exploring spatial locality). As can be observed in this
table, concerning instruction cache accesses, the configuration that benefits the
most the Femtojava (configuration that results in the bigger difference of cache

326 A.C.S. Beck, M.B. Rutzig, and L. Carro

Table 1. Number of Accesses in the Data Memory

Instruction Memory Data Memory
Femtojava MIPS Difference Femtojava MIPS Difference

Bubble 10 898 2697 3,003341 875 921 1,052571
Bubble100 96508 314240 3,256103 112933 113412 1,004241
Heap 10 849 3274 3,856302 743 1028 1,38358
Select 10 686 1915 2,791545 638 633 0,992163
Quick 10 793 2538 3,200504 860 987 1,147674
IMDCT N 13475 39241 2,912134 10741 8664 0,806629
IMDCTu1 8316 22173 2,666306 6305 4231 0,671055
IMDCTu2 7848 19740 2,515291 6003 3912 0,651674
IMDCTu3 3824 5998 1,568515 4234 2143 0,506141
Sparse 162620 602572 3,705399 115609 131753 1,139643
SOR 198613 777951 3,916919 197112 231980 1,176894
Lufact 14233 60658 4,261786 12617 22927 1,817151
Cordic 353 780 2,209632 358 352 0,98324
Crane 7700 23703 3,078312 8097 9877 1,219835

Average = 3,067292 Average = 1,039464

misses between the Java and MIPS processors when dividing the total number of
memory accesses by the number of cache misses) is the follow: 64 lines; 2 words
per line and associativity of 4. For the MIPS processor: 2048 lines, 2 words per
line and direct mapped. Even in this last configuration, though, there is a huge
advantage in instruction cache misses for the Femtojava.

It proves that, no matter the cache configuration, always stack machines will
present advantages in instruction memory accesses when comparing to conven-
tional RISC ones. We repeat the same analysis used before, but now for the data
cache. The best configuration for the Femtojava is: 2048 lines; 2 words per line
and associativity 2; and for MIPS: 64 lines, 1 word per line and direct mapped.
In this case, depending on the algorithm, there is a small advantage for the
Femtojava. Another important thing to note is that there is almost no difference

Fig. 2. Average number of cache misses: a) Instruction Cache b) Data cache

Advantages of Java Processors in Cache Performance and Power 327

Table 2. Cache Misses: Instruction and Data Caches

Femtojava MIPS
Direct Mapped 4-Way Associative Direct Mapped 4-Way Associative

Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048 Size 64 Size 2048
Instruction Misses

Bubble 10 44 44 44 44 701 162 855 162
Bubble100 46 46 46 46 42210 161 93577 161
Heap 10 83 81 82 81 2275 342 2784 342
Select 10 34 34 34 34 495 122 783 122
Quick 10 47 47 47 47 1945 175 2092 175
IMDCT N 86 85 86 85 551 246 1001 246
IMDCTu1 7410 534 7544 534 22173 19033 22173 19033
IMDCTu2 7847 1065 7847 1065 19740 19740 19740 19740
IMDCTu3 3824 3824 3824 3824 5998 5998 5998 5998
Sparse 686 187 268 187 474916 1098 547256 1156
SOR 213 209 213 209 407200 1793 568243 1510
Lufact 2025 753 1355 398 26497 6727 32331 4353
Cordic 60 59 60 59 541 168 419 168
Crane 5221 1986 5492 1233 20287 13157 19780 12703

Data Misses
Bubble 10 150 150 152 150 171 171 187 171
Bubble100 21746 18767 23167 18902 22363 18909 23367 19154
Heap 10 221 221 244 221 258 256 276 258
Select 10 131 131 131 131 124 124 125 124
Quick 10 201 201 204 201 282 233 247 243
IMDCT N 3017 2925 2933 2906 2961 2904 2925 2902
IMDCTu1 2185 2114 2126 2101 2127 2096 2122 2098
IMDCTu2 2096 2028 2038 2012 2042 2012 2034 2009
IMDCTu3 1489 1360 1137 980 1192 1111 1026 977
Sparse 48559 28509 40046 28960 48392 43165 45285 43265
SOR 56741 41886 38963 27757 58144 38855 51532 40120
Lufact 4328 3123 4403 3364 6877 5627 6635 5673
Cordic 141 141 141 141 144 143 146 143
Crane 3137 2865 3176 2972 4434 4350 4840 4215

between different cache configurations: the proportion of misses in data caches
is almost the same, no matter its configuration.

Finally, figures 2(a) and 2(b) shows the average number of data and instruction
cache misses for each algorithm of the whole benchmark set considering all pos-
sible configurations (18 in the total). This graph summarizes what was affirmed
before: an expressive difference in instruction cache misses and equivalence in
the data ones, with a small advantage for the Femtojava in some algorithms.

4.2 Power and Energy Consumption

In this sub-section we analyze the power spent by cycle and the total energy con-
sumption caused by cache misses. As could be expected, the energy consumption

328 A.C.S. Beck, M.B. Rutzig, and L. Carro

Fig. 3. Average total energy consumption: a) Instruction Cache b) Data Cache

Fig. 4. Average power consumption: a) Instruction Cache b) Data Cache

is directly proportional to the number of misses, showed before. This way, huge
energy savings concerning the instruction memory is achieved, and a very similar
consumption in data memory is obtained. Finally, we demonstrate the average
power and energy consumption for each algorithm considering the whole set of
cache configurations.

As it is demonstrated in Figure 4(a) for instruction cache, there is less power
consumption in the Femtojava: since there is less cache misses, less accesses to
the off-chip memory is necessary. Moreover, as there are less overall memory
accesses, the difference in energy consumption between the two processors is
even higher (figure 3(a)).

Advantages of Java Processors in Cache Performance and Power 329

Fig. 5. Comparison:number of instruction accesses when using GCC optimization:
a)Instruction Cache b)Data Cache

Concerning the data cache, power is saved because there are less off-chip
memory accesses per cycle (figure 4(b)) in the Femtojava. However, as depending
on the algorithm there are more accesses in the Java architecture, the total energy
consumption can be higher than in the MIPS hardware (figure 3(b)).

In all results showed above, no optimization flags were used to make the
comparison as far as possible, since optimizations as forcing values to be in the
registers, loop unrolling and method inlining are not available for Java Compilers
yet - although they are possible to be made in java bytecodes. However, in order
to analyze the impact of such optimization in the results, in the figure 5(a)
and 5(b) we make a first analysis, comparing the number of memory accesses
and cache misses (instruction and data memory, respectively) of the Femtojava
Processor with the MIPS processor when the benchmarks are compiled with the
higher possible level of optimization (-O3). As can be observed, in certain cases
there is a huge impact in the number of accesses.

It is very likely that these common optimizations will be included in future
versions of Java compilers and, as a consequence, the advantages of stack ma-
chines concerning memory accesses will remain, as we demonstrated when we
compared both architectures with the same level of compiler resources.

5 Conclusions and Future Work

Java became popular mainly because it is an object oriented language and for
its ease of use. It is also common sense that it is a slow language while being
executed. In this paper we showed that when executing Java directly in hard-
ware, advantages start to appear. In the case of the memory system, specifically
instruction caches, stack machines can at the same time have a higher cache hit
ratio that besides increasing the overall performance, reflects in less dynamic and
static power consumption, while the data memory presents very similar results
- when comparing equivalent configurations. This way, besides decreasing the
design cycle, Java can also bring advantages concerning performance, area and
power consumption. Our next step is to compare complete architectures of both
processors.

330 A.C.S. Beck, M.B. Rutzig, and L. Carro

References

1. The Embedded Software Strategic Market Intelligence. Java in Embedded Systems.
http://www.vdc-corp.com/

2. S. McAteer. Java will be the dominant handset platform. www.microjava.com/
articles/perspective/zelos/.

3. D. Mulchandani. Java for Embedded Systems. Internet Computing, 31(10):30-39,
May 1998.

4. Lawton, ”Moving Java into Mobile Phones”, Computer, vol. 35, n. 6, 2002, pp. 17-20.
5. P. Koopman, Stack Computers: The New Wave, Halsted Press, 1st edition, 1989
6. S. Segars, ”Low power design techniques for microprocessors,” Int. Solid-State Cir-

cuits Conf. Tutorial, 2001.
7. J. M. O’Connor, M. Tremblat, ”Picojava-I: the Java Virtual Machine in Hardware”,

IEEE Micro, vol. 17, n. 2, Mar-Apr. 1997, pp.45-53
8. Sun Microsystems, PicoJava-II Microarchitecture Guide, Mar. 1999.
9. W. Shiue, C. Chakrabarti, ”Memory Design and Exploration for Low Power, Em-

bedded Systems”, The Journal of VLSI Signal Processing - Systems for Signal,
Image, and Video Technology, Vol. 29, No. 3, Nov. 2001, pp. 167-178

10. C. Zhang, F. Vahid, W. Najjar, ”A highly configurable cache architecture for em-
bedded systems”, Proceedings of the 30th annual international symposium on Com-
puter architecture (ISCA), 2003

11. C. Zhang, J. Yang, F. Vahid,”Low Static-Power Frequent-Value Data Caches”, Pro-
ceedings of the. Design, Automation and Test in Europe Conference (DATE), 2004

12. R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, P. Marwedel, ”Scratchpad Mem-
ory: A Design Alternative for Cache On-chip memory in Embedded Systems”, Proc.
of the 10th International Workshop on Hardware/Software Codesign, CODES, 2002

13. J. L. Hennessy, D. A. Patterson, Computer Organization and Design: The Hard-
ware/Software Interface, Morgan Kaufmann Publishers, 3th edition, 2005

14. A.C.S.Beck, L. Carro, , ”Low Power Java Processor for Embedded Applications”. In:
IFIP 12th International Conference on Very Large Scale Integration, Germany, 2003

15. G. Reinman and N. Jouppi. Extensions to cacti, 1999. Unpublished document.
16. D. Gregg, J. Power, ”Platform Independent Dynamic Java Virtual Machine Analy-

sis: the Java Grande Forum Benchmark Suite”, Joint ACM Java Grande - ISCOPE
Conf. Proc., 2001

17. K. Puttaswamy, K. Choi, J. C. Park, V. J. Mooney, A. Chatterjee, P. Ellervee.
”System Level Power-Performance Trade-Offs in Embedded Systems Using Voltage
and Frequency Scaling of Off-Chip Buses and Memory”, ISSS’02., October, 2002

18. Java Tecnology Homepage, http://java.sun.com/
19. GCC Homepage, http://gcc.gnu.org/

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 331 – 338, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CARROT – A Tool for Fast and Accurate
Soft Error Rate Estimation

Dimitrios Bountas and Georgios I. Stamoulis

Department of Computer and Communications Engineering
University of Thessaly

37 Glavani St.
Volos 38221, Greece

{dibountas, georges}@uth.gr

Abstract. We present a soft error rate (SER) analysis methodology within a
simulation and design environment that covers a broad spectrum of design
problems and parameters. Our approach includes modeling of the particle hit at
the transistor level, fast Monte-Carlo type simulation to obtain the latching
probability of a particle hit on all nodes of the circuit, embedded timing analysis
to obtain the latching window, and fine-grained accounting of the electrical
masking effects to account for both the effects of scaling and of pulse duration
versus the period of the system clock to get an estimate of the maximum SER of
the circuit. This approach has been implemented in CARROT and placed under
a broad design environment to assess design tradeoffs with SER as a parameter.

Keywords: SER, combinational circuits, simulation.

1 Introduction

Particle hits first became an issue for memories but with the continuously shrinking
feature sizes and shrinking supply voltages, these issues have become significant in
the design of any modern integrated circuit. Soft errors induced in memory structures
and latches have been extensively studied and there are empirical models covering
their contribution to the overall SER of the circuit [1]. These models work well as the
laws of physics along with the electrical behavior of the device suffice for the
adequate description of the phenomenon.

The contribution of combinational logic blocks is intrinsically more complicated
and not as straight-forward, since the current pulse induced by the particle hit and the
localized electrical behavior of the device describe only the generation of a single
event upset and not its latching into one of the sequential elements, which would
transform it to a soft error. The resulting voltage pulse on the gate output can be
eliminated by i) the electrical behavior of the gates it has to cross to reach a latch;
the pulse may not be wide enough and it will be filtered out by the inertial delay of
the gate, ii) the logic behavior of the circuit; the pulse may be blocked at a gate if the
output of the gate does not change logic state due to the pulse, which is a function of

332 D. Bountas and G.I. Stamoulis

the circuit inputs and the gate structure and iii) the timing of the signals, as the pulse
may not overlap with the sampling range of the flip-flop it drives.

Several approaches with varying levels of detail have been proposed for the
estimation of the SER due to combinational logic that can be categorized as follows:

a. direct simulation of the SEU within a circuit-level framework. Tools such as
SEMM [2] use Monte-Carlo simulation for achieving high levels of accuracy but at a
high price for simulation time.

b. mixed-mode simulation. The approach suggested by Dynamo [3] attempts to
reduce the simulations required by a static approach initially, and processes the
remaining ones through a mixed-mode simulator, where the current injection part is
simulated at the circuit level, while the rest of the circuit at the timing level.

c. hybrid methods such as SERA[4] and SEUPER_FAST [5]. SERA uses a
combination of mathematical and simulation methods to arrive at a SER estimate
without the overhead of detailed circuit simulation. It simplifies gates between the
charge injection point and the latch input nodes to equivalent inverters and performs
and electrical simulation over the simplified circuit. SEUPER_FAST is a simulator at
a very high level of abstraction that does not consider either circuit or logic simulation
but models SER through a mathematical model.

d. logic-level simulation coupled with glitch and delay analysis. This category
includes FAST [6], ASERTA [7], and ASSA [8], and tries to decouple the three
factors (electrical, logic, and timing masking) that limit SEU latching. FAST
compares the use of a standard event-driven simulator to assess SEU propagation and
latching with a zero-delay fault simulator, while using a timing simulator to model the
charge injection. ASERTA is using lookup tables for charge insertion, zero-delay
simulation for logical masking, a ramp model for electrical masking, and pulse
duration for timing masking. ASSA uses and extended timing window for timing
masking, probability propagation for logic masking, and a noise rejection curve for
electrical masking.

All of the aforementioned approaches have their drawbacks either in terms of
accuracy or in terms of runtime. Furthermore, they tend to restrict the control that a
designer has over the level of abstraction that is suitable for the design at hand, as
well as the side effects of changes to enhance SER. The major source of the error
introduced by approaches such as FAST, ASERTA, and ASSA stemmed from the
decoupling of the three SEU latching prevention factors. Indeed, this permitted the
use of zero-delay simulators for logic masking as well as lookup tables and simplified
models for capturing electrical and timing effects.

We are proposing a new SER estimation approach that alleviates the restrictions
that limit the accuracy while preserving the significant speedup of a zero-delay fault
simulation approach. Our approach uses a zero-delay Monte-Carlo fault simulator that
has been augmented by capabilities for handling timing and electrical masking at a
fine grain level, within the main flow of fault simulation. This allows the appropriate
weighting of the random effects, which is not possible in the flow suggested by
ASERTA and ASSA. Our SER simulator, CARROT, also permits the use of charge
injection, pulse propagation, and timing analysis methods of varying detail, so that the
user can choose between simulation speed or accuracy.

 CARROT – A Tool for Fast and Accurate Soft Error Rate Estimation 333

The aim of this paper is to include SER estimation within a larger design
framework and permit trading off SER for timing, power, area, and/or leakage.

The rest of the paper is organized as follows. Section 2 describes the soft-error
analysis methodology that we are proposing, Section 3 presents results for all ISCAS85
and ISCAS89 benchmark circuits, and Section 4 contains the concluding remarks.

2 Soft Error Analysis

We assume a standard sequential digital circuit that can be described by an array of
flip-flops controlled by one clock and combinational logic driven by flip-flop outputs
and driving flip-flop inputs.

We also assume that the Soft Error Rate (SER) of a circuit is defined as the fraction
of Single Event Upsets (SEUs) that are captured by the memory elements of the
circuit, and that an SEU can occur with uniform probability over the clock period.

2.1 Electrical Modeling

A high-energy particle hit can interact with silicon atoms and generate a number of
electron-hole pairs [9], which can flip the state of a logic node. This phenomenon is
modeled by a current source with exponential decay as in [10].

I(t) = I0(e
-t/a – e-t/b)

Different particle energy levels will produce a different number of electron-hole pairs
which will be reflected into I0. The circuit node that is affected can be either a gate
output or an internal node of a gate. In both cases the particle hit appears as voltage
pulse at the gate output. Since the particle energy level can be described as a random
variable, the width of the output voltage pulse can also be described as a random
variable with a probability density function (pdf) that can be approximated by Monte-
Carlo electrical simulations of the charge injection circuits.

Simplifying assumptions can be made on the pdf (uniform or normal) and on the
random nature of the pulse width (one can assume that the voltage pulse width is
fixed for a specific gate to just one value).

Our approach can work equally well with a fixed value as well as with any pdf for
the pulse width. In the latter case, the pdf is propagated through the circuit to the flip-
flop inputs. During the propagation, the pdf is altered to account for electrical
masking and is then used to calculate the latching probabilities of the SEUs it
describes. Our approach requires that the pdf be discretized into a user-defined
number of levels to enable its propagation through the circuit. The largest
quantization value can be equal to the period of the clock, since for pulse widths
larger than that, timing masking has no effect.

The propagation process is intertwined with the logic and timing masking process
and will be described in detail in the next subsection.

The probability of a particle hit on a specific node is proportional to the area of the
node as the flux of particles through the circuit is considered uniform. Any deviations
from this assumption should be quantified by a flux distribution over the area of the

334 D. Bountas and G.I. Stamoulis

circuit, and by the location of the node within the chip. Thus, for non-uniform flux
distributions, placement data are required.

2.2 SER Propagation and Electrical/Logic/Timing Masking

This is the main part of this work, which addresses the issues raised by the interaction
of a logic level simulator, like the fault simulator that we are using, and the masking
phenomena. This is precisely the point where loss of accuracy can occur due to either
modeling or systematic difficulties. Instead of decoupling the analysis for the three
masking effects, and recombining their effects at the end of the process, we opted to
analyze them in every step in order to maintain the required granularity for accurate
estimates without resorting to simplifying assumptions.

As in FAST and ASERTA, CARROT also uses a zero-delay fault simulator to
estimate the effect of logic masking on the probability of latching the incorrect value
due to an SEU. However, unlike the aforementioned approaches, the effects of logic
and timing masking are engrained into the zero-delay logic simulation in order to
eliminate the error resulting from:

i) an SEU latched in more than one flip-flop
ii) different arrival times and latching probabilities in different flip-flops
iii) differential pulse propagation behavior along different paths from the upset

gate to the latch inputs.

After the pdf for the voltage pulse width at the output of the gate being affected by a
SEU is calculated and discretized a circuit would be like the one Figure 1, where the
pulse widths fall into N levels. The probability of an SEU on the node has been
calculated as proportional to the upset node area.

Fig. 1. Modeling of the pdf

 CARROT – A Tool for Fast and Accurate Soft Error Rate Estimation 335

We model the SEU as a stuck-at-fault and proceed through a Monte-Carlo fault
simulation of the circuit. The number of input vectors is user defined, and the input
probability for every input to the combinational block is determined by an RTL
simulation in order to capture the effects of the input vectors on SER.

At the end of the Monte-Carlo fault simulation we preserve to flip-flop input
vectors for further analysis. It must be noted here that we can now calculate the effect
of logic masking on the flip-flop inputs. However, this is result requires further
processing as the electric and timing masking effects are not accounted for yet.

In order to model electrical masking we chose the modeling of ASERTA, although
the modeling in ASSA or any other could be used without impeding the subsequent
analysis. Thus, we estimate the output pulse duration according to the following:

0 if wi<d

2(wi-d) if d<wi<2d
wi if wi>2d

where wi is the input pulse duration and d is the inertial delay of the gate. It must be
noted here that we apply this function to all the entries in the table containing the
discretized pdf of the pulse width.

For the timing masking we add a basic timing analysis capability by capturing the
minimum and maximum pulse arrival times at each node, as shown in Figure 3. At the
charge injection node both are 0. The timing at the output of each gate is propagated
as follows:

mino = min(min(all inputs to the gate)) + d

maxo = max(max(all inputs to the gate)) + d

where mino and maxo are the min and max for the output node of the gate. For this
purpose only the inputs of each gate activated by the upset node are considered.

A significant point is that we do not propagate pulse width information nor
min/max timing information to outputs of gates that are not activated by the fault, i.e.
their faulty and fault free outputs are identical. This helps eliminate false paths in both
electrical and timing analysis.

A second point that needs attention is the handling of the pdf in reconvergent
fanout nodes. In such a case we update the pdf as follows:

wi = max(wi,1, wi,2)

where wi is the updated pulse width, and wi,1, wi,2 the pulse widths being merged.
The above analysis is repeatedly applied to the fanouts of gates being activated

until we reach the flip-flop inputs.
The last step is the calculation of the latching probabilities that includes the timing

masking effects. In order to achieve that we require the pulse width pdf, the minimum
and maximum arrival times and the logic vectors at the end of the fault simulation at
every flip-flop input.

For each pulse width entry in the pdf we calculate the probability that it will be
latched in a flip-flop. For each experiment in the Monte-Carlo simulation we check
which flip-flop inputs are at an erroneous state from logic masking. From these we
select the ones whose equivalent pulse width entries are not zero, i.e. the pulse has not

336 D. Bountas and G.I. Stamoulis

been eliminated due to electrical masking, and we merge their minimum/maximum
windows as follows:

bit_min = min(of all selected nodes)
bit_max = max(of all selected nodes)

Then the timing masking probability pj would be:

1 if bit_max-
bit_min+wi+setup+hold>T

(bit_max-
bit_min+wi+setup+hold)/T

if bit_max-
bit_min+wi+setup+hold<T

where T is the clock period, setup the setup time of the flip-flop, and hold the hold
time of the flip-flop.

The total latching probability is the sum of the above probabilities for all Monte-
Carlo experiments over the number of experiments. The overall SER due to an upset
at a specific node is the sum of the product of the pulse width probabilities by their
respective total latching probabilities. Consequently, the overall SER of the circuit is
the sum of the products of the SER for each node by the SEU probability calculated
by the particle flux.

3 Results

The methodology described in Section 2 has been implemented in C++ tool
(CARROT) and run on most of the ISCAS85 and ISCAS89 benchmark circuits. The
combinational examples were assumed to have flip-flops at both primary inputs and
outputs. The pdf was discretized into 10 levels, while 10000 vectors were used for the
Monte-Carlo simulations, which is more than adequate to ensure high-confidence
estimation of the probabilistic quantities required for the SER analysis (confidence
level of more than 95%). The results are shown in Table 1. The reported execution
times are on a Pentium4TM with 512MB of RAM. It should be noted that memory
usage did not exceed 200MB.

4 Conclusion

This paper presents a new approach to SER estimation in combinational circuits. The
proposed approach allows the accurate assessment of the effects of electrical, logic,
and timing masking while still permitting a fast logic-level simulation for their
evaluation. Both the pulse width modeling and the glitch absorption algorithm can be
user defined for further flexibility and accuracy.

The method described above has been implemented in CARROT, which has
become part of a broader simulation environment to assess the tradeoffs between SER
and other design considerations such as timing, power, and leakage. Further research
will be towards assessing circuit design solutions for SER enhancement.

 CARROT – A Tool for Fast and Accurate Soft Error Rate Estimation 337

Table 1. CARROT execution time for ISCAS85/89 benchmark circuits

Circuit Name Nodes Inputs Gates DFFs Exec. time
S27 17 4 13 3 <1sec
S208_1 125 10 115 8 <1sec
S208 149 10 139 8 <1sec
S298 169 3 166 14 1sec
S386 284 7 277 6 2sec
S382 196 3 193 21 2sec
S344 240 9 231 15 2sec
S349 224 9 215 15 2sec
S400 203 3 200 21 2sec
S444 211 3 208 21 2sec
S526 280 3 277 21 4sec
S526N 280 3 277 21 4sec
S420 252 19 233 16 1sec
S510 293 19 274 6 3sec
S420_1 313 18 295 16 2sec
S832 457 28 429 5 7sec
S820 443 18 425 5 7sec
S641 517 35 482 19 8sec
S713 539 35 504 19 9sec
S953 496 16 480 29 11sec
S838_1 641 34 607 32 8sec
S838 641 34 607 32 8sec
S1238 768 14 754 18 17sec
S1196 762 14 748 18 16sec
S1494 1213 8 1205 6 39sec
S1488 1211 8 1203 6 33sec
S1423 1008 17 991 74 51sec
S5378 3053 35 3018 179 5.9min
S9234 7002 19 6983 228 35.3min
S9234_1 7019 36 6983 211 34.5min
S13207 9608 31 9577 669 1.1h
S13207_1 9609 32 9577 638 1.1h
S15850 12115 14 12101 597 1.7h
S15850_1 12178 77 12101 534 1.6h
S35932 21278 35 21243 1728 7.8h

Acknowledgements. The authors would like to acknowledge the help of Nestor
Evmorfopoulos, Dimitrios Karampatzakis, Maria Kozyri, and Antonios Dadaliaris in
support of this work.

338 D. Bountas and G.I. Stamoulis

References

1. International technology roadmap for semiconductors, http://public.itrs.net/, 2002.
2. Murley, P.C., and Srinivasan, G.R.: Soft-error Monte Carlo modeling program, SEMM,

IBM Journal of Research and Development, vol. 40, no. 1 (1996) 109–118.
3. Yang F.L., and Saleh R.A.: Simulation and analysis of transient faults in digital circuits,

IEEE Journal of Solid-State Circuits, vol. 27, no. 3 (1992) 258–264.
4. Zhang, M., and Shanbhag, N.R.: A soft error rate analysis (SERA) methodology,” in

Proceedings of International Conference on Computer Aided Design (2004) 111–118.
5. Baze, M.P., Buchner, S.P., Bartholet, W.G., and Dao, T.A.: An SEU analysis approach for

error propagation in digital VLSI CMOS ASICs, IEEE Transactions on Nuclear Science,
vol. 42, no. 6 (1995) 1863–1869.

6. Cha, H., Rudnick, E.M., Patel, J.H., Iyer, R.K., and Choi, G.S.: A gate-level simulation
environment for alpha-particle-induced transient faults, IEEE Transactions on Computers,
vol. 45, no. 11 (1996) 1248–1256.

7. Dhillon , Y.S., Diril, A.U., Chatterjee, A.: Soft-error tolerance analysis and optimization
of nanometer circuits, in Proceedings of Design, Automation, and Test in Europe (2005)
288–293.

8. Zhao, C., Bai, X., Dey, S.:A scalable soft spot analysis methodology for compound noise
effects in nano-meter circuits, in Proceedings of Design Automation Conference (2004)
894-899.

9. Lantz, L.: Soft errors induced by alpha particles, in IEEE Transaction on Reliability, vol.
45, no. 2 (1996) 174-179.

10. Messenger, G.C: Collection of charge on junction nodes from ion tracks, IEEE Trans.
Nucl. Sci., vol. NS-29, no. 6 (1982) 2024-2031.

A Scheduling Strategy for a Real-Time Dependable
Organic Middleware

Uwe Brinkschulte, Alexander von Renteln, and Mathias Pacher

Institute for Process Control and Robotics
University of Karlsruhe (TH)

{brinks, renteln, pacher}@ira.uka.de

Abstract. This paper presents the architecture and conception of a dependable
organic middleware based on the yet existing, not organic middleware OSA+. We
show a scheduling strategy which assigns missions in real-time to a distributed
set of platforms in the scope of a fabric automation scenario. The missions are
distributed to different robots by the organic middleware whose scheduling in-
cludes organic aspects like self-organization, self-optimization and self-healing.

Keywords: Self-organization, organic real-time scheduling, OSA+ middleware,
self-healing.

1 Introduction

Nowadays, it is a challenge to manage complex missions in fabric automation in respect
to performance, robustness and flexibility because there is only a limited number of
robots which have to be used in an optimal way. Another aspect is that robots might
have to overtake missions from defect robots.

The SIMON project at the University of Karlsruhe deals with these challenges [9] in
the scope of a fabric automation scenario by trying to add organic features to a middle-
ware. This means that the middleware is intended to have some life-like properties as
self-configuration, self-healing and self-optimization to e.g. distribute the missions to
robots or to autonomously re-schedule a mission in case of a robot failure. By having
this self-x features, the dependability of the system is considerably increased. In this
paper, we present the architecture of the organic middleware and its scheduling strategy
which holds the mentioned organic features.

The paper is structured as follows: In section 2, we present related work and similar
approaches to our work. In the following section 3, we present a short introduction of the
OSA+ middlware. Section 4 presents the concept of execution paths, which is important
for the scheduling strategy. In the sections 5, 6 and 7, we explain pre-conditions and
assumptions made for the scheduling of the organic middleware, and in section 8, the
scheduling is explained in detail. Section 9 concludes the paper.

2 Related Work

A lot of different middleware systems have been developed to provide a homogeneous
view over a heterogeneous network like CORBA [10], Java RMI [11], DCOM [12] and

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 339–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

340 U. Brinkschulte, A. von Renteln, and M. Pacher

Microsoft’s .NET framework [13]. In contrast to our middleware, the softwares above
cover no organic aspects.

Self-organization has been a research focus for several years. Publications like [15]
deal with basic principles of self-organizing systems, like e.g. emergent behavior, re-
production etc. Regarding self-organization in computer science, several projects and
initiatives can be listed. IBM’s Autonomic Computing project [4,5] deals with self-
organization of IT servers in networks.

The German Organic Computing Initiative has been founded in 2003. Its basic inten-
tion is to improve the controllability of complex embedded systems by using principles
found in organic entities [14].

Regarding self-organization in middleware, current middleware approaches provide
features for load-balancing. Middleware architectures fulfilling organic computing prin-
ciples are rare. In [3], the use of middleware for self-healing is investigated, but none of
the presented approaches deals with fabric automation.

Another approach towards an organic middleware is AMUN developed at the uni-
versity of Augsburg [8]. It consists of four main parts: The Transport Interface which
decouples the communication from the transport platform and the Event Dispatcher
which is responsible for the delivery of incoming and outgoing messages. The Ser-
vice Interface and Service Proxy is the connector between the AMUN middleware and
services which build an application and the Autonomic Manager which configures the
services on a platform. Our approach is more fine grained than the AMUN approach
because our Autonomic Manager will even configure the jobs to be executed by ser-
vices. In this way, our organic middleware is able to react to changes in its environment
in a faster and more fine grained way. Another difference is that our algorithms support
real-time properties which is not concerned by AMUN.

3 The OSA+ Middleware

OSA+ is a service oriented middleware for distributed real-time systems [7]. It provides
an uniform view over a heterogeneous network, protocols and OS features and simpli-
fies distributed application development. In OSA+, the active communication parts are
services. A service realizes certain functionalities which are made public to the execu-
tion environment through an interface. This interface can be accessed in a platform and
a language independent manner. In our case, the service interface is accessed through
jobs. A job consists of an order and a result. The order is sent from one service to an-
other to state what functionality the service should do, for which data, and when the
action should be performed. After the service executes the order, a result is sent back.
The communication of jobs is accomplished by a platform. The platform facilitates the
plugging of services which can communicate with each other.

An important aspect regarding the OSA+ middleware consists of the flexible way
it adapts to different environments. In this respect, OSA+ is using the micro-kernel
concept. The core of the middleware, the micro-kernel, has a minimum foundation of
functionalities and is independent from the execution environment (no hardware nor
operating system dependent parts).

The adaptation of the middleware is done by a set of special services provided by
the developer, which extend the functionality of the core. These services are plugged

A Scheduling Strategy for a Real-Time Dependable Organic Middleware 341

into the platform according to the user needs, and realize tasks like the MemoryService
which allocates memory for jobs and services at run-time by accessing the memory
management and the ProcessService which introduces the multi-tasking and multi-
threading facilities of the hardware and operating system to the middlware. Besides,
the Communication services make use of the available communication systems, e.g.
TCP/IP, serial, etc. These services provide a transparent use of communication between
different hardware platforms. The EventService handles timer events or events caused
by other hardware components. It is used as a monitoring tool and signals if jobs cannot
hold their time constraints.

Another aspect of the OSA+ mddleware is that is designed to offer support for
real-time and introduces only small overhead at run-time which is acceptable for most
applications [7].

4 Execution Paths

In [6], we described the idea of execution paths in detail. The idea is that missions are
splitted in sequences of atomic jobs which can directly be executed by services of the
middleware.1 Splitting the mission introduces some dependencies to be considered: If
we look at the mission ”Bring a sparepart from place A to place B”, then the resulting
sequence of atomic jobs is as follows:

“Drive(A)”
“PickUp(grab, sparepart)”
“Drive(B)”
“PickUp(unload, sparepart)”

Considering the set of atomic jobs, we notice that the jobs have to be executed sequen-
tially because it is useless to drive to B and unload the sparepart before having picked it
up at position A. We also notice that the jobs have to be executed by the same robot since
it is also useless if e.g. one robot drives to A and picks up the sparepart while another
robot drives to B and tries to unload the sparepart now located on the first robot.

Generalizing this example, we identify three kinds of dependencies between atomic
jobs: Let A and B be atomic jobs and X and Z be a service and a resource respectively,
which are able to execute A and B. There is a

1. temporal dependency between A and B if and only if B has to be executed after
the finishing of A.

2. service dependency between A and B if and only if A and B have to be executed
by the same service. This means if A is executed by X then B has to be executed
by X, too.

3. resource dependency between A and B if and only if A and B have to be exe-
cuted on the same resource. This means if A is executed by any service running on
resource Z then B has to be executed by any service running on Z, too.

1 In fact, the concept is more general. It can be used to split real-world tasks/missions in sequences
of jobs to be executed by humans or computers and not only by a middleware, see [6].

342 U. Brinkschulte, A. von Renteln, and M. Pacher

The temporal and the resource dependencies are motivated and explained in the exam-
ple. The service dependency is used for e.g. database accesses. If there is a job storing
a value in a database of a certain service, the value can only be read out from another
job by accessing the same database service.

Knowing the dependencies, we define an execution path as follows:

An execution path is a finite set of atomic jobs which have to be executed in a certain
order by one resource.

The execution of an execution path is not interruptible and after finishing the execu-
tion path, the resource has to be in an initial state.

This definition is very intuitive as it follows the idea to form the missions by atomic
jobs. It includes the temporal dependencies given by the ”certain order”, and it also
includes the resource dependencies since the atomic jobs of the execution paths are
claimed to be executed by one resource.

By initial state (in the definition), we mean a pre-defined state of the resource. This
specification was claimed in order to ease the scheduling of the Autonomic Manager.
If the robot has e.g. a mechanical arm, the initial state of the robot is that the arm
is in a zero-position. The claim eases the scheduling of the execution paths because
the Autonomic Manager does not have to include this information in the scheduling
decision.

The additional specification that the execution of the execution path is not inter-
ruptible means that once an execution path has started it can not be interrupted by
another execution path (it forms a logical unit like a transaction). The reason is that
a resource or a service might be in a state different from the initial state while exe-
cuting the execution path. Therefore, it is neither guaranteed that the other execution
path can be started nor that the first execution path can be resumed after finishing the
interrupt.

A mission given by the user consists of one or several execution paths, see fig. 1.
We assume as a precondition that missions are organized in a way that there are no
dependencies between different missions.

But it is also possible, that there are dependencies between different execution paths
of a mission, see also fig. 1. In [6], we described the problems arising from dependencies
between different execution paths and presented several ways to handle them.

Mission

Execution PathExecution Path Execution Path

JobJob… Job JobJob

Fig. 1. A mission is partitioned into execution paths

A Scheduling Strategy for a Real-Time Dependable Organic Middleware 343

In the following sections, we will describe a scheduling scheme for the execution
paths to resources respectively to services. The scheduling is able to hold real-time
constraints and covers the above mentioned organic properties.

5 Assumptions for the Organic Middleware

In our scenario, we assume that the user decomposits the missions to execution paths.
The basic idea of the organic middleware is now that the assignment of execution paths
to resources and services is done by the middleware autonomously. It introduces self-
configuration, self-optimization due to reassignment of execution paths under changing
conditions and self-healing due to reassignment of execution paths in case of resource
failure. This is done by the Autonomic Manager (AM) (see fig. 2). As there is an AM
running on each resource, one master is elected by a de-centralised master election [1].

Robot

OSA+ μKernel

AM

Robot

OSA+ μKernel

AM

Robot

OSA+ μKernel

AMservice x service y service z

execution path

execution path

execution path

mission

execution
path

execution
path

execution
path

Fig. 2. Mission scheduling by the Autonomic Manager

Additionally, several parameters are assigned to the resources which describe impor-
tant properties of them. Since the parameters are application dependant, the user has to
define them.

Nevertheless, we can identify two kinds of categories of these parameters:

– static parameters and
– dynamic parameters

Static parameters are all parameters which do not vary during time. These parameters
describe features of a resource e.g. if a resource is able to move or to grab an object.

In contrary to static parameters, dynamic parameters are able to vary. Parameters like
the amount of power left in the battery of a robot or the number of items on the cargo
area are examples for dynamic parameters. During the execution of jobs/execution paths
on the resources, these dynamic parameters may vary due to the power consumption or
the charging of the resources.

6 A Scheme for the Parameter Prediction

To be able to choose between all possible assignments of the execution paths to the
resources, it is necessary to know the development of all the dynamic parameters.

344 U. Brinkschulte, A. von Renteln, and M. Pacher

Therefore, we need to predict the variation of the dynamic parameters if a resource
will execute a job respective an execution path. If we know the parameter prediction of
the different assignments of execution paths, we can choose the best one.

Since the middleware does not know about the semantics of a job, some informa-
tion has to be given by the application. For parameter prediction three types can be
distinguished:

Relative value given by the application. For some jobs, the variation of a parameter
is directly given by the job. We explain this by an example: Let’s consider the dynamic
parameter ”number of spareparts on the robot”. If there is a job ”Load(sparepart, 3)”
which means that three spareparts have to be charged on the robot, the predicted para-
meter value of the job is increased by 3.

Therefore, the applicant has to give the information about the modification of the
parameter in this case.

Absolute value given by the application. For some other jobs, the absolute value of a
parameter of the job executed is given by the application job. Let’s consider the dynamic
parameter ”Distance to target” and the job ”Drive(target)”. If a robot executes this job,
the distance to the target will be predicted to be ”0” after. Therefore, the application has
to give the information about the new value of the parameter.

Value calculated by the middleware. For the most of the jobs, the AM can predict the
parameter variation by the following equation:

rnew = rold − (M ∗ c job + d job)

Hereby, rnew and rold are n-dimensional vectors containing the values of the n dynamic
parameters to be considered in this scenario. rold are the parameter values before and
rnew are the parameter values after executing the job. The modification of the parameter
values is predicted by the term M ∗ c job + d job where M is a n × n matrix containing
the connections between the parameters. This matrix is universal for the whole scenario
but can be modified by the user for each job if necessary (see next section). The vector
c job depends on the job and announces the parameters necessary to predict the dynamic
parameter variation. d job is a constant vector also defined for this job. Notice that we
assume the parameter variation to be calculated linearly.

7 The Calling Scheme

The mission and thus its set of execution paths is send to the AM by an XML file which
is structured as shown in fig. 3. Its structure is almost self-explaining and therefore, we
only mention some of the parameters in the XML file in detail.

The root element of the container is the mission element and contains at least one ex-
ecution path. Each execution path contains at least one job which has four subelements:
restrictions, weightings, dependencies and instruction. In restrictions, the user is able to
claim minimal or maximal values of parameters, e.g. the minimal power level needed to
execute a job. The weightings include job or execution path specific modifications of the
matrix M. The dependencies mentioned in section 4 are included in the dependencies

A Scheduling Strategy for a Real-Time Dependable Organic Middleware 345

mission
[id]

execution
path
[id]

execution
path
[id]

job
[id]

job
[id]

restriction

name min

max

exact

weighting

name value

instruction

id QoS

restrictions

restriction

weightings

weighting

dependencies

dependence dependence

execution path id job id Timeout

Fig. 3. Tree illustrating the XML format

elements. Finally, the instuction element contains an instruction along with a timeout
and an optional quality of service value. Figure 3 illustrates the format of the XML file.

8 The Scheduling of the Autonomic Manager

In this section, we will explain the scheduling algorithm of the AM. The AM will firstly
do a parameter prediction as mentioned in section 6 for all possible assignments of ex-
ecution paths to resources and services. After finishing, it will compare the results by
some relations and choose the best one according to the relation.

The first step of scheduling - the parameter prediction. In the first step, the AM
builds up a prediction tree for a mission. The root of this prediction tree is the current
status of each resource. Hereby, the current status of a resource are the current values
of all of its dynamic parameters. These values are included in a resource vector.

From this starting point, the AM begins to predictively schedule the first execution
path - the one with the highest priority - to the different robots. For this purpose, the
AM checks if the jobs of the execution path can be executed by the services of these
resources (this is done by checking the static parameters). If this is possible, the AM
predicts the parameter modifications according to section 6 and creates a new leaf in the
prediction tree for each possible assignment of the execution path. Each leaf contains
the modified values of the dynamic parameters according to the predicted assignment.
These modified values are also represented by a modified resource vector. In this step,
the AM also checks if the restrictions (mentioned in section 7) can be met. If they can
be met, the branch is continued and otherwise, the branch will not be explored for the
next execution paths.

After finishing the predictive assignment of the first execution path, the AM starts
to assign the second execution path in the same way as the first execution path was

346 U. Brinkschulte, A. von Renteln, and M. Pacher

EP 1 on
resource 1

1 2 3 4 5 6 7

EP 1 on
resource 2

EP 1 on
resource 3

EP 2 on
resource 1

EP 2 on
resource 4

EP 2 on
resource 4

EP 2 on
resource 4

EP 2 on
resource 3

EP 3 on
resource 1

EP 3 on
resource 3

EP 3 on
resource 1

EP 3 on
resource 3

EP 3 on
resource 3

EP 3 on
resource 3

EP 3 on
resource 4

Fig. 4. A prediction tree assigning 3 execution paths to 4 resources

scheduled. The main difference is, that this prediction now starts from the leafs of the
first prediction, see fig. 4.

This procedure is repeated for all of the mission’s execution paths and as a result of
the first step, we get a complete prediction tree.
The second step of scheduling - choice of the best leaf. In a second step, the AM has
to choose the best leaf and thus the best assignment of execution paths according to the
dynamic parameters. Since the AM has to compare the leafs, it combines the parameter
vectors of all of the leafs’ resources in the following combination vector mlea f :

mlea f :=

⎛
⎜⎜⎝

m1

m2

...
mn

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

min{r1res1
,r1res2

, ...,r1resk
}

min{r2res1
,r2res2

, ...,r2resk
}

...
min{rnres1

,rnres2
, ...,rnresk

}

⎞
⎟⎟⎠

Each of its parameter values contains the minimum of the parameter values of one
type of a leaf’s robots, e.g. power. This scheme guarantees for each robot of a leaf a
minimum parameter value calculated in the combination vector thus presenting a lower
bound for the parameters.

Using the combination vector for each leaf, the AM has to compare them to find the
best suited assignemnt of execution paths.

We implemented two different strategies to compare the combination vectors:

Comparison by vector length. When using this strategy, the AM compares the length
of the different leafs’ combination vectors. It calculates the length of a combination
vector mlea f by the following formula:∥∥mlea f

∥∥
1 =

n

∑
i=1

|mi|

After computing the length of the different combination vectors, the AM compares them
using the ”≤” relation in R. Then the AM selects the vector with maximum length. If
there are several vectors with the same maximal length, then the according leaf which
is the first in the tree will be chosen.

A Scheduling Strategy for a Real-Time Dependable Organic Middleware 347

This comparison strategy can be used if all of the the parameters have the same pri-
ority or if the applicant has no certain information about the priorities of the parameters.

Comparison by priority. Another strategy is to order the combination vectors by prior-
ity. Let’s consider the two combination vectors mlea f and vlea f of two different leaves:

mlea f =

⎛
⎜⎜⎝

m1

m2

...
mn

⎞
⎟⎟⎠ and vlea f =

⎛
⎜⎜⎝

v1

v2

...
vn

⎞
⎟⎟⎠

Then, mlea f ≤P vlea f if and only if

m1 < v1 or
m1 = v1 and m2 < v2 or
...
m1 = v1 and m2 = v2 and ... and mn−1 = vn−1 and mn < vn or
m1 = v1 and m2 = v2 and ... and mn−1 = vn−1 and mn = vn

This means, the vector with the highest value in the first row is greater than the other
vector. If the first value is the same in both vectors, the values in the second rows are
decisive and so on.

This comparison is useful if the applicant knows exactly which parameters are the
most important ones. It is more restrictive than the first strategy and might allow better
scheduling if the parameters are suited.

Organic and real-time properties of the scheduling strategy. The presented schedul-
ing assigns the execution paths to the services and resources autonomously thus it is
self-configuring. As the current parameter values of the resources are continuously re-
freshed by a monitoring unit, the scheduling is also self-optimizing since it includes
these values. We also include self-healing since the dependent execution paths of a
mission are rescheduled if a resource fails.

The scheduling is also able to meet real-time constraints because the creation of the
tree is interruptible which means that the AM is able to interrupt the tree computing at
each point of time (if this is necessary). Then, it uses the existing tree to choose the best
assignment of execution path and can use the execution time of the robots to complete
the scheduling.

9 Conclusion and Further Work

In this paper, we presented a new idea to realize a real-time dependable organic mid-
dleware. We introduced the idea of execution paths and a real-time scheduling scheme
by which the execution paths are assigned to services and resources, respectively. The
scheduling scheme includes organic features like self-configuration, self-optimization
and self-healing. We implement the presented middleware in the SIMON project at the
University of Karlsruhe.

348 U. Brinkschulte, A. von Renteln, and M. Pacher

As future work, we plan to evaluate the scheduling scheme in detail. Especially, we
have to categorize the different kinds of parameters to get rules how to set the values in
the parameter matrix to model the fabric automation scenario as well as possible.

Acknowledgment

The SIMON project is funded by the Landesstiftung Baden-Wuerttemberg.

References

1. RICHARD JOHN ANTHONY, ”Emergence: a Paradigm for Robust and Scalable Distrib-
uted Applications”, Proceedings of the International Conference on Autonomic Computing
(ICAC’04), 2004

2. A. BECHINA, U. BRINKSCHULTE, F. PICIOROAGA AND E. SCHNEIDER, ”OSA+ Real-
Time Middleware. Results and Perspectives”, International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC), Vienna, Austria, 2004

3. C. BUSCHMANN, S. FISCHER AND N. LUTTENBERGER, ”Middleware for Swarm-like Col-
lections for Devices”, IEEE Pervasive Computing Magazine, Vol. 2, No. 4, 2003

4. IBM, Autonomic Computing, http://www.research.ibm.com/autonomic/
5. J. O. KEPHART AND D. M. CHESS, ”The Vision of Autonomic Computing”, IEEE Com-

puter, pp. 41-50, 2003
6. MATHIAS PACHER, ALEXANDER VON RENTELN AND UWE BRINKSCHULTE, ”Towards

an Organic Middleware for Real-Time Applications”, ISORC 2006, Ninth IEEE Interna-
tional Symposium on Object and component-oriented Real-time distributed Computing, Ko-
rea, 2006

7. FLORENTIN PICIOROAGA, ”Scalable and Efficient Middleware for Real-time Embedded
Systems. A Uniform Open Service Oriented Microkernel Based Architecture”, PhD thesis,
Strasbourg, 2004

8. WOLFGANG TRUMLER, JAN PETZOLD, FARUK BAGCI AND THEO UNGERER, ”AMUN -
An Autonomic Middleware for the Smart Doorplate Project”, UbiSys ’04 - System Support
for Ubiquitous Computing Workshop at the Sixth Annual Conference on Ubiquitous Comput-
ing, 2004

9. THE SIMON PROJECT, University of Karlsruhe (TH), http://simon.ira.uka.de
10. Object Management Group: The common object request broker: Architecture and specifica-

tion. Revision 3.0, July 2002
11. Sun Microsystems: Java Remote Method Invocation Specification. Revision 1.8, 2002

http://java.sun.com/j2se/1.4/docs/guide/rmi/
12. G. EDDON AND H. EDDON, ”Inside Distributed COM”, Microsoft Press, 1998
13. MICROSOFT CORPORATION, The .Net framework, http://www.microsoft.com/net/

default.mspx
14. VDE/ITG (EDITOR), ”VDE/ITG/GI-Positionspapier Organic Computing: Computer und

Systemarchitektur im Jahr 2010”, GI, ITG, VDE, 2003
15. RANDALL WHITAKER, ”Self-Organization, Autopoisesis, and Enterprises”

http://www.acm.org/sigs/sigois/auto/Main.html

Autonomous Construction Technology of Community
for Achieving High Assurance Service

Kotaro Hama1, Yuji Horikoshi2, Yosuke Sugiyama1, and Kinji Mori1

1 Department of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

{hama@mori., sugiyama@mori., mori@}cs.titech.ac.jp
http://www.mori.cs.titech.ac.jp/

2 horikoshi@smg.co.jp

Abstract. In the retail business under the evolving market, the users solicit con-
tinuously to utilize the appropriate services based on their preferences and situ-
ations. Such requirements can not be satisfied with the conventional centralized
system, due to the dynamic changes of user requirements. Autonomous Decen-
tralized Community System (ADCS) has been proposed to realize a system that
satisfies such requirements. The system realizes flexibility to cope with dynamic
changes in the environment, but since ADCS is a pure decentralized system,
the system has no existence that monitors the whole system to maintain time-
liness, which is an essential factor for assurance. In this paper, Autonomous Con-
struction Technology is proposed to improve the response time, which integrates
and divides a community in order to achieve the optimal size depending on the
changes in environment. The effectiveness is verified through simulation.

1 Introduction

The recent advancement in information and communication technology enabled vari-
ous information services that are available anytime, anywhere and for anyone. However,
the increase in the variety of information service often perplexes the users by providing
too many options. Also, for the provider of information services, or Service Providers
(SP), the selection of appropriate services is becoming increasingly difficult. According
to these backgrounds, information services considering users’ preference and situation
are becoming more important. To provide such services, Community Service is pro-
posed to offer adequate services through mutual cooperation among Local Majority,
which consists of users who have similar preferences or are in similar situations [1]. In
such a system, adaptability is regarded as an important property to assure the quality of
services depending on a requirement level.

This paper reports the proposition of Autonomous Construction Technology. The ob-
jective is to realize high assured services which achieves high dependability and time-
liness depending on the number of community members. This paper is structured as
follows. Next section presents the application and system requirements. Section 3 de-
scribes ADCS in detail, and section 4 exposes Autonomous Construction Technology.
Section 5 shows the effectiveness of the technology by showing the improvement in
response time and the last section is the conclusion.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 349–358, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 K. Hama et al.

2 Application and Requirements

2.1 Community Service

User requirements towards information services are becoming more advanced, like the
services that consider users’ situations and preferences. For wide area information ser-
vices, it is difficult for SP to provide adequate services for all users, since the target
users not always have the same similarities. However, places like department stores
where people often have the same preferences, it is possible to collect user requests
in certain area to provide suitable services. Thus, by grasping user groups that are in
the same situation as community, it is possible for SP to provide adequate services ef-
ficiently. Some location-aware systems using mobile terminals for providing services
based on user locations have been reported [2][3]. These technologies have described
a basic concept of service mediation platform, but they assume that each service is
provided to static area and considers no dynamic situations.

In Community Service, the members of a community cooperate to aggregate re-
quests, and then SP provide services based on the requests [4]. Community members
are obliged to cooperate between other members for request aggregation and service
distribution, whereas SPs are obliged to provide adequate services to the community.
However, both members of a community and SP have the merits by adopting Commu-
nity Service. Users are able to enjoy exclusive services only for the members of a certain
community. The benefit of Community Service increase as the number of community
members increase. On the other hand, SPs are able to collect requests from users with
less effort, since the community members cooperate to aggregate requests themselves.
To meet the community requests, SP simply provide adequate services according to
the aggregated requests, instead of answering all users one by one. Thus, Community
Service simplifies SP’s operation and increases efficiency.

2.2 Application Requirements

For Community Service, users and SPs have the following application requirements.

– Assurance for merits of cooperation: Since users are obliged to cooperate with other
community members, the merits for cooperation must be assured for each member
of community.

– Adequate service utilization/provision: SP’s services should provide services that
considers the user requirement level as accurate as possible.

2.3 System Requirements

To realize the application requirements described, the system is required to satisfy flex-
ibility and timeliness. Since users’ situation changes dynamically, Local Majority and
its requirement level also changes. Therefore, it is necessary for SP to correspond to
accommodate to such changes. Also, users wish to receive services that reflect their
requirements as much as possible. However, such requirements often change as users’
situation and preference change. Therefore, SPs must compose and distribute the ser-
vices as quick as they can. Thus, a system must satisfy flexibility and timeliness.

Autonomous Construction Technology of Community 351

3 Autonomous Decentralized Community System

3.1 System Architecture

Autonomous Decentralized Community System (ADCS) is a system that realizes flex-
ibility by enabling the members of the system to autonomously cooperate to achieve
particular objectives. The system is structured based on Autonomous Decentralized
System (ADS) [5]. In order to provide services, the nodes in ADCS autonomously
form a group or community, in accordance with service property. The nodes in ADCS
autonomously decide to join or leave a certain community and to cooperate with other
members. Such autonomous decisions of each node is realized with Autonomous Con-
trol Processor (ACP) that judges and processes based only on local information, such as
storage storing user requests and Neighboring Nodes Table (NNT), which indicates the
directions of neighboring nodes for a certain node [6]. When a node receives a message,
each node autonomously judges whether the message should be taken into the node or
not, by checking the node’s NNT and the service property of the message. As a result,
nodes that received the message will form a community. The overview of the system
architecture is shown in fig. 1.

Fig. 1. System Architecture

The nodes are supposed to be base stations for wireless communications and con-
nect SPs and users through mobile terminals. The nodes transmit data between phys-
ically neighboring nodes and broadcast messages to the users within the cover-area
of each cell. SPs and users communicate with the physically nearest node. The area
covered by community of nodes is called service area. In order to form a community
according to the contents of services, autonomous distribution technology based on
time-distance is proposed [6]. Time-distance indicates the time to physically travel from
one place to another, and community can be formed depending on the time-distance for
each service. Time-distance is measured by autonomous collaboration between each
base station. By each base stations having the values of time-distance between each
node, SP can provide services like ”advertisement of exclusive service only for users
that are with in 30 minutes far from the SP”. Such services can be regarded flexible,
since the time distance between each node is updated real-timely by autonomous col-
laboration between each node. In this case, the trigger for community formation is
the distribution of advertisement, and community vanishes when the service of SPs
terminates.

352 K. Hama et al.

3.2 Process and Communication

When a community member receives a message from the SP, the member relays the
message only to the lower members depending on the service property of the message.
Each node possesses time-distance table for its neighboring nodes, which is used as
judgment data when relaying messages. Thus, it is able to provide services only to the
users that actually require them, which realizes flexible information system. When a
community receives service from a certain SP, the first node that receives the message
from the SP is regarded as the leader of the community. All requests from the community
will be aggregated by the leader, and will be transmitted to the SP through the leader.

3.3 Response Time Model

To clarify the discussions on response time, the above figure describes on the model
for response time in ADCS. Service provision is composed from 3 steps of request
aggregation to the leader, access to the SP and service distribution. Therefore, total
response time T can be divided into 3 steps, time of aggregation Ta, time for SP-access
Ts and time for community distribution Tc. T can be expressed as the following simple
equation. Hereinafter, we will discuss on modeling of Ta, Ts and Tc.

T = Ta + Ts + Tc (1)

Time of aggregation Ta. @The transmission delay between each node for a single
request is assumed to be constant and is expressed as tt (time for transmission). Also,
the number of hops (transmission of message between nodes) between the leader and
the farthest node within the community is expressed as DL. When considering about
response time of community as a whole, it is necessary to regard the worst value. There-
fore, time of aggregation Ta can be expressed as follows. It is necessary to note that Ta

does not concern about the delay of request processing at each node.

Ta = DLtt (2)

Time for SP-access Ts. @Assume that message processing at SP takes tp (time for
processing) for a single request. The transmission delay between the leader and the SP
is tt as explained above. Also, let total number of request from leaders be m. All SPs
have message queue, and processes requests as LIFO (Last In First Out). The model
assumes that all requests arrive at the same time, and does not concern about rejection
of requests due to queue overflows. The validity of such an assumption comes from
the fact that requests arose from dynamic changes in situation is more likely to be
simultaneous rather than random-arrive. Since the model considers community as a
whole, it is necessary to regard the worst processing time for Ts as following.

Ts = mtp + 2tt (3)

Time for community distribution Tc. @Assume that the definition for tt and DL be
the same asfor request aggregation. Since it is necessary to assure response time for

Autonomous Construction Technology of Community 353

all members of community, again we regard the worst time for service distribution as
follows.

Tc = DLtt (4)

Since ADCS is based on the concept of ADS, response time will not deteriorate
by the concentration of SP access like it does in centralized systems. This is because
there will be only one user accessing the SP from request aggregation. However, when
changes in the contents of services cause enlargement in the size of community, or
when there is a great increase in the number of users in a certain community, response
time for service provision deteriorates. The deterioration is caused by the increase in
the number of hops between the furthest node to the leader of community. Also, for SP
access time Ts, the increase in the number of requests is causing the deterioration in
response time.

4 Autonomous Construction Technology

4.1 Community Division

As discussed before, deterioration in response time is caused by the increase in the num-
ber of hops DL between the farthest node and the leader of the community. Also, while
aggregating requests within a community, SP will be wasting the processing power
since it takes time for community requests to reach the SP. Considering such a fact, we
introduce the concept of community division. In community division, a community is
divided into multiple smaller communities and enables each sub-community to aggre-
gate requests and distribute services concurrently. The concept of community division
is first proposed in [6]. However, the main purpose of community division in [6] is
to improve the dependability. For an assure system that satisfy both dependability and
timeliness, improvement in response time is still considered as an important problem
to be solved. In this research, our objective is to improve the timeliness in Community
Service with the concept of community division. Response time model after community
division can be expressed as follows.

T = Ta + Ts + Tc (5)

= DLtt + nmtp + 2tt + DLtt (6)

= 2DLtt + nmtp + 2tt (7)

In the equation, n is the number of sub-community, and it is noteworthy that
DL decreases as the number of sub-community increases. Therefore, when each
sub-community’s size decrease, Ta and Tc will be improved due to the decrease in DL,
but Ts will deteriorate due to the increase in n. On the other hand, when each sub-
community size enlarges, Ts will improve but Ta and Tc will worsen. Thus, there exist
a tradeoff between sub-community size and the response time. Thus, there exists an
optimum size for sub-community size, so it is possible to realize the best response time
by adjusting the size of sub-community.

354 K. Hama et al.

4.2 Problems

From the discussions so far, the optimal size for sub-community alters depending on
the size of community as a whole. Therefore, to improve response time, it is neces-
sary to adjust the size of sub-community depending on the community size.There are
several solutions considered to achieve such a task. The simplest solution is to place
a centralized observer to monitor changes in the number of community, which lacks
in flexibility and deterioration in response time. Another possible solution is to enable
each node in community to monitor its response time from the SP all the time, and
adjust the community size by trial-and-error. However, such a solution requires com-
plicated operations for keeping the consistency between each node. Such problems are
caused by the fact that each node in community not possessing global information to
make decisions on which community to belong. In this research, we propose a solution
for this problem by Autonomous Construction Technology, which adopts the concept
of threshold.

4.3 Threshold and Community Construction

The size for each sub-community is determined by threshold DthH . The threshold DthH

is calculated by the leaders of community by monitoring the response time from the SP
and their sub-community size. When distributing messages from the SP, a leader attach
the threshold value to the message and send it to the lower nodes. Thus, each member
of the sub-community is able to update their values of DthH when receiving messages
from the SP. As a result, the value of DthH will adapt to the size of community, and the
structure of community will be optimized. The figure below shows the overview of how
to calculate the threshold DthH from monitoring. Total response time T can be regarded
as a function of fT (dL), where dLis the size of sub-community. The graph of fT (dL) is
V-shaped as shown in the figure. By observing the derivative of such a function f ′

T (dL),
it is possible to determine the tendency of function fT (dL) at the size of monitoring
sub-community d̂L. If the function is in trend of decreasing, the leader should judge to
increase the sub-community size by enlarging the threshold. On the other hand, if the
function has trend of increasing, the leader can adjust the sub-community into smaller
size to increase the response time of the community as a whole. Thus, it is possible
to adjust sub-community size into optimal size without any existence of centralized
monitors.

4.4 Autonomous Construction Technology

Each node in ADCS posses information DthH and DthL, which are thresholds to judge
that sub-community is too large or too small respectively. Also, each node posses DL

and DB that are distance from its leader and boundary nodes respectively. Each node
posses SubComID, Sub-community ID for each node.

Between each node in community, two types of message are interchanged. From a
SP to the community, service messages are transmitted. The fields in service messages
are shown in table 2 on the left. On the other hand, from a community to the leader,
request messages are transmitted. The fields in request messages are shown on.

Autonomous Construction Technology of Community 355

Fig. 2. Calculating Threshold

Table 1. Service Message and Request Message Parameters

Sign Content

CC Content code for service message
SubComID Sub-community ID
SPAddr SP Address
Sender Address for the message sender
nHops Number of hops for the message
DthH Field for updating each node’s DthH

DthL Field for updating each node’s DthL

DArbitrator Priority for sub-community
Data Service Data

@

Sign Content

CC Content code for request
message

SubComID Sub-community ID
Generator The node ID for the

generator of this message
f lagBoundary Flag to indicate boundary
DL Distance between leader

to the boundary
Data Request Data

Autonomous Construction Technology is composed from autonomous division tech-
nology and autonomous integration technology. In autonomous division technology,
sub-community size is decreased by increasing the number of leaders in the commu-
nity. On the other hand, autonomous integration technology decreases the number of
leaders to make each sub-community larger. In the discussion on technology, we call
non-leader nodes as normal nodes, to distinct from leader nodes. The overview of Au-
tonomous Construction Technology is shown below.

Fig. 3. Autonomous Construction Technology

356 K. Hama et al.

Autonomous Division Technology. @When sub-community size increase by affili-
ation of new nodes, each normal node detects whether the distance from the leader
DL is exceeding the threshold DthH or not. If so, the normal node judges that the sub-
community it belongs is too big and becomes a leader itself. Therefore, a new sub-
community will be created, and the neighboring nodes that are near the new leader
will transit to the new sub-community. When a node receives a message, the node re-
gards the distance from the leader DL as nHops + 1 of the received message. Thus,
each node increment the nHops field of the received message as the message transmits.
When a node receives a message from its leader with nHops field that is bigger than
the node’s DthH , the node detects that the sub-community has become too large and
the node becomes a leader. When a node becomes a leader, it executes the following
procedures.

1. Set the own DB field to 0
2. Set the own DL field to 0
3. Set the own SubComID field to the own node ID
4. Set all neighboring nodes are lower nodes

When a node receives messages from other sub-communities, the node decides to transit
sub-community or not, depending on the following.

1. If, theownDL > thereceivedmessage’snHops+1Athentransit to thesub-community
with lower DL value

2. When the own SubComID is set to NULL, transit to the received message’s sub-
community

Also, for a node that is about to transit sub-community executes the following
procedures.

1. Becomes a normal node
2. Set the own SubComID field to the received message’s SubComID
3. Set the own DL field to the received message’s nHop + 1
4. Set the own DB field to the received message’s nHops+ 1
5. Set the sender of the message as ”upper” in the node’s NNT, and set all the other

nodes are ”lower” nodes.

Autonomous Integration Technology. @When nodes separate from the community,
some sub-communities may be too small to exist. The leader of each sub-community
detect whether the own sub-community is too small or not by checking the DB on the
message from the boundary nodes. If the leader judges that the sub-community is too
small, it becomes normalized and the sub-community vanishes. Boundary nodes are
nodes that are placed on the boundary of each sub-community. When such nodes send
request messages to the leader, they attach additional information as a flag to indicate
that the node is a boundary node. A node is regarded as a boundary node when it satisfies
the following.

1. Receiving messages with other sub-community’s ID on SubComID field
2. Receiving annul messages from all neighbors that are set as ”lower” nodes

Autonomous Construction Technology of Community 357

The message from boundary nodes are transmitted to the leader just like the nor-
mal message, but when it reaches the leader, it is used as information for the leader to
find out the own sub-community size by checking the largest DB field out of all mes-
sages from its boundaries. When a leader receives a boundary message with DthL that
is smaller than its own DB, the leader judges that the sub-community is too small. DthL

is also a threshold for a node to judge whether the sub-community is too small or not.
When a leader normalizes, it executes the following procedures. As a result from the
following procedures, the node will be independent and can be regarded as the same
state as the initial state where nodes first affiliate communities.

1. Set the own SubComID field to NULL
2. Set the own DthL field to the maximum value available
3. Set all nodes in NNT to ”lower” nodes

5 Simulation and Evaluation

The objective for simulation is to verify the effectiveness of Autonomous Construc-
tion Technology by evaluating the improvement in response time. The simulation is
done under the condition where community members increase periodically. The net-
work topology used in the simulation is a hexagonal mesh network, which is widely
adopted in actual networks for base stations of wireless communication.

Table 2. Parameters Used in Simulation

Sign Logical time Assumption time Outline

tt 15 150[ms] Link transmission delay
tp 10 100[ms] Request processing time

TJoinInterval 500 5000[ms] Node entry interval
TServiceTimer 300 3000[ms] Service message interval

TBoundary 900 9000[ms] Boundary message interval
TPromotion 500 5000[ms] Leader timer interval

TAdaptCheck 400 4000[ms] Threshold updating interval

In evaluation of response time, we have compared the response time for Autonomous
Construction Technology with various values of DthH with the case without such a tech-
nology, under the situation where number of members in community increase gradually.
At the initial state of simulation, the number of node is 1, then increase the number of
node periodically depending on TJoinInterval until the total number of node reach up to
721. As shown in the result displayed on fig 4, for DthH value of 1, 2 and 3, it is bet-
ter not to adopt community division. However, for DthH as 7, the result shows some
improvement in response time under the situation where the total number of node is
721. For the case not adopting community division, the average response time is 5200
[ms] under the situation where number of node is 721. On the other hand, the case
adopting the technology with DthH value of 7, the average response time improved

358 K. Hama et al.

Fig. 4. Number of Nodes and Response Time

to 3900 [ms]. Thus, there exists appropriate value for DthH depending on the num-
ber of nodes in a community. Therefore, adjustment of the size for DthH by calcu-
lating the threshold improves the response time of a community for different number
of nodes.

6 Conclusion

Community Service, which is provided through cooperation among Local Majority, has
been proposed to provide services in accordance with users’ situations and preferences.
In this paper, we proposed Autonomous Construction Technology to improve response
time for ADCS under the situation where the number of members shifts dynamically.
Also, we have evaluated the effectiveness of such a technology through simulation. The
result verified the effectiveness of Autonomous Construction Technology.

References

1. T.Ono, K.Ragab, N.Kaji and K.Mori, ”Service Oriented Communication Technology for
Achieving Assuarance,” International Workshop on Assuarance in Distributed Systems and
Networks (ADSN02), IEEE, pp69-74, July 2002.

2. J.Hightower, G. Borriello, ”Location Systems for Ubiquitous Computing”, IEEE Computer,
vol.34, no.8, pp.57-66, 2001.

3. N.Marmasse, C.Schmandt, ”Location-Aware Information Delivery with ComMotion”,
HUC2000, LNCS1927, pp.157-171, 2000.

4. N.Kaji, K.Ragab, T.Ono and K.Mori, ”Service Oriented Community System for Mobile Com-
merce”, Proc. of SSGRR2002, July

5. K.Mori, ”Autonomous Decentralized Systems: Concept, Data Field Architecture and Future
Trends,” Proc. of ISADS93, pp28-34, March 1993.

6. T.Ono, N.Kaji, Y.Horikoshi, H.Kuriyama, K.Ragab, and K.Mori, ”Autonomous Decentralized
Community Construction Technology to Assure Quality of Services”, in Proc. of the 10th
IEEE International Workshop on Future Trends of Distributed Computing Systems (HASE),
pp299-305, May 2002, pp84-89.

7. Matei Ripeanu, ”Peer-to-Peer Architecture Case Study: Gnutella Network”, In Int’l. Conf. on
Peer-to-Peer Computing (P2P2001), August 2001.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 359 – 372, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Preventing Denial-of-Service Attacks
in Shared CMP Caches

Georgios Keramidas, Pavlos Petoumenos, Stefanos Kaxiras,
Alexandros Antonopoulos, and Dimitrios Serpanos

Department of Electrical and Computer Engineering,
University of Patras, Patras, Greece

Abstract. Denial-of-Service (DoS) attacks try to exhaust some shared resources
(e.g. process tables, functional units) of a service-centric provider. As Chip
Multi-Processors (CMPs) are becoming mainstream architecture for server class
processors, the need to manage on-chip resources in a way that can provide
QoS guarantees becomes a necessity. Shared resources in CMPs typically
include L2 cache memory. In this paper, we explore the problem of managing
the on-chip shared caches in a CMP workstation where malicious threads or just
cache “hungry” threads try to hog the cache giving rise to DoS opportunities.
An important characteristic of our method is that there is no need to distinguish
between malicious and “healthy” threads. The proposed methodology is based
on a statistical model of a shared cache that can be fed with run-time
information and accurately describe the behavior of the shared threads. Using
this information, we are able to understand which thread (malicious or not) can
be “compressed” into less space with negligible damage and to drive
accordingly the underlying replacement policy of the cache. Our results show
that the proposed attack-resistant replacement algorithm can be used to enforce
high-level policies such as policies that try to maximize the “usefulness” of the
cache real estate or assign custom space-allocation policies based on external
QoS needs.

1 Introduction

In application domains that range from information access to electronic commerce,
many services are susceptible to attacks by malicious clients that can significantly
degrade their performance. One kind of attack, called Denial-of-Service (DoS) attack,
is a malicious attempt by a single person or a group of people to cripple an online
service. This can have serious consequences for companies such as Amazon and eBay
which rely on their online availability to do business. In the past, many companies fell
victim to DoS attacks resulting in a damage of million of dollars [14][15]. Moreover,
service providers may be forced by the customer requirements to provide specific
QoS guarantees. In this case, the providers must assure the service quality of their
services by assigning a specific amount of resources (i.e. CPU cycles). On the
architecture front, processor designers are fast moving towards multiple cores on a
chip to achieve new levels of performance. The target is to hide as much as possible

360 G. Keramidas et al.

the long memory latencies. CMPs are becoming the dominant architecture for many
server class machines [8][9][10]. For reasons of efficiency and economy of processor
area, the sharing of some chip resources is a necessity. The shared resources in CMPs
typically include the lower level caches. Those shared resources in CMPs create a
need for fair and efficient management policies. A trivial solution would be to
statically partition the shared resources among the running threads. However, this
design point is inefficient in resource utilization when the demand is not uniform.

From another point of view, having caches shared between threads provides a vastly
more dangerous avenue of attack —a DoS attack [16]. A malicious application can abuse
the shared cache rendering the whole system practically inoperative, since the L2s are a
critical element in the performance of all modern computers. Furthermore, according to
[18], even through a DoS attack is usually intentional and malicious, such types of
attacks can sometime happen accidentally. For example, one person running a memory
or CPU intensive program in a multiuser machine can cause all the other users of the
system to experience an extreme slowdown even if the running program is not by nature
malicious. Furthermore, poor programming, either in choice of algorithm or in
implementation, can also cause programs to consume resources disproportionately. This
is in accordance to the problem of attack detection: sometimes it is impossible to
distinguish between memory or CPU intensive applications from DoS attacks, since they
operate indentically. Hence, a desirable characteristic of all the methods against DoS is to
manipulate the system threads in a fair and/or efficient manner without the need to
distinguish between malicious and normal threads.

To model and understand cache sharing we have built a new theoretical framework
that accurately describes applications interplay in shared caches. Our cache model,
named StatShare, is derived from the StatCache statistical cache model [6], which
yields the miss ratio of an application for any cache size. While the StatCache model
uses the number of memory references as its unit of time, StatShare uses the number
of cache replacements at the studied cache level [4] as the unit of time. This allows
for a natural mapping of the cache statistics to the shared cache level. This further
leads to a very efficient implementation of the StatShare which enables on-line
analysis feeding a dynamic resource scheduler. StatShare can predict miss rate with
great success as a function of the active cache ratio used by an application.

We also demonstrate how online StatShare results can be used as inputs to a
resource sched-uler. We model and evaluate a cache resource sharing strategy based
on Cache Decay, originally proposed for leakage reduction [7]. Our proposal
introduces important differences. A decayed cacheline is simply available for
replacement rather than turned-off for leakage. Thus, hits on decayed lines are
allowed. Secondly, the decay interval is measured not in cy-cles but in CAT time.

Our modified attack resistant cache replacement algorithm has the added advantage
that it does not need to classify a thread (client) as malicious or not malicious
permanently, but instead computes this based on recent behavior. Hence, our
algorithm performs a kind of dynamic check on thread’s behavior. This is an
important feature, since it is possible that a normal thread may be misclassified as
malicious, through this classification will change with time. As an example, a thread
that has poor locality may have a low hit rate (and try to hog the cache), resulting in

 Preventing Denial-of-Service Attacks in Shared CMP Caches 361

its being identified as malicious, by our approach, and its eventual compression into
less space. However, this does not significantly impact the performance, because the
thread is already experiencing a low hit rate and hence higher latencies.

Structure of this paper. Section 2 surveys related work and reviews the StatCache
model. Section 3 presents our StatShare model. Section 4 describes how cache decay
can be intergrated into the StatShare model and provide attack resistant high-level
cache management policies. Section 5 presents implementations and Section 6 our
results. Section 7 summarizes the paper.

2 Related Work

Cache Partitioning Schemes. The issue of cache fairness has been initially
investigated by Kim et al. [2]. They introduce a set of metrics for fair cache sharing
and they implemented a static partitioning algorithm for the OS scheduler, and a
dynamic three-part algorithm (ini-tialization, rollback and re-partitioning) for shared-
cache partitioning. Their algorithms are based on stack-distance counters but do not
restrict the cache replacement algorithm to LRU. Their partitioning algorithm is based
on counters and partitioning registers. When a process is under-represented in the
cache it starts to pick its victims from other processes, while when it is over-
represented, it picks its victims among its own lines.

In [3], Kim et al. extend their previous work with three performance models that
predict the impact of cache sharing on co-scheduled threads. The input to the models
is the isolated second-level cache stack distance of the applications and the output is
the number of extra second-level cache misses for each thread due to cache sharing.
Suh et al. [1] studied partitioning the cache among sharers by modifying the LRU
replacement policy. The proposed mechanism used in their scheme is the same as the
one used by Kim et al. [2], but their focus is in performance and not fairness.

Denial-of-Service at the Architectural Level. One of the initial attempts to prevent
DoS attacks at the architectural level was the one introduced by Soderquist and Leeser
[19]. The authors proposed the idea of cache locking where the locked cachelines
were not allowed to be removed from the cache, quaranteeing freedom from DoS
attacks. In their approach, a dynamic cache locking technique, aided by custom
processor instructions, treat locked cache lines as additional registers.

Recently, many researchers studied the issue of DoS attacks in the context of SMT
processors. Because multiple threads share many resources (pipeline, execution units
etc.) in a SMT, there are many opportunities for a malicious thread to launch a DoS
attack by abusing shared resources. Grunwald and Ghiasi describe a form of attack in
which a malicious process repeatedly flushes the trace cache of a SMT by executing
self modifying code. Because the trace cache is shared among all the processes, the
flushing degrades the performance of all threads [16]. Hasan et al. study DoS attacks
based on power density [17].

The above techniques try to address the DoS attacks by stalling the application that is
suspected of malicious behavior. This may be a working solution for SMTs but it is less
attractive for CMPs, because CMPs have most of their resources unshared. A stalled core

362 G. Keramidas et al.

in a CMP environment will lead in underutilization of the whole system. Furthermore, a
service-targeted system may become unable to provide services even if no malicious
threads are running on it [3][18]. In this scenario, the previous techniques will not detect
a DoS attack, rendering the whole system practically inoperative. The problem becomes
more serious when specific services require QoS guarantees.

The Statcache Model. StatCache is a technique for estimating an application's miss
rate as a function of cache size based on a very sparse and easily captured fingerprint
of certain performance properties [6]. The application property measured is the reuse
distance of the application's memory accesses, i.e., the number of memory references
between two consecutive accesses to the same cachline. Unlike stack distance, which
measures the number of unique memory references between two consecutive accesses
to the same cacheline, the reuse distance can easily be captured using functionality
supported in today's hardware and operating systems.

Benchmarks Miss Ratio

0

5

10

15

20

25

30

35

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Cache Size

M
is

s
R

at
io

(%
)

Fig. 1. StatCache results for selected SPEC2000

The reuse distances of an application's all memory accesses is most easily
represented as a histogram h(i), where h(0) is the number of references to the same
cache line with no other intervening memory references, h(1) is the number of
accesses with one intervening access, and so forth. The shape of this histogram is the
performance fingerprint of an application. The shape can cheaply be approximated by

randomly picking every the N
th

 access and measuring its reuse distance. Experiments

have shown that sampling every 10
7
th access is sufficient for long-running

applications [6]. StatCache uses an application's histogram together with a simple
statistical model of a cache and a simple numerical solver to derive the miss rate of
the application as a function of cache size.

Figure 1 shows StatCache results for a number of SPEC2000 benchmarks for various
cache sizes. This figure provides our motivation for managing the cache and prevent the
hog of the cache by cache greedy applications (either they are by nature malicious
or not).

As it is evident from Figure 1 many programs have flat areas in their miss-rate curves,
where a change in their cache size results in virtually no change in their miss rate. Such
areas can be exploited to release cache space for other programs than can benefit from
more cache space (as suggested by their miss-rate curves).

 Preventing Denial-of-Service Attacks in Shared CMP Caches 363

3 StatShare: A Statistical Cache Model in Cat Time

In this section, we describe the basic principles of our statistical model. A necessary
compromise to construct our model is to assume a fully-associative cache with
random replacement.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000

art equake

L = 4096

reuse distance in CAT

S
am

p
le

s

Fig. 2. CAT reuse distance histograms for art and equake (both axes log scale)

CAT Time. The reuse distance of a cacheline is measured as the number of intervening
events -a notion of time- between two consecutive accesses to this cacheline. In [6],
reuse distances are measured as the number of other intervening accesses. In contrast,
we measure reuse distances with a different notion of “time.” Our time is measured in
Cache Allocation Ticks (CAT) [4], or in other words, cache replacements. The CAT
clock can be advanced with two different ways: by snooping the cache replacements
irrespective of the thread that causes the replacement in the shared cache (we call this a
global CAT clock) or by using the replacements of the particular thread that is replaced
(we call this local or per-thread counters). Our theory is independent of which clock,
global or local, we use for a thread's histogram, as long as we always relate the global
clock to the size of the cache and the local clock to the thread's footprint in the cache.
Both ways have each own positives and negatives, but we omitted such analysis due to
lack of space. For the didactic purpose of this section, we will assume global CAT as
our notion of time. The importance of CAT time stems from the fact that it allows for a
natural mapping of the cache statistics to the studied cache level.

CAT Reuse-Distance Histograms. The reuse distance histogram of a program meas-
ured in CAT time is denoted as: h(i), i = 0, . Figure 2 shows the histograms for two
SPEC2000 programs, art and equake, sharing a 256KB cache. The histograms are
collected in a time window of 200M instructions and in this case we see reuse
distances of up to a few tens-of-thousands CAT.

As we can see from the histograms art shows a “binary” distribution of reuse
distances, with the bulk of samples at short reuse distances, but also with a significant
bulge beyond L (L=4096, the size of the cache in cachelines). This bulge signifies than
many of the items that art accesses, do not “fit” in the cache and produces a significant
number of misses. It is responsible for the behavior of art which hogs the cache and
squeezes its companion thread to a very small footprint. In contrast, equake shows a

364 G. Keramidas et al.

distribution of reuse distances that decreases slowly to the right. The meaning of this
distribution, as we will show, is that equake is already in a compressed state (we cannot
squeeze it further without serious damage to its miss ratio) but it can benefit from
expansion to a larger footprint. In general many programs behave either like art or like
equake. artlike programs are prime candidates for management-com-pression.

Basic Probability Functions. The centerpiece of the StatShare model are the f and f-
bar functions. These functions give the probability of a miss (f) or a hit (f-bar) for an
item in the cache with a given reuse distance. The f-functions coupled with the reuse-
distance histograms of threads produce the rest of the information of our statistical
model. The f-functions concern a specific replacement policy. As we have mentioned,
for the didactic purposes of this section we will assume a fully-associative (FA),
random replacement cache where the notion of time is given by a global CAT
counter.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 10 100 1000 10000

f f-bar = 1- f

L=4096

reuse distance in CAT

P
ro

ba
bi

lit
y

Fig. 3. f and f-bar for Random replacement in a FA cache

Under this scenario, any item in a such cache of size L (in cachelines) has 1/L
probability of being replaced at any miss or (1–1/L) probability of remaining in the
cache. If an item has a CAT reuse distance of i, then after i misses (or replacements),

it has a probability of remaining in the cache of (1–1/L)
i
 and a probability of having

been replaced of 1–(1–1/L)
i
. We call this miss probability function f, in contrast to the

hit probability denoted as f-bar:

f i 1 1
1
L
---–

i
–= f i 1 f i– 1

1
L
---–

i
= =

Once we have a CAT reuse distance histogram for a thread it is easy to calculate its
hits and misses by multiplying it with the f-bar and f functions respectively:

hits h i f i

i 0=

= misses h i f i

i 0=

=

The results of these formulas agree with our simulation results with very high

accuracy. However, in order to get an accurate count of misses we must take into
account cold misses. Cold misses are estimated when we collect samples for the reuse

 Preventing Denial-of-Service Attacks in Shared CMP Caches 365

distance histograms of a thread. In short, dangling samples with no observed reuse
distance correspond to cold misses [5].

4 Integrating Decay and LRU Replacement in the Model

The StatShare model gives us all the necessary theoretical information on which
application we can “compress” to release space for the benefit of system as a whole. It
is a good approximation for relatively large caches (greater than 64KB) of moderate
to high associativity (greater than 2) with LRU replacement, such as the likely L2 or
L3 caches in CMPs [8][9][10]. In this section we describe in abstract terms the
StatShare model for LRU replacement and decay. We will not expand in details but
give the basic information needed to support our decay-based management policies.
In addition, as we will show in rest of this section, using local CAT counters in
combination with a decay-driven replacement algorithm, we can precisely control the
thread’s cache footprint. This characteristic allows us not only to prevent malicious or
cache-greedy applications to abuse the shared cache, but it can be used as a
methodology to enforce high-level policies such as policies that try to assign custom
cache-space-allocation based on external QoS.

4.1 Per-Thread Histograms

Since in this paper we are interested in indentifying unique cache-greedy applications
in a shared cache, we use per-thread CAT clocks that are advanced by cache
replacements of cachelines belonging to a specific thread, regardless of the thread that
causes the replacement. In this way, the CAT clock is insensitive to the status of the
whole shared cache, but dedicated to the status (cache requirements) of each
individual thread. Collecting histograms of each thread using their own CAT counters
creates “pure” histograms which accurately describe the cache behavior of the thread
confined to its space in the cache. This means that the term L, which is the cache size
in cachelines with the global CAT counter, is now replaced by the active ratio (in
cachelines) of each thread.

LRU Replacement. With LRU replacement in a FA cache, the probabilities of a miss
or a hit change with respect to those of random replacement. In short, the LRU f-
functions are much more steep than the random f-functions and reach their bounds
right at L. This is evident, for example, for the f function which reaches 0 just at L
since nothing can remain in an LRU FA cache after seeing L replacements.

However, the shape of the f-functions before L is complex to derive. Because LRU,
unlike random, is not memoryless, the miss and hit probabilities depend on the state
of the cache which in turn implies that the f and f-bar functions depend on the reuse-
distance histograms of the threads. In other words the behavior of LRU depends on
the applications.

Assume that we have an application which has a miss rate of 1 —it has no hits. The
f-bar (hit probability) function in this case is a step function: everything with a reuse
distance larger than L is guaranteed to be a miss since an item that lives through L
replacements is guaranteed to be thrown out of the cache. (However, the only

366 G. Keramidas et al.

compatible histograms with this f-bar function have no samples inside L otherwise
they would have hits.)

Now assume that we introduce hits into the cache by having some histogram
samples inside

L. Hits affect how quickly an item with a given reuse distance moves down the
LRU chain. Assume, for example, an item at a position x in the LRU chain (items
enter in position 1 and fall out of the cache at position L+1). This item is pushed
down in the LRU chain either from new items that enter at the top via replacements,
or by hits on older items, located below the item in question, which bring them at the
top of the LRU chain. The number of possible hits on items located after x is a
function of the application’s reuse distance histogram. The end result is that the more
hits we have the faster an item with a reuse distance less than L can be evicted
increasing the probability of misses in small reuse distances.

The end result is that f-function are very steep around L (or the equivalent active
ratio), and their form at reuse distances less than L depends on the hit ratio and the
thread’s actual reuse-distance histogram.

Decayed f and f-bar Functions. Decay modifies the f-functions of the decayed
applications. Once we apply decay to one of the threads that share the cache, the
underlying replacement policy of the cache (LRU or Random) is changed, since
decayed cachelines take precedence for eviction.

The effect of decay on LRU f-functions is to effectively make them step functions:
the f-bar function is one almost up to the decay interval D and then rapidly falls to 0.
The explanation is the following: if we decay a thread at a reuse distance D, all its
items with smaller reuse distances can be hits as long as there are decayed lines
available for replacements. Our modified replacement algorithm chooses a decayed
line to replace if there is one available. In addition, decayed items are certain misses
since they decay and are replaced. However, for performance reasons we allow hits
on decayed items. This results in a discrepancy between our model and our
implementation since the decayed f-functions are step function only if decayed items
are misses. Thus our models are pessimistic in their assessment of performance.

Cache Management. StatShare gives us all the elements required to make informed
decisions and construct high-level cache management policies. Using the StatShare
outputs, we are able to understand which thread (malicious or not) can be
“compressed” into less space with negligible damage and to drive accordingly the
underlying replacement policy of the cache by selecting the appropriate decay
intervals. This characteristic allows us not only to prevent malicious or cache-greedy
applications to abuse the shared cache, but it can be used as a methodology to enforce
high-level policies.
The management policy we examine in this paper is as follows:

• We collect reuse-distance histograms using local (per-thread) CAT counters.
• We assess the “threat” that each thread poses based on its reuse-distance

histogram. Threads are sorted according to their DoS threat level.

 Preventing Denial-of-Service Attacks in Shared CMP Caches 367

• We assess the performance impact of decaying the most threatening threads
using decayed LRU f-functions and we choose an appropriate decay interval for
each. Decay intervals are restricted to a small set of L-fractions (e.g., L, L/2, L/4,
etc.).

Finally, we propose as the appropriate place for using StatShare, the operating system
and in particular the thread scheduler. This is because a sampling period is required at
the end of which a management decision can be made. Managing the cache must be
performed periodically, since threads change behavior in different program phases. In
addition, threads are created, suspended, or killed dynamically and each change requires
a new management decision. The sampling period must be long enough to have the time
to collect useful histograms for the threads. For example, in our evaluation the sampling
window is 45M instructions. Finally, Quality-of-Service guarantees that must be taken
into account can be easily handled at the OS level. For example, if it is desired
externally to give specific space to specific threads, this can be taken into account in the
scheduler for adjusting decay intervals to satisfy such requirements.

5 Practical Implementations

In this section we show that the abstract theory can be translated into realistic run-
time implementations.

Reuse-Distance Histogram Collection. At first sight, the nature of the reuse-distance
histograms, which potentially span values from 0 to infinity, seems impractical for
run-time collection. There are two techniques that make histogram collection not only
practical but even efficient: sampling and quantization.

Sampling is a technique that was also used in StatCache [6][5]. Instead of
collecting reuse distances for all accesses, we select few accesses at random, and only
trace those for their reuse distance. The resulting histogram is a scaled version of the
original but with the exact same statistical properties. Sampling allows for efficient
run-time tracing. In our evaluation our sampling ratio is 1:1024, i.e., we select
randomly one out of 1024 accesses.

The second fundamental technique that allows a practical implementation of
StatShare is the quantization of the reuse distance histogram. Normally, it would be
impractical to collect and store a histogram with potentially many thousands of buckets.
However, samples with small reuse distances are statistically more significant than the
ones with very large reuse distances. We use 20 buckets for quantization. In this way,
the histograms can be collected in a set of 20 32-bit registers per thread, that are updated
by hardware and are visible to the OS similarly to other “model-specific” registers such
as performance counters. We have verified that the outputs of StatShare are practically
indistinguishable using either quantized or full histograms.

Decay Implementations and Replacement Policies. Our modified replacement algo-
rithm is very simple: we replace any decayed cacheline (randomly) if there is one in
the set, or —if there is not— we use the underlying LRU replacement policy.

In order to hold the decay information, we use a set of registers (visible to the OS)
to store the decay intervals of each thread. Non-decayed threads have an “infinite”

368 G. Keramidas et al.

decay interval corresponding to the largest value of these registers. Cachelines are
tagged with the CAT clock which is updated every time a hit or a replacement occurs
in the corresponding cacheline. CAT tags can be made just a few bits long [4]. At the
time of replacement, the CAT tag of each cacheline is subtracted from the thread CAT
clock. If the result is greater than the decay interval of the corresponding thread, the
cacheline is decayed and can be chosen for replacement. This check starts at a random
place in a set and proceeds until either a decayed line is found or the entire set has
been checked. In our methodology, the only decision we make is which decay
intervals to use for the various threads.

6 Evaluation

For our simulations we have modified an SMT simulator [12] to model a CMP
architecture with 2 to 4 cores. Each core is a modest 2-way out-of-order superscalar.
The memory hierarchy consists of private L1s —instruction and data— and a shared,
8-way set-associative, 64B-line L2 cache. The memory latency is 250 cycles. Our
intention is to isolate the data accesses behavior of applications, hence we use a
relatively large instruction L1 (1MB) to preclude instruction misses from polluting the
L2.

Active Ratios

0

0,2

0,4

0,6

0,8

1

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

Thread 0 Thread 1

Norm alized M isses

0

0,2

0,4

0,6

0,8

1

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

M isses 0 M isses 1

64K 256K 512K 1M 64K 256K 512K 1M

Fig. 4. Tramp vs. Gzip: active ratios and miss ratios for various decay intervals

We use a subset of the most memory intensive SPEC2000 benchmarks for our
evaluation: art, gzip, equake, mcf and parser. To emulate the impact of a malicious
thread, we write our own malicious program —named tramp— which is designed to
be a greedy consumer of the L2. The tramp program scans continuously a very large
memory array (bigger than the L2) accessing one byte out of 64 bytes (the size of the
L2 block size). In every iteration, a read and a write operation are performed. With
this way, the best case miss ratio of the tramp program can be equal to 50%.

To understand the behavior of decay in relation with StatShare’s outputs, we have
simulated a set of co-scheduled applications where one or two of them are decayed.
The workload consists of 2 and 4 threads. In some sets, the tramp program has the
role of the greedy application, while in some others the same role is taken by the two
most memory intensive benchmarks of the SPEC2000 suite —art and mcf. Although
our methodology allows any decay interval to be chosen in order to manage a thread,

 Preventing Denial-of-Service Attacks in Shared CMP Caches 369

we have constrained the choice of decay intervals to be binary fractions of the
corresponding cache size.

All our simulations are for 200M instructions per thread. We simulate after
skipping 1B instructions for art and gzip, 2B for mcf, parser, and vpr, and 3B for
equake. After skip we warm up the caches for 50M instructions. Management
decisions are taken every 45M instructions. In the rest of this Section we discuss
results for five representative cases.

tramp—gzip. In this example art shares the cache with gzip. Figure 4 shows the
active ratios and the miss ratios of the two threads for the four caches we consider,
and for four decay intervals (decay is applied to tramp). Every set of bars corresponds
to a specific cache size (noted on top of the set). The x-axis shows the decay intervals.
The first bar (tagged with a 0 label), for each set, stands for infinite decay interval,
while the values 1, 2, and 4 correspond to L, L/2, and L/4 respectively (L is the cache
size measured in cachelines).

As we can see from Figure 4, our methodology successfully manages to equally
divide the cache between the two threads. With an L/4 decay interval both applications
have almost the 50% of the cache in all cache sizes. The value of our cache management
technique can be seen not only for the active ratios, but for the miss ratios too (miss ratios
are normalized to the non-decayed case). tramp is already experiencing a high miss ratio,
so compressing it will not significantly impact its performance (as it can be seen from the
graph). On the other hand, gzip is the kind of application (as it is shown by the statcache
curves —Figure 1), that can benefit from its space expansion and reduce its miss ratio.
The more space it gets the more hits it generates. In the 64K cache, gzip starts (at non
decayed state) with 87% miss ratio and ends up (L/4 decay interval) with 62% miss ratio
resulting in a normalized reduction of almost 30%. In the 1MB case, the benefit is more
pronounced. gzip starts with 21% miss rate and ends up with a miss ratio less than 1%.
This corresponds to a normalized reduction of 96%. In all cases, the miss ratio of tramp is
always constant at 50%.

tramp—equake. In this case we examine tramp with another SPEC2000 program —
equake. Figure 5 shows the active ratios and the miss ratios for the four cache sizes
and for the 4 decay intervals (infinite, L, L/2, L/4).

As Figure 5 indicates tramp begins (before decay) by clearly “hogging” the cache
having more than 90% of the cache in the non-decayed state (same results as in the
previous example). Once it is decayed, it releases space for the benefit of equake.
However, in contrast to gzip, equake cannot exploit its increased space except in the
case of the 64K cache. This is evident also from the StatCache curves. Giving more
space to equake produces very few additional hits.

mcf—parser. Our third example is mcf co-scheduled with parser. mcf is one of the
two most memory intensive programs of the SPEC2000 suite (the other is art).

mcf is chosen for decay since it decays better than parser and occupies the most
space in the cache (Figure 6). mcf’s decay benefits parser with up to a maximum
reduction of miss ratio of 23.5% for the 64K, 47% for the 256K, 34% for the 512K,
and 25% for the 1M cache. mcf experiences a slightly increase of 3% in the miss ratio
only in the case of 1M cache.

370 G. Keramidas et al.

Active Ratios

0

0,2

0,4

0,6

0,8

1

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

Thread 0 Thread 1

Normalized M isses

0

0,2

0,4

0,6

0,8

1

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

M isses 0 Misses 1

64K 256K 512K 1M 64K 256K 512K 1M

Fig. 5. Tramp vs. equake: active ratios and miss ratios for various decay intervals

Active Ratios

0

0,2

0,4

0,6

0,8

1

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

Thread 0 Thread 1

Norm alized M isses

0

0,2

0,4

0,6

0,8

1

0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

M isses 0 M isses 1

64K 256K 512K 1M 64K 256K 512K 1M

Fig. 6. Mcf vs. parser: active ratios and miss ratios for various decay intervals

tramp—gzip—parser—vpr. In this example, we evaluate our methodology when
the L2 cache is shared among 4 threads —tramp, gzip, parser, and vpr. Figure 7
shows the active ratios and the miss ratios in this case.

The interesting observation that can be made from Figure 7 is that tramp must be
decayed “harder” in order to see significant changes in its active ratio. Thus, we
expand the decay intervals up to L/16 (our management algorithm always picks tramp
as the decayed application). In the 2M case and for decay interval equal to L/16,
tramp’s miss ratio is increased by 2%, while its cache footprint has been decreased by
a factor of 2.9 compared to the non decayed case. The released space by tramp
benefits the other 3 applications. gzip increases its space by 1.3x, parser by 1.7x, and
vpr by 1.4x. These expansions lead to a decrease in miss ratio of 10% for gzip, 2% for
parser and 18% for vpr.

tramp—art—equake—gzip. Finally, we give a 4-thread example where decay is
applied to two applications —tramp and art— since they both pose significant threat
for DoS and can be significantly compressed. This two-thread decay management
decision works very well since, when only tramp is decayed, its released space is
occupied directly by art. art’s aggressive behavior does not let the other two threads
benefit from tramp’s compression. On the other hand, even though art increases its
cache footprint, its miss ratio does not show considerable improvements. Figure 8
presents the active ratios and miss ratios for this example. The first bar of every set
corresponds to the non-decayed case (none of the applications are decayed). In the
rest of the bars, tramp has a constant decay interval equal to L/16, while art’s decay
intervals are shown in the x-axis (L, L/2, L/4, L/8, L/16).

 Preventing Denial-of-Service Attacks in Shared CMP Caches 371

As we can see from Figure 8, equake and gzip benefit from art’s and tramp’s
compression. In the 1M cache, equake increases its space by 4x and gzip by 2.5x.
However, equake, in contrast to gzip, cannot exploit its increased space leading to a
meagre 2% decrease (improve-ment) in its miss ratio while gzip experiences an
impressive 43% decrease. The results are analogous for the other cache sizes with a big
difference in art’s behavior in the 2M cache. As we can see from Figure 1, art is no
longer in its flat area, so if we try to compress it, we will destroy its performance, as it
is evident from Figure 8 (2M case). art is not a good candidate for decay in this case.

Normalized M isses

0

0,2

0,4

0,6

0,8

1

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

M isses 0 M isses 1 M isses 2 M isses 3

Active Ratios

0

0,2

0,4

0,6

0,8

1

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

Thread 0 Thread 1 Thread 2 Thread 3

256K 512K 1M 2M 256K 512K 1M 2M

Fig. 7. Tramp-gzip-parser-vpr: active ratios and miss ratios for various decay intervals

Active Ratios

0

0,2

0,4

0,6

0,8

1

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

Active Ratio 0 Active Ratio 1 Active Ratio 2 Active Ratio 3

256K 512K 1M 2M 256K 512K 1M 2M
Norm alized M isses

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16 0 1 2 4 8 16

M isses0 M isses1 M isses2 M isses3

Fig. 8. Tramp-art-equake-gzip: active ratios and miss ratios for various decay intervals

7 Conclusions

In this paper, we demonstrate a new management methodology for shared caches in
CMP systems, that utilizes statistical run-time information of the application behavior
in order to deal with Denial-of-Service attacks. Our methodology does not need to
distinguish between malicious programs and “greedy” but not-by-nature malicious
programs, since these two categories behave similarly in terms of reuse distance
histograms. This leads us to a more generalized approach, where dealing with DoS
attacks is similar to enforcing QoS constraints or sharing the cache in a fair way.

The proposed methodology is evaluated using a detailed CMP simulator running
the most memory intensive SPEC2000 applications and a “tramp” program which is
designed to be an excellent consumer of the shared cache. Our results indicate that our
attack-resistant cache management methodology makes it possible to identify which
application (malicious or not) can be “compressed” into less cache space with

372 G. Keramidas et al.

negligible damage and modify accordingly —in run-time— the underlying
replacement algorithm of the cache using decay. Our results show significant benefits
across the board with minimal damage for the managed threads.

References

[1] G. E. Suh, S. Devadas, and L. Rudolph. “A new memory monitoring scheme for memory-
aware scheduling and partitioning” High-Performance Computer Architecture HPCA'02,
2002.

[2] S. Kim, D. Chandra and Y. Solihin. “Fair cache sharing and partitioning in a chip
multiprocessor architecture” Parallel Architectures and Compilation Techniques,
PACT'04, 2004.

[3] D. Chandra, F. Guo, S. Kim and Y. Solihin. “Predicting inter-thread cache contention on
a chip multi-processor architecture” High-Performance Computer Architecture HPCA'05,
2005.

[4] M. Karlsson and E. Hagersten. “Timestamp-Based Selective Cache Allocation” In High
Performance Memory Systems, edited by H. Hadimiouglu, et al., Springer-Verlag, 2003.

[5] E. Berg, H. Zeffer, and E. Hagersten. “A Statistical Multiprocessor Cache Model”
International Symposium on Performance Analysis of Systems and Software (ISPASS-
2006), USA, 2006.

[6] E. Berg and E. Hagersten. “Fast Data-Locality Profiling of Native Execution” ACM
SIGMETRICS 2005, Canada, 2005.

[7] S. Kaxiras, Z. Hu, M. Martonosi. “Cache Decay: Exploiting Generational Behavior to
Reduce Cache Leakage Power” International Symposium on Computer Architecture
ISCA’28, 2001.

[8] P. Kongetira, K. Aingaran, and K. Olukutun. “Niagara: A 32-Way Multithreaded SPARC
Processor” In IEEE Micro, 2005.

[9] K. Krewell. “Power5 Tops on Bandwidth.” In Microprocessor Report, 2003.
[10] K. Krewell. “Double Your Opterons; Double Your Fun.” In Microprocessor Report, 2004.
[11] J. Hennessy and D. Patterson. “Computer Architecture: a Quantitative Approach.”

Morgan-Kaufmann Publishers, Inc., 2nd edition, 1996.
[12] R Goncalves, E Ayguade, M Valero and P Navaux “A Simulator for SMT Architectures:

Evaluating Instruction Cache Topologies” 12
th

 Symposium on Computer Architecture and
High Performance, (SBAC-PAD 2000), 2000.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.Traiger. “Evaluation techniques for storage
hierarchies” IBM Systems Journal, 1970.

[14] CNN. ‘Immense’ network assault takes down Yahoo, 2000. Available at
http://www.cnn.com/2000/TECH/computing/02/08/yahoo.assault.idg/index.html.

[15] Netscape. Leading Web sites under attack, 2000. Available at http://technews.net-
scape.com/news/0-1007-200-1545348.html.

[16] D. Grunwald and S. Ghiasi. “Microarchitectural denial of service: insuring
microarchitectural fairness” International Symposium on Microarchitecture MICRO-35,
2002.

[17] J. Hasan, A. Jalote, T. N. Vijaykumar, and C. E. Brodley. “Heat Stroke: Power-Density-
Based Denial of Service in SMT” High Performance Computer Architecture HPCA'05, 2005.

[18] Techtarget.com. Technology terms: Denial of service. Available at
http://http://whatis.techtarget.com /definition/0,289893,sid9 gci213591,00.html.

[19] P. Soderquist and M. Leeser. “Optimizing the Data Cache Performance of a Software
MPEG-2 Video Decoder” In ACM Multimedia 97 - Electronic Proceedings, 1997.

A Method for Router Table Compression
for Application Specific Routing in Mesh Topology NoC

Architectures

Maurizio Palesi1, Shashi Kumar2, and Rickard Holsmark2

1 DIIT, University of Catania, Italy
mpalesi@diit.unict.it

2 Jönköping University, Sweden
{Shashi.Kumar, Rickard.Holsmark}@ing.hj.se

Abstract. One way to specialize a general purpose multi-core chip built us-
ing NoC principles is to provide a mechanism to configure an application spe-
cific deadlock free routing algorithm in the underlying communication network.
A table in every router, implemented using a writable memory, can provide a
possibility of specializing the routing algorithm according to the application re-
quirements. In such an implementation the cost (area) of the router will be pro-
portional to the size of the routing table. In this paper, we propose a method to
compress the routing table to reduce its size such that the resulting routing al-
gorithm remains deadlock free as well as has high adaptivity. We demonstrate
through simulation based evaluation that our application specific routing algo-
rithm gives much higher performance, in terms of latency and throughput, as
compared to general purpose algorithms for deadlock free routing. We also show
that a table size of two entries for each output port gives performance within 3%
of the uncompressed table.

1 Introduction

Routing topology and routing algorithm are the two most important aspects which distin-
guish various proposed NoC architectures [1,2,3]. Fixed tile size based two dimensional
mesh topology is favored by many research groups because of its layout efficiency and
resulting good electrical properties of the signals. It is possible to envision that applica-
tion area specific NoC chips will soon become off the shelf products like FPGA chips.
One can easily imagine that one such chip could be useful for multi-media applications.
Such a heterogeneous multi-core chip will be next in line to the current superscalar DSP
chips and will provide an order higher computational power than the current DSPs.

The one mechanism to specialize such a chip for a specific application, or a set of
concurrent applications, will be through configuring the routing algorithms in the un-
derlying communication infrastructure. The routing algorithm in such an application
area specific NoC chip must provide deadlock free communication with a high degree
of adaptivity and low latency. Many deadlock free routing algorithms, like e.g. Odd-
Even [4] and the Turn Model [5], have been proposed in literature for mesh topol-
ogy networks. In these algorithms, deadlock freedom is achieved at a high loss of
adaptivity. Boltin et al. [1] have proposed hard coded paths for deadlock safe rout-
ing for an application for an irregular mesh topology NoC. A non-minimal deadlock

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 373–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

374 M. Palesi, S. Kumar, and R. Holsmark

free routing algorithm is described for an irregular mesh topology NoC with regions
in [6]. Duato has proposed a general theory to develop adaptive deadlock free rout-
ing algorithms for any communication network which uses worm-hole switching
technique [7].

Most of the deadlock routing algorithms proposed in literature are general purpose
and have been designed to handle worst case communication patterns in the network. A
NoC system specialized for a set of applications can be regarded as a semi-static system.
Here we can have the information about the set of pairs of cores which communicate and
other pairs which never communicate after task mapping step. But it may not be possible
to know the dynamic variations in the communication traffic among the cores. This
information about the communication topology can be incorporated in Duato’s theory
to design highly adaptive routing algorithms. We call such algorithms as Application
Specific Routing Algorithms (APSRAs) [8].

The most natural way to implement an APSRA will be to provide a table in every
router which will guide an incoming flit to an appropriate output port of the router. A
table implemented using a writable memory can provide a possibility of specializing
the routing algorithm according to the application requirements (in the same way as
different functions can be configured in a SRAM based FPGA). Like in FPGAs, we
even have a possibility of dynamically updating a routing algorithm. However, the im-
plementation of this routing table will constitute a major part of the router cost (area).
In this paper, we propose a method to compress the routing table to reduce its size such
that the resulting routing algorithm remains deadlock free.

We have analyzed the cost saving possible with our lossless compression method
for various sizes of mesh topology NoC. We have also compared the performance of
APSRA which uses limited size router tables generated by our methodology with a
general purpose deadlock free routing algorithm. The results justify the use of APSRA
methodology and our router table compression method.

2 Application Specific Routing Algorithm

In [7] Duato has proposed a general theory to develop adaptive deadlock free routing
algorithms for communication networks which use wormhole switching technique. Du-
ato’s method is based on generating a Channel Dependency Graph (CDG), in which
every channel is a node and there is a directed edge from a node i to j if channel j
can be used after channel i for some communication among resources in the network.
A cycle in the CDG indicates a possibility of a deadlock. Duato’s method takes only
the network topology as input and generates many routing algorithms which will work
for all possible situations in the network. In [8] we extended Duato’s theory and pre-
sented a method to generate routing algorithms for communication networks when the
communication graph of the application is known. We applied the extended method to
generate a routing algorithm for a mesh topology network.

Figure 1 shows the block diagram of the APSRA methodology. There are two main
blocks. The first one implements the APSRA methodology whose inputs are:

– A Communication Graph where each vertex ti represents a task, and each directed
arc (ti, t j) represents the communication from ti to t j.

A Method for Router Table Compression for Application Specific Routing 375

Fig. 1. Block diagram of the APSRA methodology

Fig. 2. An example of application specific channel dependency graph (c) for a given topology
graph (a), communication graph (b) and a fully adaptive minimal routing

– A Topology Graph where each vertex pi represents a node of the network, and each
directed arc (pi, p j) represents a physical unidirectional channel (link) connecting
node pi to node p j. (In this paper we focus on mesh topologies).

– A Mapping Function M : T → P which maps a task t ∈ T on a node p ∈ P.

For the sake of example, let us consider the 2 × 2 mesh depicted in Figure 2(a). Let
us suppose a communication graph, CG, in which each task communicates with each
other task except for task t1 and t4 as shown in Figure 2(b). As mapping function let us
consider M(ti) = pi. The APSRA methodology starts by considering a fully adaptive
minimal routing and builds the CDG. Then, by exploiting the CG it extracts from the
CDG a sub-graph named Application Specific Channel Dependency Graph (ASCDG).
The difference between CDG and ASCDG is that the latter does not contain any channel
dependencies between channel pairs that do not belong to any admissible source/des-
tination path for the current routing. Figure 2(c) shows the ASCDG for our example.
In [8] we demonstrated that if the ASCDG is acyclic then routing is deadlock free. In
our example, ASCDG is acyclic therefore we can assure that minimum fully adaptive
routing is deadlock free for this specific communication graph. More in general, if the
ASCDG contains some cycles, in [8] we presented an heuristic to break these cycles in
order to minimise adaptiveness degradation.

The outputs of APSRA methodology is a set of routing tables one for each node of
the network. Unfortunately, as we will see in the next sections, the size of each routing

376 M. Palesi, S. Kumar, and R. Holsmark

table grows linearly with network size. For this reason we introduce a second block,
named Compression, which performs routing table compression. It gets as inputs: a)
the set of routing tables generated by APSRA, and b) a constraint about the maximum
routing table size. The compression algorithm (which will be discussed in Section 4)
tries to reduce the size of routing tables in such a way as compressed routing tables
size do not exceed a user defined threshold. However, sometimes, this operation is not
lossless and the cost to pay is a reduction of adaptiveness. At any rate, in all our exper-
iments the reduction in adaptiveness is very low: in the worst case less than 6 percent
against a reduction in routing table size of 66 percent.

3 NoC Router Functionality and Design Options

A NoC router will have to perform the same functionality as a traditional computer
network router, which is basically to help packets sent into the network reach their des-
tination. Due to the on-chip physical constraints, size and power consumption needs
to be given higher consideration while designing NoC routers. This will make compli-
cated routing schemes infeasible. An overview of a generic router for mesh topology
NoC is shown in Figure 3(a). The router has five input and five output ports, one for
each direction plus one for the local resource. There could be packet buffers to manage
variations in traffic. The functionality of finding the route for a packet can be split into
a routing function and a selection function. A crossbar switch connects the input and
output ports. When a packet enters an input port the routing function has to decide to
which output a packet should be forwarded. This is in the simplest case done by ex-
amining the destination address in the header of a packet. For more advanced routing
schemes additional information in the header could also be used.

Fig. 3. Generic mesh topology router (a). Table-based NoC router (b).

If the used routing algorithm is adaptive, it is possible that the routing function
returns multiple output choices. In the case that these outputs are not occupied by other
packets, a selection has to be made among these. This corresponds to the selection
function. There are several schemes that can be used, for example (pseudo) random
selection or selection according to a favoured dimension. It is also possible to use look-
ahead techniques that sense distant congestion and try to avoid this. If a crossbar is used
packets headed for non-conflicting outputs can be simultaneously routed. There could

A Method for Router Table Compression for Application Specific Routing 377

be a situation where several packets simultaneously want to use the same output. In this
case, arbitration between these has to be performed, for example by using round-robin,
random or priority policies.

One way to implement the routing function is to design it in hardware logic. For
simple routing functions, this results in small and fast routers which can be repeatedly
implemented throughout the network. This method has been used by several NoC pro-
posals [1,9].

Another way, mainly used in non on-chip networks, to implement the routing func-
tion is to use a routing table [10], depicted in Figure 3(b). Index to the table, where the
admissible outputs are stored, is the destination address or a function of the destination
address. The values of the table are dependent on which router, or even in which input
of a router it is implemented. Using a table gives the possibility to implement more
complex routing functions and also the possibility to change it. A disadvantage is that
a table can take large space if many destination addresses should be stored. We believe
therefore that compressing the table will be of high importance in the NoC context. In
this case there would be some encoding logic to find the right table position. As we
show later in the paper, routers with small routing table sizes are sufficient for APSRA
methodology based routing.

4 Router Table Compression

Looking at Figure 3(b), the AdmissibleOutputs block determines the set of admissible
output ports through which a header flit can be forwarded to reach a given destination.
There is an AdmissibleOutputs block for each input. It contains a routing table RT curr

ipn
where the subscript ipn represents the input port name (North, East, South, West and
Local) and the superscript curr indicates the current node id. A RT curr

ipn consists of a
memory addressed by a destination node id dst which returns the set of admissible
output port(s) which can be used to reach the destination dst.

The total number of bits to store in a generic router is:

Su1 = Size(RT curr
North)+Size(RT curr

East)+Size(RT curr
South)+Size(RT curr

West)+Size(RT curr
Local) (1)

If we consider a H ×W mesh based NoC it is simple to show that:

Su1 = 12 × (1 + H ×W − H −W) (2)

Since we are dealing with shortest path routing, for a given ipn the destination
will be in the opposite quadrants with respect to ipn. For instance, if ipn is West then
destination will be either in the first or in the fourth quadrant. For this reason it is
possible to reduce the number of bits to store the admissible outputs from 4 to 3 (i.e., it
is enough to store the North, East, and South output directions). If we do that, we have
to specialise the AdmissibleOutputs block for a given input port. In this case the total
number of bits to store in a generic router is:

Su2 = 9 × (1 + H ×W − H −W) (3)

The main problem of this approach is that a great deal of memory locations are
wasted. Since in real cases a node communicates with only a small subset of network

378 M. Palesi, S. Kumar, and R. Holsmark

nodes, many table entries are never used. An alternative approach is to store the ad-
missible output ports for a set of destinations rather than for a given destination. Let us
consider a generic input port, for the sake of clarity let us consider the west input port. If
a router receives a flit from its west input port the destination will be in the first and forth
quadrant. The problem is to choose the admissible output ports in accordance with the
complete routing table generated by APSRA. There are five alternatives: North, South,
East, North & East, South & East. The basic idea is to associate a color to each of these
5 alternatives (e.g., North=Red, South=Green, East=Blue, North & East=Purple, South
& East=Yellow). Then label each destination with a color. (For instance, if for destina-
tion d it is admissible to use outputs North and East, destination d is labeled with color
purple). Finally destinations are clustered based on their color.

Fig. 4. (a) Routing table before compression. (b) Color based clustering. (c) Compressed routing
table.

For example let us consider the routing table associated to the west input port of
node X shown in Figure 4(a). After coloring each destination, a color based clustering
is performed [Figure 4(b)]. The constraint is that clustering is performed by means
of rectangular regions. In this way it is no more necessary to store the set of all the
destinations but only the set of the regions [Figure 4(c)].

Figure 5 shows the block diagram of the AdmissibleOutputs block which uses the
compressed routing table. The block InRegion checks if a destination dst belongs to
a region identified by its top left corner (TL register) and its bottom right corner (BR
register). If this condition is satisfied the output directions assumes the value of the
Color register and output hit is set. The same figure shows also the pseudo-code of the
InRegion block for a west input port.

For a H ×W mesh based NoC and M InRegion blocks per input port the total amount
of bits to store is:

Sc = number o f inputs× M× [Size(Color)+ Size(TL)+ Size(BR)]
= 5 × M × [3 +(lg2 W + lg2 H)+ (lg2 W + lg2 H)]

= 5 × M × [3 + lg2(W × H)2] (4)

From Equations (2), (3), and (4) with M = 4 the compression technique starts to be
effective from 7×7 mesh size. The saving in terms of the number of bits to store grows

A Method for Router Table Compression for Application Specific Routing 379

InRegion (in : dst , T L , BR , Color
out : ao = (N,E,S) , hit) {

i f (dst.col ≥ T L.col &&
dst.row ≥ T L.row &&
dst.col ≤ BR.col &&
dst.row ≤ BR.row) {

ao ← Color
hit ← 1

} e l s e
hit ← 0

}

Fig. 5. Block diagram of the AdmissibleOutputs block using the compressed routing table and
Pseudo-code of the InRegion block of a west input port

very fast with the mesh size (e.g., 14% for 7 × 7, 47% for 8 × 8, 84% for 9 × 9, and
so on).

The factor M is the number of InRegion blocks operating in parallel on different
regions. In other words it represents the available size of router table in a NoC router.
APSRA methodology produces a routing table for every router for any given application
mapped on the NoC. Each of these routing tables will be compressed using color based
clustering method. Let M′ represent the size of the compressed table in a given router.
If M′ ≤ M then it is possible to map each region into a InRegion block. Otherwise, if
M′ > M, there are not enough InRegion blocks to host all the regions. It is possible to
manage the latter situation by performing a further level of compression at the cost of
a loss of adaptiveness. Let us consider again Figure 4(b) where the number of detected
regions was M′ = 5 (A, B, R1, R2, I). If M = 4 we have to remove at least one region. To
do this we can restrict the set of admissible output ports for destination A from {North,
East} to {East}. Doing that the color of destination A changes from purple to blue and
the application of the color-based clustering now returns M′ = 4 regions (R3, R1, R2,
I) as shown in Figure 6.

Of course, it is possible to reiterate this method to increase the compression ratio
at the cost of a degradation of adaptiveness. For instance, it is possible to merge region

Fig. 6. Example of routing table compression with loss of adaptivity (a) Initial table (b) Color
based clustering (c) Compressed routing table

380 M. Palesi, S. Kumar, and R. Holsmark

Fig. 7. Size constrained compression of routing table (a) Initial table (b) Color based clustering
(c) Compressed routing table

R3 and region R1 restricting the set of admissible outputs for the destinations belongs
to R1 from {South, East} to {East} as shown in Figure 7.

Finally, Figure 8 shows the pseudo-code for routing table compression. The function
RoutingTableCompression requires as inputs the set of routing tables obtained by
APSRA (RT) and the maximum number of regions a router can manage (M). The output
is the set of compressed routing tables. The BuildColorMatrix function returns the
color matrix cm for a given routing table. The ColorClustering function perform the
color-based clustering of a color matrix and returns the set of the located regions R.
The RestrictRouting try to merge some regions by restricting the set of admissible
output ports for some destinations.

RoutingTableCompression (inout : RT ,
in : M) {

f o r (p ∈ P)
f o r (l ∈ Lin(p)) {

cm ← BuildColorMatrix (RT (p, l))
R ← ColorClustering (cm)
whi le (|R| > M) {

RestrictRouting (cm,R,RT (p, l))
cm ← BuildColorMatrix (RT (p, l))
R ← ColorClustering (cm)

}
}

}

Fig. 8. Pseudo-code for the routing table compression

4.1 ColorClustering Function

Clustering of the color matrix is carried out by expanding each color as much as possible
in a rectangular fashion with the constraint that the expanded region of a color c′ cannot
contain any other color c′′ �= c′. The pseudo code of the function ColorClustering is
shown in Figure 9. The input of the function is the color matrix cm. The output is aset of

A Method for Router Table Compression for Application Specific Routing 381

R ColorClustering (in : cm) {
whi le (cm is not fully covered) {

c ← GetAColoredElement (cm)
R ← GetRawRegion (c,cm)
whi le (R contains impurities) {

p ← GetImpurity (R,c)
R ← CutOffImpurity (p,R)

}
R = R

⋃{R}
Freeze (cm,R)

}
}

RestrictRouting (in : cm , R
inout : RT (p, l))

{
R ← GetCandidateRegion (cm,R)
i f (R = /0)

abort () ;
e l s e
{

nc ← GetNewColor (cm,R)
ChangeColor (cm,RT (p, l),nc,R)

}
}

Fig. 9. Pseudo-code of the ColorClustering function and RestrictRouting procedure

regions R. As said before, a region is identified by three attributes: the top left corner,
the bottom right corner, and a color. The external loop iterates until the set of regions
covers all the colored elements of the color matrix. That is, for each colored element
c of the color matrix cm there exists one and only one region R ∈ R that contains c.
First, a colored element c is extracted using function GetAColoredElement. Then, by
using function GetRawRegion, a region R containing all the colored elements of the
same color of c is extracted. Of course, R could contain some impurities (i.e., colored
elements with a different color than c). In this case, for each impurity p, extracted by
function GetImpurity, R is reshaped in such a way as to cut-off the impurity p from
R. This is performed by function CutOffImpurity which objective is to maximise the
density of the reshaped region. The density of a region R is the number of colored
elements in R reduced by the number of impurities in R. Finally, when the region R is
impurities free, it is inserted in the regions set R and the area of cm in correspondence
of R is marked with a particular color code that avoid other colored elements to expand
and overlap R (function Freeze).

4.2 RestrictRouting Procedure

The procedure RestrictRouting tries to reduce the number of regions by means of
adaptivity reduction for some source destination pairs. The pseudo code of the procedure
is shown in Figure 9. The input of the procedure are the color matrix cm and the set of
regions R. The current routing table RT (p, l) is an input/output parameter. First of all,
the candidate region R is extracted from R by using function GetCandidateRegion.
The candidate region is the minimum density region whose color has a cardinality of 2.
The cardinality of a color is defined as the number of output directions the color repre-
sents. If no region respects this constraint routing table cannot be compressed anymore.
Otherwise, function GetNewColor returns the color nc used to fill region R. To explain
how this color is calculated, let us suppose the original color of R is yellow. We remind
that yellow represents South & East output directions, green represents South output
direction and blue represents East output direction. Let the average of the Euclidian
distances between each point of R and each green (blue) point of cm be dgreen (dblue).

382 M. Palesi, S. Kumar, and R. Holsmark

If dgreen < dblue then nc is green else nc is blue. Finally, function ChangeColor fills
region R of cm with color nc. This function also update routing table RT (p, l) conse-
quently (i.e., destinations that belongs to R are now reachable by using output ports
defined by nc).

5 Evaluation Experiments and Results

In this section we analyse the degradation in both adaptiveness and overall performance
due to routing table compression. We consider three communication traffic scenarios:
random, locality, and hot spot. For random and locality traffic we define the communi-
cation density, ρ , as the ratio between the number of communications and the number
of tasks. The communication graphs are generated randomly based on two different as-
sumptions. In the random scenario, each task can communicate with every other task
with equal probability. In the locality scenario, tasks communicate with a probability
depending on the distance of the nodes where they are mapped on (probability decrease
with distance). Finally, in the hot spot traffic scenario some nodes are designated as
the hot spot nodes, which receive hot spot traffic in addition to regular uniform traffic.
Given a hot spot percentage h, a newly generated packet is directed to each hot spot
node with an additional h percent probability. We consider hot spot nodes located at the
center of the mesh [nodes (3,3), (4,3), (3,4), (4,4)] with 20% hot spot traffic.

0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Max number of regions

D
eg

re
e

of
 a

da
pt

iv
en

es
s Random, ρ=2

Random, ρ=4
Random, ρ=6
Locality, ρ=2
Locality, ρ=4
Hot spot

Fig. 10. Max number of regions versus degree of adaptiveness for random, locality, and hot spot
communication traffic

Figure 10 shows the degree of adaptiveness after compression of the routing tables
for different values of the factor M for a 8×8 mesh. For random communication traffic
the compression is lossless downto M = 4 and M = 5 for ρ = 2 and ρ = 4 respectively.
For locality communication traffic compression is lossless downto M = 3 and M = 2
for ρ = 2 and ρ = 4 respectively. For hot spot traffic compression is lossless downto
M = 5. If the lossless hypotesis is relaxed the degradation of adaptiveness is less than
2% for random and locality traffic with ρ = 4, 6% for random traffic with ρ = 2, and
3% for hot spot traffic.

Finally, we evaluate dynamic performances of APSRA before and after routing ta-
ble compression using a flit-accurate simulator developed in SystemC (Figure 11). As

A Method for Router Table Compression for Application Specific Routing 383

performance metrics we choose throughput and delay. The evaluations are made on a
8× 8 network using wormhole switching with a packet size randomly distribuited be-
tween 2 and 10 flits. In our model, each router has an input-buffer size of 2 flits. The
maximum bandwidth of each link is set to 1 flit per cycle. We use the source packet
generation rate as load parameter with Poisson packet injection distribution. For each
load value, latency values are averaged over 60,000 packet arrivals after a warm-up ses-
sion of 30,000 arrived packets. The 95 percent confidence intervals are mostly within
2 percent of the means. If multiple output ports are available for a header flit, the out-
put whose connected input port has the minimum buffer occupied is choosen. As traffic

2 2.5 3 3.5 4

x 10
−3

0

50

100

150

200

250

300

350

400

Packet injection rate (flits/cycle/IP)

A
ve

ra
ge

 d
el

ay
 (

cy
cl

es
)

Odd−Even
APSRA
APSRA−compress

2 2.5 3 3.5 4

x 10
−3

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Packet injection rate (flits/cycle/IP)

T
hr

ou
gh

pu
t (

fli
ts

/c
yc

le
)

Odd−Even
APSRA
APSRA−compress

(a) (b)

Fig. 11. Delay variation (a) and throughput variation (b) under hot spot traffic

scenario we use hot spot traffic which is considered to be more realistic than typical syn-
thetic traffic such as uniform, transposte, etc. For this traffic scenario the average degree
of adaptiveness of APSRA is 0.93. Applying our compression technique, adaptiveness
reduces to 0.90 with a minimum number of regions equal to two. This extremely low
degradation in adaptiveness is also confirmed from the dynamic behaviour point of
view: there is no appreciable difference between APSRA and APSRA-compressed in
both delay and throughput. Moreover, we see that APSRA, in both its natural and com-
pressed form, outperform Odd-Even adaptive routing [4].

6 Conclusions

In this paper, we have highlighted the importance and one possibility of developing ap-
plication area specific NoC chips for mass production. Such a chip will have a capabil-
ity of configuring a routing algorithm using the communication topology information of
already mapped applications. We have argued that a natural way to provide this config-
uration possibility is to implement the routing function as a table in a writable memory
in each router in the communication infrastructure. We have described a cluster based
scheme for lossless compression of these tables. An extension of this scheme for table
size constrained compression is also described. Through analysis and simulation based
evaluation we demonstrate that by using very small fixed sized tables we loose less than
3% performance as compared to uncompressed table.

384 M. Palesi, S. Kumar, and R. Holsmark

We are aware that in any network with fixed size router tables there is always a
finite probability that we may not be able to route all required communications. The
routability problem may be solved by modifying task mapping on the NoC resources.
In the worst case, there is a possibility that routing requirements of an application cannot
be satisfied with any possible mapping. Then we must use a NoC chip with larger router
tables. It will be interesting to study the routability property as a function of the table
size using synthetic as well as real applications.

The proposed method can easily be extended for non-homogeneous mesh topolo-
gies as well as other topologies. The configurability of the table based router comes at an
extra cost of hardware. It will be interesting to compare the hardware cost of the router
implementing this scheme with cost of routers implementing general purpose deadlock
free routing algorithms like Odd-Even routing. We believe the availability of writable
tables in routers will open up many new possibilities for NoC usage as a dynamically
configurable computing structure.

References

1. Bolotin, E., Morgenshtein, A., Cidon, I., Kolodny, A.: Automatic and hardware-efficient
SoC integration by qos network on chip. In: IEEE International Conference on Electronics,
Circuits and Systems, Tel Aviv (2004)

2. Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection networks. In:
Design Automation Conference, Las Vegas, Nevada, USA (2001) 684–689

3. Guerrier, P., Greiner, A.: A generic architecture for on-chip packet-switched interconnec-
tions. In: Design Automation and Test in Europe, Paris, France (2000) 250–256

4. Chiu, G.M.: The odd-even turn model for adaptive routing. IEEE Transactions on Parallel
Distribuited Systems 11 (2000) 729–738

5. Glass, C.J., Ni, L.M.: The turn model for adaptive routing. Journal of the Association for
Computing Machinery 41 (1994) 874–902

6. Holsmark, R., Kumar, S.: Design issues and performance evaluation of mesh NoC with
regions. In: IEEE Norchip, Oulu, Finland (2005) 40–43

7. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks. IEEE
Transactions on Parallel and Distribuited Systems 4 (1993) 1320–1331

8. Palesi, M., Holsmark, R., Kumar, S., Catania, V.: APSRA: A methodology for design of
application specific routing algorithms for NoC systems. Technical Report DIIT-TR-01-
060406, Dip. di Ingegneria Informatica e delle Telecomunicazioni, Univ. di Catania (2006)

9. Wang, X., Siguenza-Tortosa, D., Ahonen, T., Nurmi, J.: Asynchronous network node de-
sign for network-on-chip. In: International Symposium on Signals, Circuits and Systems.
Volume 1. (2005) 55–58

10. Vaidya, A.S., Sivasubramaniam, A., Das, C.R.: LAPSES: A recipe for high performance
adaptive router design. In: Fifth International Symposium On High-Performance Computer
Architecture, Orlando, Florida, USA (1999) 236–243

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 385 – 394, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Real-Time Embedded System for Rear-View Mirror
Overtaking Car Monitoring

Javier Díaz, Eduardo Ros, Sonia Mota, and Rodrigo Agis

1 Dep. Arquitectura y Tecnología de Computadores, Universidad de Granada, Spain
2 Dep.Informática y Análisis Numérico, Universidad de Córdoba, Spain
{jdiaz, eros, ragis}@atc.ugr.es, smota@uco.es

Abstract. The main goal of an overtaking monitor system is the segmentation
and tracking of the overtaking vehicle. This application can be addressed
through an optic flow driven scheme. We can focus on the rear mirror visual
field by placing a camera on the top of it. If we drive a car, the ego-motion optic
flow pattern is more or less unidirectional, i.e. all the static objects and
landmarks move backwards while the overtaking cars move forward towards
our vehicle. This well structured motion scenario facilitates the segmentation of
regular motion patterns that correspond to the overtaking vehicle. Our approach
is based on two main processing stages: first, the computation of optical flow
using a novel superpipelined and fully parallelized architecture capable to
extract the motion information with a frame-rate up to 148 frames per second at
VGA resolution (640x480 pixels). Second, a tracking stage based on motion
pattern analysis provides an estimated position of the overtaking car. We
analyze the system performance, resources and show some promising results
using a bank of overtaking car sequences.

1 Introduction

The blind spot in the rear-view mirror and the driver distractions are sources of
multiple accidents. A camera can be placed in the car allowing us to detect the
overtaking car, using optical flow algorithms. This can be used to generate alert
signals to the driver. The optical flow driven scheme has several properties that can be
very useful for car segmentation. Basically, focusing on the optical flow field, we
should find static objects and landmarks moving backwards (due to our ego-motion)
and the overtaking cars moving forward towards our vehicle. We should take into
account the perspective deformation. The optical flow of a moving object is not
homogeneous, the parts of the object that are far away from the camera seem to move
slower than the ones that are closer, so you can find a set of different velocities, which
changes continuously, along the same object.

On-board cameras have been used for lane tracking [1] and also in front/back
vision for obstacle avoidance [2], but the application we address here focuses on a
different field of view, the rear-view mirror and is important to emphasise that we
have to deal with the perspective deformation. This scenario forces to use
sophisticated clustering techniques, such as neural networks, when only sparse

386 J. Díaz et al.

features are used [3]. But in the presented approach we focus on an optical flow dense
map to devise a more robust system based on a simple centroid computation for car
tracking system. An accurate system will need to overcome this problem. We also
require the proposed algorithm to be robust enough to detect movement using a non
static camera. The movement of the host vehicle is a very important source of
artefacts and for the application addressed here is critical that the algorithm used can
“clean” these noisy patterns.

The work scheme that we have developed is composed of two different stages. In
the first step, using a high performance motion estimation circuit, we compute the
optical flow. Second, using very simple filtering operations and optical flow
templates, we get a saliency map that can be used to estimate the car position in the
image. In section 4, we show some results of the proposed system for several
overtaking car sequences.

Some companies, such as Mobileye N.V. [4], Volvo [5], and Fico S.A. [6], have
apparently developed some aids to lane-change decision making but no reports on
their technical details, processor type or the performance of these approaches are
available. This seems to suggest that the addressed application has in fact a high
potential impact and the existing solutions are still under development. In our
approach the whole system has been implemented on an embedded device to fit in the
automobile market. In this environment, FPGAs seem to be a good option due to the
intensive computation required, interfacing capabilities with automobile buses and
packing possibilities inside the car. Furthermore, taking into account that complex
vision processing systems are still being developed for automobile applications, the
capability of the FPGA to be reconfigured to new processing schemes is a very
valuable feature. This also encourages its utilization on these applications rather than
other approaches based on ASIC/ASIP that fit better more market standard products.

2 Algorithmic Description

The proposed application needs the generation of alert signals to the driver to prevent
traffic accidents. What we do is to estimate the car position and the confidence level.
After that the alert signal generation is straightforward.

The problem has been solved using two main processing stages. First, motion is
estimated using a gradient-based optical flow sensor described in [7]. In previous
works, Lucas & Kanade (L&K) gradient based method [8], [9] is highlighted as a
good candidate to be implemented on hardware with affordable hardware resources
consumption [10], [11], [12] and good accuracy. The optical flow allows us to easily
filter the overtaking car as shown on Fig. 1.
This scenario requires fulfilling to main aspects on the motion estimation stage. First,
in order to detect the car as soon as possible, high image resolution is desirable.
Second, since the relative inter-vehicles speed can be quite high, this motivates a
specific purpose computing architecture for high frame-rate processing to achieve
reliable tracking. This hard constraint requires a specific design strategy, making
unviable the utilization of devices such as the one described in [10] which
implemented a coarse grain pipeline processing scheme of only 6 stages being able to
process just 3,5 Mpixels per second. We utilize a novel superpipelined and intensively

 Real-Time Embedded System for Rear-View Mirror Overtaking Car Monitoring 387

parallelized architecture for optical flow processing with more than 70 pipelined
stages that achieve a data throughput of one pixel per clock cycle. This customized
DSP architecture is capable of processing up to 45 Mpixels/s arranged for example as
148 frames per second at VGA resolution (640x480 pixels). This is of extreme
interest in order to use high frame-rate cameras which allows the estimation of high
confidence motion information [13] to improving the tracking stage. This new system
outperforms previous approach [10] thanks to the fine-grain pipeline, an improved
image differentiation technique, and a novel memory management unit which enables
the utilization of FIR temporal filters.

Fig. 1. Car segmentation using optical flow. Dark greys represent rightward movements
(the car) and light greys leftward motion (the landscape). We can see that the proposed
model gives us very uniform object segmentation therefore car tracking can be done easily.

In the second stage we calculate the overtaking car position and reliability on such
measurement. Relaying on the advanced sensor used for motion computation, a
simple tracking system based on motion filtering templates has been developed
achieving very promising results. The method is described on the next section.

a. Car Tracking: Post-processing optical flow steps

The main operations to be implemented can be summarized as follows:
1. Pattern selection. We consider only rightward movements. While the overtaking

manoeuvres, the overtaking car is moving to the right side of the image so we do
not need to consider leftward velocities. If we note Vx the x component of the
velocity, Vy the y component and k for the minimum reliable velocity component
module, the velocities set that we use should verify:

xyx vvandkv ≤> (1)

2. Saliency map generation. This step uses the previous information and isolates the
main motion features which work as the input saliency map of the next stages; It
is realized by using optical flow filtering templates. The proposed system
computes the number of motion pixels grouping on spatial neighbourhoods of
15x15 pixels. Each template count the number of motion pixels presented at his
neighbourhood. A feature will pass to the next stage if it has enough active points,
where the limit threshold depends on the estimate car position. Due to the rear-
view mirror perspective the threshold grows rightward according to the vehicle
size. The final saliency maps clear spurious patterns and correct the image
perspective to give reliable data to the next computation stage.

388 J. Díaz et al.

3. Centroid computation. A simple centroid computation of the saliency map
provides us the car position estimation but, it is correct only for continuous car
overtaking of only one vehicle. Some more complex and realistic situations need
to be solved, as described bellow:
• Multiple car overtaking. For the addressed application a multi-target tracking

system is not necessary. We only want to know if there is at least one car in a
dangerous situation. What we have done is to use a car position iterative
computation with several stages. In the first one we use all the saliency map
points of the whole image to give the car position estimation. It will be the
correct position if there is only one car. When there are several targets in the
system, the main goal is to detect the position of the car that is closer to us.
For this purpose, we focus on the right area of the image, using the computed
centroid position as left image boundary. We try to calculate a centroid of the
limited image if we have significant features. Otherwise we choose the
previously calculated value. We can repeat this computation several times
until the estimation converges or we can use a fixed number of iterations. For
our system we have used only three iterations to get adequate results.

Fig. 2. Processing stages implemented for the rear-view mirror overtaking monitor

• Static overtaking: An overtaking car seems to stop (and it vanishes in the
optical flow field) because it moves at our own velocity. In this situation we
need to maintain the estimated car position during a certain time. We

 Real-Time Embedded System for Rear-View Mirror Overtaking Car Monitoring 389

implement a simple memory system based on the Kalman filter which has
been proved to be very useful in resolving many problems involved in
predicting the position of moving targets [14], [15] and is even useful for
complex motion prediction [16]. It predicts the car position based on the
estimated centroid velocity and previous position. The process model used
makes the assumption that velocity is constant and the noise can be seen as an
acceleration of the object.

The processing stages are schematically described on Fig. 2. The final system could
be improved based on the signal indicators steering information for the alarm
generation and is planned as future work.

3 System Architecture and FPGA Resources Consumption

The global system architecture is represented on Fig. 3. We have implemented a very
regular datapath (without requiring specific interrupt handling) with a very deep
pipeline structure (more than 70 stages) in order to achieve high performance.

The synchronization between the different processing units (frame-grabber, motion
processing core and tracking unit) is done using specific memory data buffers which
solves the problem associated to the different clock frequencies. The computing
platform used to ZBT SSRAM memories whose capabilities have been exploited
using a specifically designed Memory Management Unit (MMU) described on [7]
that minimizes data delays and latencies. It is especially useful for the temporal
filtering stage of the motion processing unit because it enables the use of FIR
temporal filters which provide more stable estimations.

Fig. 3. Overtaking monitor system architecture. All the processing stages and interfaces have
been implemented using the FPGA as element control and processing unit. The whole system
requires two external memory banks, a camera and vehicle interfaces for the alarm generation
and external inputs encoding vehicle information such as speed, steering or lateral indicators.

390 J. Díaz et al.

The memory interchange strategy makes use of delays between processing units as
synchronization technique. This makes possible the design of a very deep pipeline
processing structure without using branch predictions that would degrade the
performance. The high system throughput is based on this deep pipeline and on the
parallel scalar units of different stages designed according to the Lucas & Kanade
algorithmic complexity. Well balanced units are used to achieve a final system
throughput of one estimation per clock cycle.

The performance of the optical flow unit makes possible to take advantage of high
frame-rate cameras reducing the speed range to be processed (more time resolution)
and leading to accurate tracking. Each stage has been designed with customized bit-
widths from 8 (in the first stage) to 19 bits (in the last stage) with fixed-point and
floating point data representation depending on required precision. More details about
this architecture are given in [7].

In the tracking unit the templates computation has been implemented using
convolution kernels which collect the information of the neighbourhood of each pixel.
The iterative process only requires some boundary image control to choose the area in
which the centroid is computed. Finally, the Kalman filtering uses simple arithmetic
operations which are computed once per frame.

Table 1. Basic stages gates resources consumption (results taken from the DK synthesizer [17])

Pipelined stages
NAND
gates

FFs
Memory

bits
Max clock

frequency (MHz)
Interfaces + hardware

controllers
65881 2363 18208 45

Motion Processing core 1145554 6529 516096 45,5

Tracking core 12087 751 0 71

Table 2. System resources required on a Virtex II XC2V6000-4 for the whole overtaking car
system monitor (Mpps: mega-pixels per second and it’s the maximum system processing clock
frequency, EMB stands for embedded memory blocks)

Slices /
(%)

EMBS /
(%)

Embedded multipliers
/ (%) Mpps

Image
Resolution Fps

8250
(24%)

29 (20%) 12 (8%) 45.49 640x480 148

10073
(29%)

29 (20%) 12 (8%) 45,5 640x480 148

The gates consumption estimation of the different subcircuits is given on
Table 1. Note that the tracking unit, provided that is implemented using iterative
computation, allows efficient resources sharing (thus representing a relatively
inexpensive stage). On the other hand, the motion processing unit requires the

 Real-Time Embedded System for Rear-View Mirror Overtaking Car Monitoring 391

intensive exploitation of the parallelism capabilities of the FPGA device
(representing the most expensive module in terms of chip area). The interfaces and
hardware controllers also require a considerable number of resources. Global
system resources are shown in Table 2 after synthetization. It requires less than 2
million gates Virtex-II FPGA.. The tracking stage is processed sequentially only
requiring 5% of the whole FPGA slices. This represents 17% of the global hardware
resources consumed by the complete system.

4 Illustrative System Results

Evaluating the accuracy and efficiency of the system for real image sequences is not
an easy task. Visual inspection of the results can give us some “quality estimations”
to evaluate the performance but it is not a definitive “quality evaluation procedure”.
For our test we have considered that the tracking is done correctly if the estimated
car position given by the algorithm belongs to the car’s pixels. We have tested the
algorithm in different overtaking car sequences provided by Hella [18] with
different vehicles and whether conditions. At the beginning of the overtaking
maneuvering, when the vehicle is very small our system confidence measure is not
reached. This means that we have not enough information but we have already
unreliable position estimations. This has been marked as black squares in the
figures. When the car is larger, confidence measures begin to be reached but
without temporal consistency and, finally, the system is able to track accurately the
vehicle until the end of the overtaking sequence. Reliable position is drawn in the
figures using a white cross. For all the evaluated sequences, this situation is reached
for very far distances of the overtaking car so the system performance is good for
safe distances.

An important problem occurs when the overtaking car velocity is equal to our car
velocity, so the relative vehicle velocity will be around zero. In this situation the
Kalman filtering allows us to keep the car position but the confidence value will not
be reached, as it is seen in Fig. 4. The system memory allows us to keep the car
position under the confidence threshold (see black square in the third frame). Alert
signal system can use the estimation position and memory consistency to decide if we
are in a dangerous situation or not.

Fig. 4. Overtaking with relative static situation with a black car in a shinny day. Sequence
recorded using a conventional CCD camera.

392 J. Díaz et al.

Fig. 5. Car in a foggy and rainy day. Sequence recorded using a high dynamic range camera.

Fig. 6. Car in a cloudy day. The car moves with the lights switched off. Sequence recorded
using a high dynamic range camera.

In different whether and light conditions the kind of camera sensor is crucial and
strongly motivates the use of high dynamic range cameras. The sequence of Fig. 5
and 6 tests our system capability for very low contrast sequences. The weather
conditions in the sequence of Fig. 5 are really bad, in these situations lights become a
very important source of information. Here the system needs closer cars to reach the
confidence value to begin the car tracking reliably. In Fig. 6 we test the robustness of
the system to low contrast scenarios. This sequence has more contrast but the car has
switched off the lights. As it can be seen the results are correct.

The sequence of Fig. 7 shows a complex scene. Several cars are doing the
overtaking in a highway. Each car is numbered using brackets. The figure shows
different frames of the sequence and the dangerous car position estimations. As we
explained in section 3.4 the system only marks the closest car (the most dangerous in
the scene). One important problem occurs when we have multiple lanes. Motion
information from monocular viewing can not give us information about car distance
so it is difficult to know in which lane is detected the approaching car. We can use the
road white lines to do that but the important issue is to be able to discriminate whether
the situation is dangerous or not. Our system is useful if it prevents us of changing
lane when another vehicle is present in a dangerous situation. This problem will be
addressed in the future.

In this figure we can see the car estimation inertia. It should be noted that when the
system looks for a new car, the estimation is over the confidence threshold but in a
wrong position. This occurs because the saliency map obtained from the optical flow
has reliable information about the car position but the Kalman filter needs two or

 Real-Time Embedded System for Rear-View Mirror Overtaking Car Monitoring 393

Fig. 7. Multiple cars overtaking in a highway in a cloudy day. Numbers above the cars are used
to facilitate interpreting the scene. Sequence recorded using a high dynamic range camera.

three frames to update its parameters. We can use a more complex model for the car
tracking but, thinking in hardware implementation of an embedded system, it can
represent an unnecessary computation overload, since for a real time system that
computes 25 frames/s this delay of the alert signal is not significant.

5 Conclusions

We present a monitor system to track the overtaking cars using the rear-view mirror
perspective. Basically, we use two steps, first we compute the optical flow using a
high parallel and superpipelined optical flow system that gives us a robust method for
estimating the motion cues. The second step generates a saliency map that represents
reliably car points that are used to compute the overtaking car position.

The results shown are very promising, because the system is very robust and
stable, even for very difficult image sequences with bad visibility conditions. The
utilization of FPGA technology fits quite well the necessities of automotive
technology due to the reconfigurability and scalability of these devices.

Future work will address the integration of the vehicle signals into the alarm
generation decision unit and also will address the topic of how alerting the driver. We
also plan to address the scalability of the system in the future to enable its
implementation on smaller devices.

394 J. Díaz et al.

Acknowledgements

This work was supported by the Spanish National Project DEPROVI (DPI2004-
07032), by the EU grant DRIVSCO (IST-016276-2).

References

1. Apostoloff, N., Zelinsky, A.: Vision In and Out of Vehicles: Integrated Driver and Road
Scene Monitoring. Int. J. of Robotics Research, 23: 4-5, (2004), pp. 513-538.

2. Dagan, E., Mano, O., Stein, G.P., Shashua, A.: Forward collision warning with a single
camera. IEEE Intelligent Vehicles Symposium, 14-17 (2004), pp. 37-42.

3. Mota, S., Ros, E., Díaz, J., Tan, S., Dale, J., Johnston, A.: Detection and tracking of
overtaking cars for driving assistance. Early Cog. Vision Workshop, Isle of Skye, Scotland,
UK, 28 May- 1 June, (2004). (http://www.cn.stir.ac.uk/ecovision-ws/schedule.php).

4. Mobileye N.V. Blind Spot Detection and Lane Change Assist (BSD/LCA). Web link:
http://www.mobileye.com/general.shtml.

5. Volvo BLIS system. Web link: http://www.mynrma.com.au/blis.asp.
6. Ficosa Digital blind spot detector. Web link:

http://www.ficosa.com/eng/home_noticiaseventos.htm.
7. Díaz, J., Ros, E., Mota, S., Rodríguez-Gomez, R.: Highly parallelized architecture for

image motion estimation. LNCS, Int. Workshop on Applied Reconfigurable Computing,
ARC2006, Delft, Netherlands March 1-3, 2006. (accepted for publication).

8. Lucas B., Kanade T.: An Iterative Image Registration Technique with Applications to
Stereo Vision. In Proc. DARPA Image Understanding Workshop, (1981), pp. 121-130.

9. Barron. J., Fleet, D.J., Beauchemin, S.S.: Performance of Optical Flow Techniques. IJCV
12:1, 1994, pp. 43-77.

10. Díaz, J., Ros, E., Ortigosa, E. M. and Mota, S.: FPGA based real-time optical-flow system.
IEEE Trans. on Circuits and Systems for Video Technology, vol. 16: 2, (2006) pp. 274-279.

11. McCane, B., Novins, K., Crannitch D. and Galvin B.: On Benchmarking Optical Flow.
Computer Vision and Image Understanding, vol. 84, (2001) pp. 126–143.

12. Liu, H.C., Hong, T.S., Herman, M., Camus, T., and Chellappa, R.: Accuracy vs. Efficiency
Trade-offs in Optical Flow Algorithms. CVIU., vol.72, 3, (1998) pp. 271-286.

13. Lim, S., Apostolopoulos, J.G., Gamal, A.E.: Optical flow estimation using temporally
oversampled video. IEEE Trans. on Image Processing, vol. 14:8, (2005), pp. 1074-1087.

14. Dellaert F., Thorpe C.: Robust car tracking using Kalman filtering and Bayesian templates.
In Proceedings of SPIE: Intelligent Transportation Systems, vol. 3207, (1997).

15. Gao, J., Kosaka, A., Kak, A. C.: A multi-Kalman filtering approach for video tracking of
human-delineated objects in cluttered environments. Computer Vision and Image
Understanding, 99:1, (2005) pp. 1-57.

16. Jung, S.-K., Wohn, K.-Y.: 3-D tracking and motion estimation using hierarchical Kalman
filter. IEE Proc.-Vis. Image Signal Process, 144 :5, (1997) pp. 293 – 298.

17. Celoxica company. Web site and products information available at: www.celoxica.com.
18. Dept. of predevelopment EE-11, Hella KG Hueck & Co., Germany, www.hella.de.

Design of Asynchronous Embedded Processor
with New Ternary Data Encoding Scheme

Je-Hoon Lee, Eun-Ju Choi, and Kyoung-Rok Cho

Dept. of Computer and Communication Eng., Chungbuk Nat’l Univ.,
San 12, Gaeshin-Dong, Cheongju-City, Chungbuk-Do, Rep. of Korea

{leejh, ejchoi}@hbt.chungbuk.ac.kr, krcho@cbucc.chungbuk.ac.kr

Abstract. This paper presents a low-power implementation of the asyn-
chronous 8051 processor, called A8051 and it employs a new data encod-
ing method, RT/NRT encoding, to reduce switching activities. The paper
focuses on power analysis of the proposed data encoding based on the
experimental design of A8051. The proposed data encoding method is
devised to meet the DI assumption using Ternary logic. This method
reduces not only the number of wires but also the switching activities. In
terms of switching activities, the proposed ternary encoding can reduce
26% comparing to conventional ternary encoding. A8051 using RT/NRT
encoding shows 24% higher instruction per energy metric comparing to
A8051 using dual-rail encoding.

1 Introduction

Previous research indicates that asynchronous processors are promising alterna-
tives to synchronous processors to reduce power [1–9]. In the past, many imple-
mentations of asynchronous processors have been evaluated. The asynchronous
counterpart to the ARM processor, AMULET3, and a 32-bit processor TITAC-2
demonstrated the advantages of asynchronous design methodology [2,3]. There
are asynchronous CISC processor like a Lutonium and A8051 [8,9].

In asynchronous design, there are two types of delay models depending on
whether or not both wire and gate delays are known: The DI (delay-insensitive)
delay model and the bounded-delay model. The DI delay model assumes that
an asynchronous circuit operates regardless of the gate and wire delays. Thus,
the DI delay model does not require the precise latency of each circuit module
and wiring delay. However, it requires a specified data encoding for generating a
completion signal that indicate that execution has completed for each module.
To generate the completion signal, various data encoding schemes have been
introduced, such as a dual-rail, 1-of-4, and M-of-N encoding [10–13]. However,
these encoding schemes need either dual data lines to generate completion signals
or more switching activities than the bounded delay model.

Recently, a new data encoding method using MVL (multi-value logic) logic
was introduced [14–16], which needs smaller number of data lines because it
has an intermediate value to represent the invalid state. However, it does not
reduce switching activities on the data communication comparing to 1-of-4 data

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 395–405, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

396 J.-H. Lee, E.-J. Choi, and K.-R. Cho

encoding. For instance, the MiniMIPS microprocessor used 1-of-4 codes exten-
sively, cutting the switching activity in half comparing to the classical dual-rail
encoding [17]. The classical ternary encoding conveys 2 bits of information using
4 half-swings as opposed to the two full-swings that would be required if 1-of-4
encoding were chosen.

In this paper, we devise a new ternary encoding scheme, called RT(return
to ternary)/NRT(non-return to ternary) to reduce the number of switching ac-
tivities compared with the classical ternary encoding. We adapt this encoding
scheme to the experimental design, A8051, to evaluate how much this encoding
scheme can reduce the power dissipation. A8051 is a previously designed our
implementation of an asynchronous 8051 processor [9]. It uses dual-rail data
encoding and it was implemented using Hynix 0.35-μm CMOS technology and
its performance analysis was discussed in [9]. The new version, A8051v2 uses
RT/NRT data encoding scheme instead of dual-rail encoding one. Both versions
of A8051 have a same architecture and implemented using the same fabrication
technology, Hynix 0.35-μm CMOS technology. The only difference is the encod-
ing scheme that is adapted in A8051. Since A8051v2 is ready for fabrication, the
power analysis of A8051v2 was simulated using post layout extractions and the
performance and power consumption of both processors were compared.

RT/NRT encoding using MVL is used to reduce switching activities. It has
three logic levels; the logical high and the logical low represent the valid data
‘1’ and ‘0,’ respectively, while an intermediate value represents the invalid data,
spacer. This reduces the number of data lines and diminishes the amount of
switching activities. Our results show that this encoding scheme leads in 26%
reduction in switching activities and achieves 24% power reduction compared to
the conventional ternary encoding.

This paper is organized as follows. Section 2 describes the features of the
proposed A8051. Section 3 discusses the features of RT/NRT data encoding.
Section 4 presents the experimental results and analysis of the power reduction
for each proposed method. Finally, Section 5 concludes the paper.

2 Features of the Proposed A8051

Intel 8051 is probably the most popular embedded processor used in controllers
for industrial systems because of its small size and low cost. There are many
synchronous and asynchronous counterparts to Intel 8051 [6–9,19–21]. Lutonium
is a latest version of asynchronous 8051 [8], which shows performance 200MIPS
at 1.8V. The A8051 shows average performance 75.1 MIPS at 3.3V. It has 255
instructions and is fully compatible with the ISA of Intel 8051. However, there
are many differences in respect to the instruction execution scheme and the
system architecture [9].

First, A8051 has a simpler instruction execution scheme compared to Intel
8051. Some instructions in Intel 8051 can access both register and memory for
operands and destinations within an instruction cycle. These instructions need
2 or 4 machine cycles cause redundant activities during the instruction cycle

Design of Asynchronous Embedded Processor 397

Fig. 1. The proposed architecture of A8051

to keep the pipeline regulation of instruction. These redundant activities lead
to pipeline stalls when the second machine cycle of these instructions are exe-
cuted in the pipeline [19]. The proposed instruction execution scheme of A8051
eliminates the unnecessary stage operation in the instruction cycle, and instead
replaces the repetition of the entire machine cycle to the local repetition of OF
(operand fetch) and EX (execution) stages. The ISA of A8051 is divided into
seven groups according to the execution scheme.

Secondly, A8051 also employs a flexible pipeline architecture that reduces
the unnecessary operations caused by the complicated pipelining. A8051 has
five pipeline stages as shown in Fig. 1. Since all instructions do not require all
pipeline stages, A8051 accompanies stage skipping to skip some of the stages
that do not need any operations. There are two types of stage skipping. The
first type is early termination of pipeline that occurs when the remaining stages
are not necessary to complete the operation. The second type involves skipping
only one stage, especially the OF stage. It can be skipped the redundant stages
instead of operating these stages. The skipping stage makes the stage have no
work to a transparent stage.

For example, some instructions do not need to fetch operands from either
memory or register file. In this case, OF Unit asserts OF Skip signal goes to
high instead of generating an address for the operand as shown in Fig. 1. It
indicates that there will be no operand from memory. Additionally, A8051 al-
lows multi-cycle operations in the OF and EX stages to avoid pipeline hazards.
Multi-cycle instructions are replaced two or three microinstructions to perform
the subsequent pipeline stages repeatedly. These micro instructions are issued
simultaneously to instruction arbiter. Instruction Arbiter can transfer these mi-
croinstructions to the subsequent pipeline stages, OF unit, in regular order re-
ducing the number of stages to be executed.

398 J.-H. Lee, E.-J. Choi, and K.-R. Cho

Finally, each stage in A8051 communicates using the four-phase handshak-
ing protocol with CTL and Latch as shown in Fig. 1. The architecture in Fig.
1 is based on the DI delay model using the proposed ternary data encoding. To
adapt the proposed data encoding scheme to A8051, we modified the handshak-
ing blocks and we add IVD(intermediate value detector), TVT(ternary value
transmitter), and ZD(zero detector) logics. We also modified the combinational
logics to adequate a MVL logics.

3 RT/NRT Data Encoding

In this paper, an asynchronous encoding method using a MVL is proposed to
reduce not only the number of wires but also the switching activities. Furber
and Mukaidono also introduce a ternary data encoding to design asynchronous
circuit with DI model, which can reduce the number of data lines [5–7]. How-
ever, it increases the switching activities compared with 1-of-4 encoding. Thus,
this paper proposes RT/NRT encoding to reduce switching activities without
violating the DI assumption. This section presents the features of RT/NRT data
encoding and how can it save the power.

3.1 Data Encoding Methods for DI Asynchronous Circuit

DI asynchronous circuits assume that the circuit designer do not know amount
of the gate delay and wire delay. Figure 2 shows the handshaking model for DI
asynchronous circuits. Each module uses a handshaking protocol to communicate
with other modules that needs a completion signal of each module. This is major
difference between the asynchronous circuit with the DI delay model and the
bounded delay model. Fig. 3 shows data encoding schemes for DI circuits [10–
16]. Data encoding scheme decides a number of data lines and signal transitions
for handshaking. For example, both dual-rail and 1-of-4 encoding schemes require
2n wires for transferring n-bit data. 1-of-4 encoding scheme can reduce switching
activities by 50% compared to the conventional dual-rail encoding. However, it
also needs double wires compared to the bundled data asynchronous circuit [11].
To reduce the number of wires, the ternary data encoding scheme is used because
it only requires n wires for transferring n-bit data [14–17].

Thus, we employ ternary encoding to save data lines. In addition, we modify
it to reduce the switching activities. The proposed RT/NRT ternary encoding is

Fig. 2. Handshaking model for DI circuit

Design of Asynchronous Embedded Processor 399

Fig. 3. Various data encoding scheme

Fig. 4. Comparison between classical ternary and RT/NRT ternary data encoding

similar with a conventional ternary in terms of using three logical levels such as
0, 1, and intermediate value, VI . VH represents valid data ‘1’, VL represents valid
data ‘0’, and VI represents invalid data, i.e., spacer. The only difference between
the classical ternary encoding and the proposed ternary encoding depends on
whether all the data lines transit to intermediate value or not. In the conventional
ternary encoding, after the valid data transfer is complete, the data lines must
transit to intermediate value to represent invalid state, spacer. When all the
data lines transit to intermediate value, the receiver identifies this as the invalid
state as shown in Fig. 4(a). However, in the proposed RT/NRT data encoding,
not all the data lines transit to intermediate value because the receiver can
identified the validity of data transfers when more than one data transition
to intermediate value occurs as shown in Fig. 4(b). In the RT/NRT encoding
scheme, data lines that transfer zeros do not change to the intermediate value,
which reduces switching activities. That is to say, when the sender transfers
logical data ‘1’ and then receives an acknowledgement signal from the receiver,
the data transit to logic value, VI that indicates a spacer state. In contrast, when
the sender transfer logical ‘0’ data and then receives an acknowledgement signal
from the receiver, the data always remains as ‘0’ as shown in Fig. 4. However, the
receiver can identify exactly when data becomes the invalid. In the conventional

400 J.-H. Lee, E.-J. Choi, and K.-R. Cho

Fig. 5. The handshaking model and timing diagram of RT/NRT ternary encoding
scheme

ternary encoding scheme, the receiver transfers data as an invalid data when
all data received transits to the intermediate value. In the proposed encoding
scheme, the receiver transfers data as an invalid data when more than one data
lines changes to the intermediate value. Therefore, switching activity is reduced
without violating the DI assumption. It is an exception condition that all of
transferring data are zero because it is impossible to determine the validity of
them. In this case, all data line transit logic level VI the same as in the classical
ternary encoding scheme.

Figure 5 illustrates the 2-phase handshaking model and timing diagram for
the controller. The combinational blocks A and B communicate based on this
protocol. The output of Block A is validated by asserting Rin high, which forces
the latch to store the current output by activating Lt1. After the latch saves the
valid output of Block A and the TVT (ternary value transmitter) logic outputs
the data, the completion signal Ain returns to an initial state, spacer. The send
data procedure is data valid → Rin↑ → Lt1↑ → Lin↑ → Aout↑ → spacer. Note
that * ↑ and * ↓ means that signal * is rising and falling. Continuously the data
path is refreshed with a procedure spacer → Rin↓ → Aout↓ → data valid. In
addition, zero detectors needs to detect all zero inputs, which cause the only
exception condition.

As shown in Fig. 6, the proposed ternary handshaking model requires addi-
tional blocks such as IVD (intermediate value detector) and TVT logic. The IVD
logic is responsible for detecting the intermediate value, which identify whether
or not the transferring data is valid. The TVT logic allows output to transi-
tion to logical high, logical low, and the intermediate value. If all the inputs are

Design of Asynchronous Embedded Processor 401

Fig. 6. Condition Detector Logic

valid, the receiver identifies that inputs are valid. In contrast, if there is one or
more output are the intermediate value, the receiver considers the input data
as invalid. The ZD logic is responsible to detect all zero inputs which cause the
only exception. In this case, it is impossible to determine the validity of them.
Thus, when all input data is all zeros, ZD logic makes the latch enable to output
intermediate value, VI after it receive an acknowledge signal ‘high’ from the next
block.

Equation (1) shows the signal transition ratio for the asynchronous circuit us-
ing RT/NRT data encoding. As the data bandwidth increases, the ratio of signal
transition decreases to 26%. These results indicate that the RT/NRT encoding
scheme has the potential to reduce the switching activity by 26% compare with
the classical ternary encoding scheme.

an = a1 +
n−1∑
k=1

(b1 × rk−1) = 12.5 +
n−1∑
k=1

(6.25 × 0.5k−1)(n = 2, 3, 4, · · ·) (1)

4 Power Analysis

A8051 was synthesized using Hynix 0.35-mum CMOS technology with a supply
voltage of 3.3V. This processor has a complexity of about 105,000 transistors
including 16KB memory and occupies 16 mm2 silicon areas. The post-layout of
A8051 was simulated using Nanosim from Synopsys. The simulation results of
both performance and power consumption are obtained by executing the test-
bench program, Dhrystone V2.1 [22].

Two different versions of A8051 were evaluated to show the efficiency of the
RT/NRT encoding scheme. A8051v1 is designed based on the conventional dual-
rail data encoding and A8051v2 is designed using the RT/NRT data encoding.
A8051v1 resulted in an average performance of 75.5 MIPS and consumed an av-
erage power of 46.0mW with the test-bench program. A8051v2 resulted in an av-
erage performance of 75.1 MIPS and consumed an average power of 34.9mW. The
performance of A8051vX is limited by the memory access speed. A8051v2 shows
significant power saving even though it has the same performance with A8051v1.

The comparison results among A8051 and other counterparts are summarized
in Table 1. Both performance and power consumption were evaluated with the

402 J.-H. Lee, E.-J. Choi, and K.-R. Cho

Table 1. Performance comparisons with other versions

Fig. 7. Decreasing ratio of signal transition in RT/NRT scheme according to bandwidth
of data

test-bench program. As shown in the Table. 1, A8051v2 runs about 18.8 times
faster than H8051 with 48MHz clock and 3.3 times faster than CIP51 with 50MHz
clock. For H8051, this result in energy per instruction metric of 80 MIPS/Watt,
while A8051v2 gives 2,146 MIPS/Watt. Thus, A8051 shows 26.8 times higher en-
ergy per instruction metric than the synchronous non-pipelined counterpart of
H8051. In addition, A8051v1 that uses conventional dual-rail data encoding
scheme shows performance of 75.5 MIPS and 1,641 MIPS/Watt. On the other
hand, A8051v2 using RT/NRT data encoding scheme achieves 24% power reduc-
tion. These results say that the proposed asynchronous pipeline architecture and
data-encoding scheme save power and achieve higher performance compare to the
synchronous and asynchronous counterparts. Also Lutonium [18] shows higher
performance and MIPS/Watt than other synchronous designed counterparts.

Figure 7 shows the signal transition ratio for the circuit using RT/NRT data
encoding. As the data bandwidth increases, the ratio of signal transition de-
creases to 26%. These results indicate that the RT/NRT encoding scheme has
the potential to reduce the switching activity by 26% compare with the classical
ternary encoding scheme. Comparison of the results of power consumption for
data transmission scheme is shown in Fig. 8 that is on a ripple carry adder using
variable data inputs. In terms of power consumption, the RCA with the proposed
data encoding can reduce 45% comparing to conventional dual-rail reduction and
it shows 25% power reduction comparing to the conventional ternary encoding.

Design of Asynchronous Embedded Processor 403

Fig. 8. Power consumption comparison among three schemes according to the number
of input

Fig. 9. Power consumption comparison between H8051 (synchronous) and A8051 (pro-
posed)

From the power saving result of A8051v2 indicates that the RT/NRT data
encoding scheme is better than the conventional dual-rail data encoding scheme
as shown in Fig. 9. It can reduce not only switching activities but also the number
of data lines. The performances of the two versions, A8051v1 and A8051v2, are
almost the same. However, power consumptions of the two versions are 46.0mW
for A8051v1 and 34.9mW for A8051v2, respectively. This means that the design
with the RT/NRT encoding scheme consumes about 24% less power.

5 Conclusion

In this paper, a new design methodology for the asynchronous processor, A8051,
was presented. The A8051 employ a new RT/NRT data encoding scheme, simpli-
fied control schemes, and well-tuned pipeline architecture, which enhances sys-
tem performance. Power saving result of A8051v2 indicates that the RT/NRT
data encoding scheme is better than the conventional dual-rail data encoding

404 J.-H. Lee, E.-J. Choi, and K.-R. Cho

scheme. The performances of the two versions, A8051v1 and A8051v2, are al-
most the same. However, power consumptions of the two versions are 46.0mW
for A8051v1 and 34.9mW for A8051v2, respectively. This means that the design
with the RT/NRT encoding scheme consumes about 24% less power. Conse-
quently, the proposed RT/NRT data encoding reduce the number of wires by
half compared with the conventional dual-rail and 1-of-4 encoding. Our results
show that the performance of A8051 is 18.8 times faster than a conventional syn-
chronous design. In terms of power, the RT/NRT data-encoding scheme results
in 24% power saving.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by
the Korea Government (MOEHRD, Basic Research Promotion Fund) (KRF-
2005-214-D00101) and the Regional Research Centers Program of the Ministry
of Education & Human Resources Development in Korea.

References

1. M. B. Josephs, S. M. Nowick and C. H. Van Berkel, “Modeling and design of
asynchronous circuits,” Proc. IEEE, vol. 87, pp.234–242, Feb. 1999.

2. S. B. Furber, J. D. Garside and D. A. Gilbert, “AMULET3 : a high-performance
self-timed ARM microprocessor,” Proc. ICCD’98, pp.247–252, 1998.

3. T. Nanya, et al., “ITAC-2 : an asynchronous 32-bit microprocessor based on scal-
able delay-insensitive model,” Proc. ICCD97, pp.288–294, 1997.

4. M. Renaudin, P. Vivet, and F. Robin, “ASPRO-216 : a standard-cell QDI 16-bit
RISC asynchronous microprocessor,” Proc. 4th Int’l Symp. On Advanced Research
in Asynchronous Circuits and Systems, pp.22–31, 1998.

5. C. Kelly, V. N. Ekanayake, and R. Manohar, “SNAP : A sensor-network syn-
chronous processor,” Proc. Int’l Symp. On Advanced Research in Asynchronous
Circuits and Systems, pp. 24–35, 2003.

6. J. M. C. Tse and D. P. K. Lun, “ASYMPU : A fully asynchronous CISC micro-
processor,” Proc. ISCAS, pp. 1816–1819, 1997.

7. H. V. Gageldonk, K. V. Berkel, A. Peeters, D. Baumann, D. Gloor, and G.
Stegmann, “An asynchronous low-power 80C51 microcontroller,” Proc. Int’l Symp.
On Advanced Research in Asynchronous Circuits and Systems, pp. 96–107, 1998.

8. A. J. Martin, M. Nystrom, K. Papadantonakis, P. I. Penzes, P. Prakash, C. G.
Wong, J. Chang, K. S. Ko, B. Lee, E. Ou, J. Pugh, E. Talvala, J. T. Tong, and A.
Tura, “The Lutonium : sub-nanojoule asynchronous 8051 microcontroller,” Proc
Int’l Symp. Advanced Research in Asynchronous Circuits and Systems, pp. 14–23,
2003.

9. J. -H. Lee, Y. H. Kim, and K. -R. Cho, “Design of a fast asynchronous embedded
CISC microprocessor, A8051,” IEICE trans. on Electron, vol. E87-C, no. 4, pp.
527–534, Apr. 2004.

10. S. Hauck, “Asynchronous design methodologies: an overview,” Proc. IEEE, vol.83,
no.1, pp.69–93, Jan. 1995.

Design of Asynchronous Embedded Processor 405

11. J. Bainbridge, and S. B. Furber, “Delay insensitive system-on-chip interconnect
using 1-of-4 data encoding,” Proc. Int’l Symp. On Advanced Research in Asyn-
chronous Circuits and Systems, pp. 118–126, Apr. 2001.

12. Renaudin, “Generalized 1-of-M QDI asynchronous adder,” Proc 3rd Acid-WG
Workshop, pp. 27–28, Jan. 2003.

13. W.J. Bainbridge, W.B. Toms, D.A. Edwards, S.B. Furber, “Delay-Insensitive,
Point-to-Point Interconnect using m-of-n codes,” Proc. Int’l Symp. On Advanced
Research in Asynchronous Circuits and Systems, pp. 132–140, May 2003.

14. R. Mariani, R. Roncella, R. saletti, and P. Terreni, “On the realization of delay-
insensitive asynchronous circuits with CMOS ternary logic,” Proc. Int’l Symp. On
Advanced Research in Asynchronous Circuits and Systems, pp. 54–62, 1997.

15. Y. Nagata and M. Mukaidono, “B-ternary asynchronous digital system under rela-
tive delay,” IEICE Trans. Information and System, vol. E86-D, no.5, pp. 910–919,
May 2003.

16. T. Felicijan and S. B. Furber, “An asynchronous ternary logic signaling system,”
IEEE trans. on VLSI, vol, 11, no. 6, pp. 1114–1119, Dec. 2003.

17. A. Efthymiou and J. D. Garside, “Adaptive pipeline structures for speculation con-
trol,” Proc Int’l Symp. Advanced Research in Asynchronous Circuits and Systems,
pp.46–55, 1999.

18. A. J. Martin et al, “The design of an asynchronous MIPS R3000,” Proc. Advanced
Research in VLSI, pp. 164–181, 1997.

19. Intel, Microprocessor and Peripheral Handbook, 1987.
20. Hynix, HMS99C52 Datasheet, 2003.
21. Cygnal, C8051F0xx Family Datasheet, 2002.
22. W. J. Price, “A benchmark tutorial,” IEEE Micro, vol. 9, pp. 28–43, Oct. 1989.

Hardware-Based IP Lookup Using n-Way Set
Associative Memory and LPM Comparator

SangKyun Yun

Department of Computer and Telecommunications Engineering, Yonsei University
234 Magiri, Heungeop, Wonju, Gangwon, 220-710, Korea

skyun@yonsei.ac.kr

Abstract. IP lookup process becomes the bottleneck of packet transmission as
IP traffic increases. Hardware-based IP lookup is desirable for high-speed router.
However, the IP lookup schemes using an index-based table are not efficient
due to heavy prefix expansion. In this paper, efficient hardware-based IP lookup
schemes using n-way set associative memory and a LPM comparator is proposed.
It reduces memory requirements to about 50% or below compared with previous
scheme and provides faster updating speed. It also completes an IP routing lookup
with two memory accesses.

1 Introduction

The increased bandwidth in the Internet puts great demands on network routers.The IP
lookup remains one of the major performance bottlenecks for faster packet processing
in routers. Since the introduction of classless interdomain routing (CIDR) in 1993 [1],
the IP lookup has been designed based on the longest prefix matching (LPM) algorithm
that has more computational overhead than an exact match operation. For high speed
routers, the LPM problem has been solved with hardware-based schemes.

While designing the hardware-based IP lookup scheme, reducing routing table space
and ensuring fast routing table reconstruction are important design considerations. Re-
ducing routing table space enables the IP lookup engine to be implemented using re-
cent FPGAs including memory blocks. In this paper, we propose a hardware-based IP
lookup scheme requiring smaller memory space and faster updating speed than previous
hardware-based scemes.

2 Previous Schemes and Motivations

2.1 Previous Schemes

Hardware-based IP lookup schemes include indirect table lookup, direct ternary CAM
(TCAM) match, a combination of two previous schemes, table lookup using hashing,
and finite-state-machine (FSM) based lookup.

In indirect table lookup schemes [2,3], a routing table is divided into two parts: the
segment table and the next hop arrays (NHA). The segment table consists of 216 entries
indexed with 16 leftmost bits of an prefix. An entry of the segment table stores either
next hops of routes or pointers to the corresponding NHA. The NHA has next hops of

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 406–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hardware-Based IP Lookup Using n-Way Set Associative Memory 407

routes for destination IP addresses with prefix length > 16. The NHA is indexed with
remaining rightmost bits of a prefix. The size of NHA depends on the length of the
longest prefix within the segment and may be reduced by considering common bits of
prefixes.

In TCAM schemes [4,5], a ternary content addressable memory(TCAM) is used as a
forwarding table. TCAMs perform parallel search and can store “don’t care” values in
addition to 0’s and 1’s. The ternary capability of TCAMs makes them an attractive so-
lution for the IP lookup based on the longest prefix matching. Although TCAM scheme
achieves fast IP lookup without any prefix expansion, it has some shortcomings: small
capacity, more power consumption, more cost, complicated updating. All these limit its
usage.

A priority TCAM IP-routing lookup scheme proposed by Lin [6] is the combina-
tion scheme which consists of a compact IP routing lookup block and a priority TCAM
block. The compact IP-routing lookup block processes the IP-routing entries with pre-
fix length ≤ 24 and the priority TCAM block processes IP-routing entries with prefix
length > 24. The compact IP-routing lookup block requires smaller index-based NHAs
than other indirect table lookup schemes [2,3] by fully considering common bits of
prefixes.

In table lookup scheme using hashing [7], hashing function reduces the memory re-
quirement by taking the longer address and producing a shorter index field. However,
this scheme requires parallel hashing in each prefix length and collision processing. In
FSM-based lookup schemes [8,9], the IP lookup problem is translated into implemen-
tation of a finite state machine or binary decision diagram on reconfigurable hardware.
However, it requires reconfigurable hardware that can be modified on the fly and the
updating process is complex.

2.2 Motivations

Although the number of Internet hosts is growing exponentially, the routing prefixes
with a router are still in sparse distribution. There are more than 100,000 routing pre-
fixes over a total of 216 segments in today’s backbone router [10]. For most segments,
there are fewer or even no routing prefixes. Only approximately 12% of all the segments
have a NHA and approximately 55% of all NHAs have eight or less prefixes. This sparse
distribution characteristic of prefixes makes index-based NHA schemes [2,3,6] ineffi-
cient in aspects of both memory requirement and updating speed.

For example, consider three prefixes 192.168.20/22, 192.168.72/23, and 192.168.
128/22 within a segment 192.168. The bit patterns from the 17th bit to the 24th bit
of three prefixes are 000101**, 0100100* and 100000** where * denotes “don’t care”.
Since the longest prefix length is 23 and the 19th bit is common, the NHA corresponding
to segment 192.168 in Lin’s scheme [6] has 64(= 26) entries in spite of only three
prefixes. From the 17th bit to the 23th bit except the 19th bit of IP addresses is used
as an index of the NHA. Index-based NHA schemes are also characterized by poor
updating speed since each prefix corresponds to multiple NHA entries due to prefix
expansion.

Therefore, a more efficient IP lookup scheme with regard to both the memory re-
quirement and updating speed, is required.

408 S. Yun

3 Proposed IP Routing Scheme

In this section, we propose an efficient hardware-based IP lookup scheme using n-
way set associative memory and a LPM comparator. The architecture for the proposed
scheme consists of TCAM, a segment table, a NHA table, a LPM comparator, and glue
logics as shown in Fig. 1. The proposed IP lookup scheme is based on the priority
TCAM IP-routing lookup scheme proposed by Lin [6], but the NHA table is imple-
mented using a n-way set-associative scheme like cache memory systems instead of
index-based scheme.

In the proposed scheme, TCAM contains routing entries with a prefix length > 24
like in Lin’s scheme . Routing entries with a prefix length ≤ 24 are stored in the segment
table or the NHA table. The segment table contains 216 entries, each of which represents
a next-hop or a pointer to the corresponding NHA. If a segment has only a prefix with
length 16, the segment table entry stores a next-hop; otherwise, it stores a pointer to the
NHA.

segment
table

IP[1:16]

n-way memory

LPM
comparator

TCAM
IP[1:32]

se
le

ct
or NH

NHTCAM

NH2

NH1

IP[17:24]

IP[17:21]

pointer
se

le
ct

or

Fig. 1. Architecture for the proposed IP lookup scheme

n entries

20/6, n1 72/7, n2 100/6, n3 ⋅⋅⋅⋅⋅⋅

LPM comparator

⋅⋅⋅⋅⋅⋅

NH2

IP[17:24]

the associative set

Fig. 2. The set-associative NHA scheme

The NHA table stores NHAs corresponding to segments. It is implemented in n-way
memory, where n entries with the same address can be simultaneously accessed and the
collection of them is called a set. Each IP address is associated with a set in the NHA
table. Each NHA entry consists of two parts: a prefix/length and a next hop. Although
the set-associative scheme requires longer entry width than the index-based scheme, it

Hardware-Based IP Lookup Using n-Way Set Associative Memory 409

requires much smaller number of NHA entries because of few prefix expansions. During
the IP lookup operation, the LPM comparator compares a destination IP address with n
prefixes stored in the associative set in parallel and determines an entry with the longest
matched prefix among them. Fig. 2 shows a corresponding NHA of segment 192.168
with three prefixes described in section 2.2

3.1 Construction of the NHA Table

Let N(s) be the number of prefixes within a segment s. Let p[x] and p[x : y] be the xth
bit and from the xth to the yth bits of the address p, respectively and let p[x,y, · · · ,z] be
the concatenation of p[x], p[y], · · ·, p[z]. The NHA size of a segment s is basically 2k

sets, where k = log2(N(s)/n). In a NHA with 2k sets, a prefix p is associated with a set
selected by the k-bit set selection index which is part of p[17 : 21]. Each prefix entry is
stored in an empty entry of the associative set. Some prefixes may be associated with
multiple sets since some bits of the set selection index are don’t care.

Let |Si| be the number of prefixes associated with a set i of a NHA. If |Si| > n, a set
i is called an overflow set. If there is an overflow set in a NHA, the NHA size must be
increased until there is no overflow set. The set selection index for each NHA size has
been determined by the simulation to reduce occurrences of overflow sets as follows:
for 2, 4, 8, 16 and 32 sets, the set selection indexes are p[19], p[19 : 20], p[18,20 : 21],
p[17,19 : 21], and p[17 : 21], respectively.

Table 1. Routing prefixes of a segment A.B and its NHA construction

prefix/length p[17 : 24] NHA with 2 sets NHA with 4 sets

A.B.4/24 00000100 set selection index= p[19] set selection index=p[19 : 20]
A.B.5/24 00000101
A.B.12/22 000011** set 0 = {4/24, 5/24, 12/22, set 0 = {4/24, 5/24, 12/22,
A.B.13/24 00001101 13/24, 64/22, 128/19, 13/24, 64/22, 128/19}
A.B.64/22 010000** 24/21, 80/23, 216/23} set 1 = {128/19, 24/21,
A.B.128/19 100***** set 1 = {32/20} 80/23, 216/23}
A.B.24/21 00011*** set 2 = {32/20}
A.B.80/23 0101000* set 0 is an overflow set set 3 = { }
A.B.216/23 1101100*
A.B.32/20 0010**** 128/19 has two entries

For example, consider the construction of 8-way set associative NHA of segment
A.B with prefixes listed in Table 1. The NHA size is initially 2 sets because segment
A.B has 10 prefixes. However, set 0 is an overflow set since it has nine prefixes and
The NHA size must be increased. In the NHA with 4 sets, there is no overflow set and
the construction is completed. An entry 128/19 is stored into both set 0 and set 1 since
p[20] is don’t care.

If an NHA has a few prefixes, many of n entires in a set are not used. For additional
reduction in memory space, a segment with a few prefixes is allowed to use part of an
associative set. The corresponding entries of a small NHA with 1/2k set are selected by
rightmost k bits of p[12 : 16].

410 S. Yun

3.2 Lookup Operation

For an incoming packet with a destination IP address p, p[1 : 16] selects an entry of the
segment table. If the entry contains a next hop, the next hop is returned, and the lookup
operation is completed. Otherwise, it contains a NHA pointer/size and the lookup op-
eration in the NHA table is performed. The address of an associative set is the concate-
nation of the NHA pointer and the set selection index. Each IP address is associated
with only one set in the NHA table since an IP address has no don’t care bit. p[17 : 24]
is simultaneously compared with n prefixes in an associative set and the longest prefix
matched prefix is determined. This operation is performed in n-way memory and a LPM
comparator. If a matched entry is found, the LPM comparator outputs the next hop of
the entry. Otherwise, the LPM comparator outputs the default next hop.

The destination IP address is also compared with TCAM entries. If a matched entry
is found in the TCAM, the result of the TCAM is chosen as the next hop by the selector.
Otherwise, the result of the LPM comparator or the segment table is chosen.

3.3 Update Operation

When a route is updated or inserted, it is compared with all entries in its associative set.
If a matched entry is found, the route is an updated route and replaces the matched entry.
Otherwise, the route is an inserted route. If there is an empty entry in the associative
set, the route is inserted into the empty entry; otherwise, the new NHA with double size
is allocated and reconstructed.

When a route is deleted, it is compared with all entries in its associative set. If a
matched entry is found, it is simply deleted. Otherwise, no operation is performed since
there is no deleted route in the NHA. If an updated, inserted or deleted route is associ-
ated with multiple sets, this procedure is repeatedly performed for multiple associative
sets.

3.4 Entry Formats

The entry formats of the segment table and the NHA table in the proposed scheme are
shown in Fig. 3. The pointer/size of the segment table entry and the prefix/length of the
NHA table entry use compact formats, reducing the entry width.

prefix / length next-hop

9 8

next-hop

pointer / size

19

0

1

flag

(a) (b)

Fig. 3. The entry formats: (a) segment table entry (b) NHA table entry

A segment table entry consists of 1-bit flag and 19-bit NHA pointer/size. If the flag
is 0, the pointer/size field is a next hop; otherwise, it represents a NHA pointer and the
NHA size. Let (x,y) be the concatenation of x and y. The format of the pointer/size field
is as follows.

Hardware-Based IP Lookup Using n-Way Set Associative Memory 411

1. If the NHA size is 2k sets, the pointer/size field is (ptr[16 : k],1 << k,0), where
<< is shift left operator and thus, 1 << k is a (k + 1) bit value, 10 · · ·0

2. If the NHA size is part of a set, the pointer/size field is (ptr[16 : 0],1,1). The NHA
size is represented by rightmost bits of ptr[16 : 0].

If the NHA size is 2k sets (k ≥ 1), the pointer to the associative set is the concatena-
tion of ptr[16 : k] and k bit set selection index. If the NHA size is equal to or less than
a set, the NHA pointer is ptr[16 : 0].

The NHA table entry consists of 9-bit prefix/length and 8-bit next hop. The 9-bit
prefix/length represents the prefix and its prefix length in compact format as follows:

If the length of prefix p is m bits, the prefix/length field is (p[17 : m],1 << (24−m)).

For example, the prefix/length value of prefix A.B.32/20 (0010****) is 001010000. A
9-bit prefix/length value of an NHA entry is converted into a 8-bit prefix and 8-bit prefix
mask in the LPM comparator.

3.5 LPM Comparator

For a destination IP address, the LPM comparator compares IP[17:24] with n prefixes
stored in the associative set in parallel and determines an entry with the longest matched
prefix among them. Fig. 4 shows the architecture of the LPM comparator, which con-
sists of n matched bit pattern generator, the longest prefix resolver, and a selector.

mask
gen

ek[1:9] mk[1:8]

comparatorIP[17:24] eqk

mask
filter

mb1

NH2

mbk[1:8] mb2

mbn

lmb

=
=

=

s[1]
s[2]

s[n]

longest prefix resolver
matched bit pattern generator

selector

nh1 nh2 nhn

(a) (b)

or

Fig. 4. The architecture of the LPM comparator

A matched bit pattern generator outputs a matched bit pattern by comparing an IP
address with a prefix of each NHA entry. A mask generator outputs 8-bit bit mask,
mk[1 : 8] from 9-bit prefix/length of the k-th NHA entry, ek[1 : 9] as follows:

mk[j] = ek[j + 1]∨ ek[j + 2]∨·· ·∨ ek[9] (j = 1,2, · · · ,8)

where ∨ is OR operator. For example, if a prefix/length ek is 011010000, a bit mask mk

is 11110000. If mk[j] is 0, the j-th bit of the prefix is don’t care. A comparator compares
a prefix of the k-th NHA entry with the IP address in bitwise as follows:

cmpk[j] = (ek[j]⊕ IP[16 + j])∧mk[j] (j = 1,2, · · · ,8)

412 S. Yun

where ⊕ is exclusive-OR operator and ∧ is AND operator. If the values in the j-th bit
are not matched, cmpk[j] is 1. Since a don’t care bit is a matched bit, if mk[j] is 0, then
cmpk[j] is 0. If all bits of cmpk are zero, eqk is 1 and it means that the IP address is
matched with the prefix of the k-th NHA entry.

A mask filter outputs the matched bit pattern mbk of each NHA entry. A matched
bit pattern represents the location of matched bits. For example, if mbk is 11110000,
matched bits are leftmost 4 bits, and if mbk is 00000000, there is no matched bit. If eqk

is 1, mbk is equal to mk; otherwise mbk is 0 since the IP address is not matched with the
k-th entry.

The longest prefix resolver determines the location of the longest prefix entry by
generating n bit selection signal s[1 : n], each bit of which corresponds to each NHA
entry, from n matched bit patterns. Let 1x0y be the concatenation of x consecutive 1’s
and y consecutive 0’s. A matched bit pattern is the form of 1x08−x(x = 0,1, · · · ,8). The
longest matched entry is an entry which generates a matched bit pattern with the largest
x. The matched bit pattern of the longest matched prefix, lmb is the same as the result of
bitwise OR operation of all matched bit patterns. The longest prefix resolver outputs n-
bit selection signal s[1 : n] by comparing each matched bit pattern mbk with the longest
matched bit pattern lmb. If eqk is 1 and mbk is equal to lmb s[k] is 1 and the k-th entry
is the longest prefix matched entry; otherwise, s[k] is 0.

A selector outputs the next hop of the longest prefix entry selected by the selection sig-
nal s from n next hops. If there is no matched entry, a selector outputs a default next hop.

4 Performance Evaluation

The performance of the proposed scheme and Lin’s scheme is evaluated under realistic
prefix data, obtained from the CIDR aggregated prefix routing table [10] in January
2005. Table 2 presents the characteristics of three prefix data sets and the NHA memory
requirements for two schemes.

The memory requirements of the proposed scheme are obtained by simulation and are
measured for four cases: 8-way, 16-way, 32-way, and 64-way set associative schemes. It
can be seen that the memory requirements are reduced to approximately half or below

Table 2. Comparisons of NHA memory requirement

AS1221 AS4637 AS6447

Prefixes 104,668 103,139 115,496
Nonempty segments 22,492 22,447 22,482
Segment with NHA 7,801 7,760 8,190
Prefixes with Length>24 217 1 1,485

Lin’s scheme [5] 1149K 1144K 1205K
8-way set associative 571K 564K 638K

Proposed 16-way set associative 359K 351K 399K
scheme 32-way set associative 304K 299K 336K

64-way set associative 298K 295K 330K

Hardware-Based IP Lookup Using n-Way Set Associative Memory 413

of that of Lin’s scheme, although the NHA entry size in the proposed scheme (17-bit)
is larger than that in Lin’s scheme (8-bit). Increasing the set associativity n decreases
the memory requirement, but makes a LPM comparator more complex. A 16-way set
associative scheme is a reasonable choice. In addition, the size of the segment table is
also reduced since its entry size is the smaller (20-bit) than in Lin’s method (32-bit).

Fig. 5 presents the distribution of NHA sizes in the proposed scheme using 16-way
set associative memory. About 75% of NHAs is single set or less in size and this reduces
the memory requirements.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

1/8 1/4 1/2 1 2 4 8 16 sets

ra
tio

AS1221

AS4637

AS6447

Fig. 5. The distribution of NHA sizes (16-way)

During lookup operation, the proposed scheme requires at most two memory ac-
cesses, where one is the segment table or TCAM and the other is the NHA table. Pre-
vious schemes are characterized by poor update speed since each prefix corresponds to
multiple NHA entries due to heavy prefix expansion. In the proposed scheme, above
90% of all prefixes corresponds to a single set without prefix expansion and fast updat-
ing speed is achieved. However, the proposed scheme requires additional logic such as
LPM comparator.

5 Conclusions

The routing prefixes with a router are still in sparse distribution, even as the rapid in-
crease of Internet hosts is maintained. Previous IP routing schemes using an index-based
NHA are inefficient in aspects of both memory requirement and updating speed, due to
heavy prefix expansion. In this paper, a new hardware based IP lookup scheme using
n-way set associative memory and LPM comparator is proposed. The LPM comparator
compares an IP address with multiple prefixes in parallel and determines the longest
matched entry. The proposed scheme can significantly reduce memory requirements to
approximately 50% or below compared with Lin’s scheme. In addition, it completes an
IP lookup operation with at most two memory accesses and provides faster updating
speed. Thus, the proposed scheme is an efficient hardware-based IP lookup scheme.

414 S. Yun

Acknowledgement

This work was supported by Yonsei University, Magi Research Fund, 2004.

References

1. Fuller, V., Li, T., Yu, J., Varadhan, K.: Classless inter-domain routing (CIDR): and address
assignment and aggregation strategy, RFC1519 (1993)

2. Huang, N.F., Zhao, S.M.: A novel IP-routing lookup scheme and hardware architecture for
multigigabit switching routers. IEEE J. Selected Areas in Communications 17 (1999) 1093–
1104

3. Wang, P.C., Chan, C.T., Chen, Y.C.: High-performance IP routing table lookup. Computer
Communications 25 (2002) 303–312

4. Ravikumar, V.C., Rabi, N.M.: TCAM architecture for IP lookup using prefix properties.
IEEE Micro 24 (2004) 60–69

5. Akhbarizadeh, M.J., Nourani, M., Cantrell, C.D.: Prefix segregation scheme for a TCAM-
based IP forwarding engine. IEEE Micro 25 (2005) 48–63

6. Lin, P.C., Chang, C.J.: A priority TCAM IP-routing lookup scheme. IEEE Communications
Letters 7 (2003) 337–339

7. Lim, H., Seo, J., Jung, Y.: High speed IP address lookup architecture using hashing. IEEE
Communications Letters 7 (2003) 502–504

8. Desai, M., Gupta, R., Karandikar, A., Saxena, K., Samant, V.: Reconfigurable finite-state
machine based IP lookup engine for high-speed router. IEEE J. Selected Areas in Commu-
nications 21 (2003) 501–512

9. Sangireddy, R., Somani, A.K.: High-speed IP routing with binary decision diagrams based
hardware address lookup engine. IEEE J. Selected Areas in Communications 21 (2003)
513–520

10. Huston, G.: CIDR report, http://www.cidr-report.org (2005)

A Flash File System to Support Fast Mounting
for NAND Flash Memory Based

Embedded Systems

Song-Hwa Park1, Tae-Hoon Lee1, and Ki-Dong Chung2

Dept. of Computer Science, Pusan National University,
Kumjeong-Ku, Busan 609-735, Korea

1{downy25, withsoul}@melon.cs.pusan.ac.kr,
2kdchung@pusan.ac.kr

http://apple.cs.pusan.ac.kr�

Abstract. In embedded systems, NAND flash memory is typically used
as a storage medium because of its non-volatility, fast access time and
solid-state shock resistance. However, it suffers from out-place-update,
limited erase cycles and page based read/write operations. Flash file
systems such as JFFS2 and YAFFS, allocate memory spaces using LFS
(Log-structured File System) to solve these problems. Because of this,
many pieces of a file are scattered through out flash memory. Therefore,
these file systems should scan entire flash memory to construct the data
structures during the mounting. This means that it takes a long time
to mount such file systems on a large chip. In this paper, we design and
propose a new flash memory file system which targets mobile devices that
require fast mounting. We experimented on the file system performance
and the results show that we improve the mounting time by 64%–76%
as flash usage compared to YAFFS.

1 Introduction

Embedded computing systems such as mp3 player, digital camera and RFID
reader should be able to provide an instant start-up time [1]. In these systems,
flash memory is widely used as storage system because of its benefits. It is non-
volatile, meaning that it retains data even after power is turned off and consumes
relatively little power. In addition, flash memory offers fast access times and
solid-state shock resistance. These characteristics explain the popularity of flash
memory for embedded systems.

There are two major type of flash memory according to the gate type and
structure of the memory cell: NOR flash and NAND flash. For NOR flash mem-
ory, the page size is typically 1 byte, meaning that each byte can be read and
written individually. For NAND flash memory, on the other hand, the page size

� This work was supported by the Regional Research Centers Program (Research
Center for Logistics Information Technology), granted by the Korean Ministry of
Education & Human Resources Development.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 415–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

416 S.-H. Park, T.-H. Lee, and K.-D. Chung

is typically 512 bytes, so it offers higher read/write performance than NOR flash
memory. As a result, it is widely used as the secondary storage systems [2].

Despite the advantages of NAND flash memory, it has several hardware char-
acteristics that make straightforward replacement of existing storage media dif-
ficult. Firstly, it suffers from inability that does not provide the update-in-place.
In ordinary writing, it can transit from one state (called initial state) to an-
other, but it can’t make the reverse transition. As a result, block erase operation
is required for rewriting the contents of a block. Secondly, it can not be read or
programmed smaller than a page (e.g. 512B, 2KB). Lastly, blocks have limited
endurance due to wear out on the insulating oxide layer around the charge stor-
age mechanism used to store data. Therefore the erase operation must be done
evenly to all blocks to avoid wearing out specific blocks which would affect the
usefulness of the entire flash memory. This is usually named as wear leveling or
cycle leveling [3][4].

As the conventional file systems cannot be applied directly to flash memories
due to above mentioned limitations, new flash file systems such as JFFS2 [5] and
YAFFS [6] were developed. JFFS2 is a journaling file systems based on flash mem-
ory that keep metadata to avoid errors and corruption. Files are broken into several
smaller nodes,which contain the actual data.Whenupdate operation occurs, a new
node is created and the updated data is written to the node. Therefore, JFFS2 must
scan the entire flash memory space at mounting time to collect the scattered data.
Then the collected data are reorganized in RAM. It takes a long time and memory
consumption is enormous. YAFFS is the first file system that is designed specifi-
cally for NAND flash memory and outperforms JFFS2 with respect to mount time
and amount of memory consumption. However, it also has a long mounting time
problem because it scans the spare areas of every block to check validation of data.
In cases of JFFS2 and YAFFS, the flash mount time heav-ily depends on the flash
capacity and stored data size.

Since flash chip capacity is increasing every year, the flash mounting time will
soon become the most dominant reason of the delay of system start-up time
[8]. Our goal is to design and implement a fast NAND flash file system. To
support fast mounting, we keep the location of the required data such as block
information, metadata during the mounting.

This paper is organized as follows. In Section 2, we describe JFFS and YAFFS,
the flash file systems, respectively. In Section 3, we present our proposed file
system to support fast mounting. The evaluation results are presented in Section
4, and the con-clusion is shown in Section 5.

2 NAND Flash File Systems

In this section, we introduce the flash file system, JFFS2 and YAFFS.

2.1 JFFS2

JFFS was originally developed for the 2.0 kernel by Axix Communications in
Sweden. It is a journaling file system designed for small NOR (≤ 32MB) flash

A Flash File System to Support Fast Mounting 417

memory. David Woodhouse and others improved JFFS and developed JFFS2
which addresses the issues of JFFS by providing compression, automatic leveling
and NAND flash mem-ory support [9].

JFFS2 consists of simply a list of nodes and log entries. Each node contains
actual data to be inserted into files or delete instructions and a log entry contains
information about write operations on file. Nodes are written to flash sequentially
starting at the first block. When update operation occurs, the updated data
is written to other place since JFFS2 is based on LFS (Log-structured File
System) to solve the out-of-place problem [8]. This makes the related nodes and
log entries on the same file scattered throughout the flash memory. In order to
collect the scattered data, JFFS2 scans all nodes and log entries to construct file
system at mounting time. Also it checks the consistency and executes a garbage
collection thread during the mounting. The gar-bage collection thread copies
valid nodes in one block to another block, then erases blocks to get free space.
Therefore, JFFS takes a long mounting time and consumes large amount of main
memory.

Even though JFFS2 solved and improved the problems of JFFS, it has still
some problems when applied to the NAND flash memory. Firstly, the arbitrary
size of jour-naling nodes causes a fragmentation of pages on NAND flash memory.
Secondly, JFFS2 has faced the serious problems such as slow mounting and
wasteful memory consump-tion as NAND flash chips become larger. To overcome
these problems, the JFFS3 [8] draft was issued and developed.

2.2 YAFFS [6][11]

YAFFS (Yet Another Flash Filing System) is the first file system designed specif-
ically for NAND flash memory. It was designed and developed by Charles Man-
ning of the company Aleph One. Instead of using a kind of translation layer such
as FTL on flash devices to emulate a normal hard drive, it places the file system
directly on the flash chips. Fig. 1 shows the organization of YAFFS. It works
on a small NAND flash memory which consists of several blocks. Generally, a
small NAND flash memory is composed of 32 pages and each page has spare
area which contains the additional information on corresponding page.

Fig. 1. Flash memory structure of YAFFS

418 S.-H. Park, T.-H. Lee, and K.-D. Chung

In YAFFS, data is stored on NAND flash in chunks. Each chunk is the same
size as a page and has a unique id (referred as chunkID). A chunk can hold either
an object header or file data. If chunkID of a chunk is zero, the chunk holds an
object header which describes a directory, file, symbolic link or hard link. Other-
wise, the chunks holds file data and the value of chunkID indicates the position
of the chunk in the file [12]. The spare area contains the information about the
corresponding chunk such as chunkID, serialNumber, byteCount, objectID and
ECC and others. When a chunk is no longer valid, YAFFS marks a particular
byte in the spare area of the chunk as dirty. When entire pages of a block are
marked as dirty, YAFFS erases the block and re-claim the space. If free space on
the device is low, YAFFS chooses a block that has some number of dirty pages
and valid pages. In this case, the valid pages are moved to a new block accord-
ing to garbage collection and the old pages are marked as dirty. YAFFS marks
every newly written chunk with a serial number that is monotonically increasing.
Thereby when YAFFS scans the flash, it may detect multiple data chunks of one
file that have identical ChunkID. It can choose the latest chunk by taking the
greatest serial number. However, the data chunks are scattered throughout flash
mem-ory, YAFFS should scan the entire flash memory at mounting time. This
means that the mounting time of YAFFS heavily depends on the flash capacity
and the stored data size the same as JFFS2.

3 A NAND Flash File System to Support Fast Mounting

In this section, we describe the NAND flash file system architecture which sup-
ports fast mounting.

3.1 On-Flash Data Structures

In this paper, we aim to provide fast mounting without regard to the flash
memory capacity and amount of stored data. To satisfy this requirement, we
propose a file system architecture in flash memory as is shown in Fig 2. In case
of JFFS2 and YAFFS, the related data are spread all around flash memory. This
scheme causes long mounting time. Therefore, keeping the location of the related
data is the key to support fast mounting.

In the proposed architecture, the flash memory is managed as separated two
areas, Location Information Area (referred as LIA) and General Area (referred
as GA). Es-pecially, LIA maintains the latest location information. It occupies
the several groups of blocks and firstly read during the mounting. GA is the
remaining area except LIA in flash memory. In this area, all sub-areas such as
metadata, data and block information are stored. Let us show the characteristics
of each sub-area one by one.

Location Information Area. LIA keeps the latest location information where
the metadata and block status are written. LIA is set to a fixed size and used
in a round-robin manner. Loc Info, the data structure for location information,
is described in the left side of Fig. 2. It is a page-size data structure due to the

A Flash File System to Support Fast Mounting 419

Fig. 2. The proposed flash file system architecture in flash memory

limitation of NAND flash memory I/O unit. Loc Info consists of block info and
meta data fields. Block info fields point to the location where the latest block
information are written. Array of meta data field stores the latest addresses of
the metadata sub-area where the metadata are stored. The number of index in
the array limits the maximum number of files in the file system. In Fig. 2, the
maximum number of files is 16,205.

General Area. GA includes all sub-areas such as metadata, file data and
block info. These sub-areas except data block are managed based on segment
unit. Let us show the characteristics of each sub-area. First, metadata area con-
sists of a number of independent segments which composed of several blocks.
We store all metadata for objects such as files, directories, hard links and sym-
bolic links in this area. Fig. 3 shows the Meta Data structure of the proposed

Fig. 3. An example of management of a file using Meta Data

420 S.-H. Park, T.-H. Lee, and K.-D. Chung

Fig. 4. Block Info data structure containing status of all blocks in flash

file system. Unlike the conventional flash file system such as JFFS2 and YAFFS,
the proposed file system contains file locations in metadata. Since all Meta Data
structures are belonged to metadata sub-area, we can construct the data struc-
tures in RAM by only scanning the metadata sub-area during the mounting.

Second, block info area stores the Block Info data structures that contain the
newly updated status of all blocks in flash memory. For each block, Block Info
keeps the information of the number of pages in use, block status, block type and
etc. as shown in Fig. 4. We make use of this information to determine policies
such as new block allocation and garbage collection. When unmounting the file
system, the latest Block Info structures are written to flash memory.

3.2 In-Memory Data Structures

A procedure which mounts the file system includes constructing of block status
and creating the data structure for object in RAM. A directory, file, hard link
and symbolic link are abstracted to objects. Object structures are created for
run-time support of operations on opened file and are managed by a list. For
a file, Fnodes forms a tree structure that speeds up the search for data chunks
in a file. The memory consumption of the proposed file system is similar to
that of YAFFS since it also maintains the data structure for block information,
metadata and data locations in RAM.

Block Status data structure. The block info area stores the Block Info data
structures that contain the status of all blocks in flash memory. The Block Status
data structures are created in RAM using the Block Info data. These contain
the information of corresponding block information and are managed by using
an array. The index of an array denotes the corresponding block number. The
Block Status in RAM reflects the change on block status in flash memory. The
Fig. 5 shows an example of Block Status update. As an application performs

A Flash File System to Support Fast Mounting 421

Fig. 5. An example of Block Status update in RAM

write operation, we allocate the space using the Block Status information in
RAM. The 20th block status is changed as the pages in the block are allocated
for write operation. When unmounting the file system, the updated Block Status
information is stored in block info area.

Object data structure. An object can be a directory, file, hard link or sym-
bolic link. During the mounting, the Object structures are created in RAM by
loading Meta Datas in metadata area. The relationship between these two struc-
tures is illustrated in Fig. 6. An Object knows about its corresponding metadata

Fig. 6. Object management in RAM

422 S.-H. Park, T.-H. Lee, and K.-D. Chung

Fig. 7. Fnode data structure

location in flash memory. Modifications to the directory, file, hard link or sym-
bolic link are reflected in the Object as they occur.

Fnode data structure. The file locations are maintained by a tree structure
as described in Fig. 7. For a file, the Fnode data structures are created in RAM
for managing its data location. The Fnode structures form a tree structure that
speeds up the search for data chunks in a file. Depending on where it is in the
tree, each Fnode holds the dif-ferent information. If it is at the lowest level,
then it points to the data location. Otherwise, it points to lower-level Fnodes.
When the file is created, it is assigned only one low-level Fnode. When the file
expands past what a single Fnode can hold, then it is assigned a second Fnode
and an internal node is added to point to the two Fnodes. As the file grows,
more low-level Fnodes and high level Fnodes are added.

4 Experimental Results

In this section, we evaluate the performance of the proposed file system.

4.1 Experiment Environment

We implemented our proposed file system and experimented using an embedded
board. We used PXA255-Pro III board made by Huins. Fig. 8 summarizes the
PXA255-Pro III board specification. We used 64 MB Samsung NAND flash mem-
ory for our experiments. The block size of the memory is 64 KB and the page size
is 512 B. Even though JFFS2 supports NAND flash memory, it doesn’t manage
bad blocks and has longer mounting time than YAFFS because of checking file

A Flash File System to Support Fast Mounting 423

Fig. 8. PXA255-Pro III board specification

consistency and performing garbage collection. So we compare the performance
of the proposed file system with that of YAFFS.

The performance metric was the mounting time. Since the mounting time
of flash file system heavily depends on data size and flash memory usage, we
evaluated performance by increasing the flash memory usage. For experiments,
we created test data with reference to write access denoted as in [13]. The average
file size is around 22KB and most files are smaller than 2KB.

4.2 Mounting Time Performance

Fig. 9 shows the average mounting times of YAFFS and the proposed file sys-
tem. We measured the mounting time by increasing the flash memory usage
from 10% to 80%. The result explains that the mounting time for YAFFS is
uniformly high. This is because YAFFS should scan the entire flash memory
regardless of flash memory usage to construct the data structures. In contrast

Fig. 9. Mounting time comparison according to flash memory usage

424 S.-H. Park, T.-H. Lee, and K.-D. Chung

to YAFFS, mounting time of proposed file system is in proportion to amount of
block info and metadata areas. So we improve the mounting time of YAFFS by
64%–76%.

5 Conclusions

In this paper, we designed a new NAND flash file system, which provides fast
mounting. To support fast mounting, we divide flash memory into Location Infor-
mation Area and General Area. LIA is fixed in location and includes the block ad-
dresses for important file systemdata except file data.During themounting,we can
construct the data structures in RAM using the location information. GA includes
the real data for file system such as metadata, file data and block information.

We evaluated our proposed file system by experiments. According to results,
we improved the mount time by 64%–76% as flash usage compared to YAFFS.

Although we do not mention in this paper, we are developing the effective
wear-leveling algorithm suitable for embedded system. Also we are planning to
develop journaling mechanism in order to provide file system consistency against
sudden system faults.

References

1. T.R. Bird: Methods to Improve Bootup Time in Linux. In Proc. of the Ottawa
Linux Symposium (OLS). Sony Electronics (2004).

2. Two Technologies Compared: NOR vs. NAND.
www.m-sys.com/NR/rdonlyres/24795A9E-16F9-404A-857C-
C1DE21986D28/229/NOR vs NAND5.pdf

3. M. L. Chang, P. C. H. Lee, R. C. Chang: Managing Flash Memory in Personal
Communication Devices. Proc. of IEEE Symp. on Consumer Electronics (1997)
177–182 erlin Heidelberg New York (1996)

4. Mei-Ling Chiang, Paul C. H. Lee Ruei-Chuan Chang: Cleaning Policies in Mobile
Computers Using Flash Memory: Journal of System and Software ibr. 1 (1997)
108–121

5. David Woodhouse: JFFS: The Journaling Flash File System. Technical Paper of
RedHat inc. (2001)

6. YAFFS Spec. http://www.aleph1.co.uk/yaffs/yaffs.html.
7. M.Resenblum and J.K.Ousterhout: The Design and Implementation of a Log-

Structured File System: ACM Transaction on Computer Systems Vol.10. (1992)
pp.26–52

8. Samsung Electronics: Advantages of SLC NAND Flash Memory.
http://www.samsungelectronics.com/

9. Flash Filesystems for Embedded Linux Systems.
http://linuxjournal.com/node/4678/.

10. JFFS3 Design Issue.
http://www.linux-mtd.infradead.org/tech/JFFS3design/

11. YAFFS. http://en.wikipedia.org/wiki/YAFFS
12. Understanding the Flash Translation Layer(FTL) specification. Intel (1997)
13. G. Irlam: Unix File Size Survey. http://www.base.com/gordoni/gordoni.html

Rescheduling for Optimized SHA-1 Calculation

Ricardo Chaves1,2, Georgi Kuzmanov2,
Leonel Sousa1, and Stamatis Vassiliadis2

1 Instituto Superior Técnico/INESC-ID. Rua Alves Redol 9, 1000-029 Lisbon,
Portugal

http://sips.inesc-id.pt/
2 Computer Engineering Lab, TUDelft. Postbus 5031, 2600 GA Delft,

The Netherlands
http://ce.et.tudelft.nl/

Abstract. This paper proposes the rescheduling of the SHA-1 hash
function operations on hardware implementations. The proposal is
mapped on the Xilinx Virtex II Pro technology. The proposed reschedul-
ing allows for a manipulation of the critical path in the SHA-1 func-
tion computation, facilitating the implementation of a more parallelized
structure without an increase on the required hardware resources. Two
cores have been developed, one that uses a constant initialization vector
and a second one that allows for different Initialization Vectors (IV), in
order to be used in HMAC and in the processing of fragmented messages.
A hybrid software/hardware implementation is also proposed. Experi-
mental results indicate a throughput of 1.4 Gbits/s requiring only 533
slices for a constant IV and 596 for an imputable IV . Comparisons to
SHA-1 related art suggest improvements of the throughput/slice metric
of 29% against the most recent commercial cores and 59% to the current
academia proposals.

1 Introduction

In current days, cryptography systems are the support for many innovations
in both the industrial and the private sectors, being used from high security
demanding applications, such as in banking transactions, to low security appli-
cations, like television. Three major classes of encryption algorithms exist: public
key algorithms, symmetric key algorithms, and hash functions. While the first
two are used to encrypt and decrypt data, the hash functions are unidirectional
and do not allow the processed data to be retrieved. They are however extremely
useful in data authentication and message integrity checks. Currently the most
common hash functions are the MD5 and the SHA-1.Collision attacks have been
found for both hash functions, however, while for MD5 they are computationally
feasible on a standard desktop computer [1], the current SHA-1 attacks still re-
quire a massive computational power [2] (around 269 hash operations), making
it unfeasible in practical attacks for the time being.

Hash functions have the particularity of generating a small fixed length output
value, the digest message or hash value, that is highly correlated with the input

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 425–434, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

426 R. Chaves et al.

data, which can be significantly larger (up to 264 bits). The most important
characteristics of these functions is the fact that virtually no information about
the input data can be obtained from the outputted hash value. An adequate hash
function has a very low probability of two different input data streams generating
the same hash value. The Secure Hash Algorithm 1 (SHA-1) was approved by
the NIST in 1995 as an improvement to the SHA-0, and is currently used in the
main security applications, such as SSH, PGP, and IPSec.

As shown in the next section, the SHA-1 computational structure is quite
straightforward and with a big data dependency, not allowing for efficient pipelin-
ing. Some works improve the SHA-1 computational throughput by unrolling
the calculation structure, causing a significant increase on the required hard-
ware [3, 4]. The fully rolled architecture proposed in this paper achieves a high
throughput for the SHA-1 calculation, via the rescheduling of some operations,
with a minimal area increase. The proposed SHA-1 core has been implemented
within the reconfigurable co-processor of a Xilinx Virtex II Pro MOLEN proto-
type [5]. Implementation results of the proposed SHA-1 core indicate:

– A throughput of 1.4 Gbits/s with 533 Slices (2.7 Mbps per slice);
– An efficiency improvement to related art by 29% to 59%.

The hybrid implementation results indicate:

– 150x speedup with respect to the software implementation;
– 670% improvement to related art;

The paper is organized as follows. Section 2 presents an overview on the
SHA-1 hash function and its computational characteristics. Section 3 describes
the proposed architecture and the computational rescheduling of the SHA-1 core
and the block expansion. Section 4 presents the obtained experimental results
and compares them to other state-of-the-art SHA-1 implementations, both from
academia and commercial companies. Section 5 concludes this paper with some
final remarks.

2 SHA-1 Hash Function

In 1993 the Secure Hash Standard (SHA) was first publishes by the NIST,
however some weakness were found and in 1995 a revised algorithm was pub-
lished [6].This revised algorithm is usually referenced as SHA-1. The SHA-1
produces a single output message digest (the output hash value) of 160-bit from
an input message. The input message is composed by multiple blocks of 512 bits
each. Afterwards, the input block is expanded into 80 32-bit words (denoted
as Wt), one 32-bit word for each round of the SHA-1 processing. Each round
computation comprises additions and logical operations, such as bitwise logi-
cal operations (in ft) and bitwise rotations to the left (denoted by RotLi), as
depicted in Figure 1.

The function (ft) calculation depends on the round being executed, as well as
the value of the constant Kt; the SHA-1 80 rounds are divided into four groups of

Rescheduling for Optimized SHA-1 Calculation 427

+ + +

RotL30

ft

E

D

C

B

A

E

D

C

B

A

Wt

Kt

32

32

32

32

32

32

32

3232

32

32

RotL5

32

Fig. 1. SHA-1 Round calculation

20 rounds each. Table 1
presents the values of
Kt and the logical func-
tion executed, according
to the round. In this Ta-
ble, ∧ represents the bit-
wise AND operation and
⊕ represents the bitwise
XOR operation.

The initial values of the
A to E variables in the be-
ginning of each data block
calculation correspond to
the value of the current
160-bit hash value, H0 to
H4. After the 80 rounds
have been computed, the
A to E 32-bit values are

added to the current Hash values. The Initialization Vector (IV) of the hash
value for the first block is a predefined constant value. The output digest mes-
sage is the final hash value, after all the data blocks have been computed.
To better illustrate the algorithm a pseudo code representation is depicted in
Figure 2. In some higher level applications such as the keyed-Hash Message

Table 1. SHA-1 functions and constants

Rounds Function Kt

0 to 19 (B ∧ C) ⊕ (B ∧ D) 0x5A827999
20 to 39 B ⊕ C ⊕ D 0x6ED9EBA1
40 to 59 (B ∧ C) ⊕ (B ∧ D) ⊕ (C ∧ D) 0x8F1BBCDC
60 to 79 B ⊕ C ⊕ D 0xCA62C1D6

Authentication Code (HMAC) [7] or when a message is fragmented, the initial
hash value (IV) may differ from the constant specified in [6].

Data block expansion: In the SHA-1 algorithm the computation described in
Figure 1 is performed 80 times (rounds), in each round an 32-bit word obtained
from the current data block is used. However, each data block only has 16 32-
bits words, resulting in the need to expand the initial data block to obtain the
remaining 64 32-bit words. This expansion is performed by computing (1), where
M

(i)
t denotes the first 16 32-bit words of the i-th data block.

Wt =

⎧⎨
⎩

M
(i)
t 0 ≤ t ≤ 15

RotL1(Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) 16 ≤ t ≤ 79
(1)

428 R. Chaves et al.

for for each data block do

Wt = expand(data block)
a = H0 ; b = H1 ; c = H2 ; d = H3 ; e = H4

for t= 0, t≤79, t=t+1 do
Temp = RotL5(a) + ft(b,c,d) + e + Kt + Wt

e = d
d = c
c = RotL30(b)
b = a
a = Temp

end for

H0 = a + H0 ; H1 = b + H1 ; H2 = c + H2
H3 = d + H3 ; H4 = e + H4

end for

Fig. 2. Pseudo Code for SHA-1 function

In order to as-
sure that the input
message is a mul-
tiple of 512 bits,
as required by the
SHA-1 algorithm, it
is necessary to pad
the original message.
This message padding
also comprises the
inclusion of the orig-
inal message dimen-
sion to the padded
message, which can
be used to validate
the size of the orig-
inal message.

3 SHA-1 Implementation

As depicted in Figure 1, the computational structure of the SHA-1 algorithm is
rather straightforward. However, in order to compute the values of one round the
values from the previous round are required. This data dependency imposes a
sequentiality in the processing, preventing parallel computation between rounds.
The only parallelism that can be efficiently explored is in the operations of each
round. Some approaches [3] attempt to speedup the processing by unrolling
the computation. With this technique, a speedup can be achieved, since the
computation is performed as soon as the data becomes available. However, this
approach carries with it a mandatory increase in the required circuit area. Other
approaches, e.g. [4], even try to increase the throughput via the usage of a
pipelined structure. However, this makes the core unusable in real applications,
since one data block can only be processed when the previous one has been
concluded, due to the data dependency of the algorithm.

In this paper, we propose a functional rescheduling of the SHA-1 hardware
units, in order to obtain the throughput increase of the unrolled architectures,
while maintaining the hardware requirements identical to the fully folded ones.

Operations rescheduling: From Figures 1 and 2 it can be seen that the bulk
of the SHA-1 round computation is oriented for the A value calculation. The
remaining values do not require any computation, apart from the rotation of B,
their values are given by the previous value of the variables A to D.

Given that the value of A is calculated with the addition of the previous value
of A along with other values, no parallelism can be exploited due to the data
dependency, as depicted in (2).

At+1 = RotL5(At) + [f(Bt, Ct, Dt) + Et + Kt + Wt] (2)

Rescheduling for Optimized SHA-1 Calculation 429

CPA
+

ft

Et

Dt

Ct

Bt

M
U
X

MUX

KtWt

CSA

+

St-1 ßt-1

H0

0

St

ßt

Bt

Ct

Dt

H4

M
U
X

Dt+1

H3

At

M
U
X

Bt+1

H1

H0

M
U
X

Ct+1

H2

At

Et+1

Dt+1

Bt+1

Ct+1

At At-1

St-1

ßt-1

Et+1

+H3

M
U
X

Dt

IV3

H3

enb3

M
U
X

IV0 H0

enb0

+H4

M
U
X

Et

IV4

H4

enb4

+H1

M
U
X

Bt

IV1

H1

enb1

+H2

M
U
X

Ct

IV2

H2

enb2

RotL5

reset

reset

RotL30

RotL5

Fig. 3. SHA-1 rescheduling and internal structure

Nevertheless, since only the parcel RotL5(At) of (2) depends on the variable At,
and all remaining parcels depend on variables that require no computation and
do not depend on the value of At, some pre-computation can be performed. In (3)
the parcel of (2) that does not depend of the value A is pre-computed, producing
the carry (βt) and save (St) vectors of the partial addition. The following holds:

St + βt = f(Bt, Ct, Dt) + Et + Kt + Wt (3)

The calculation of the value of At, when part of its value is pre-computed on the
previous computational cycle, is described in the following:

At = RotL5(At−1) + (St−1 + βt−1) (4)
St + βt = f(Bt, Ct, Dt) + Et + Kt + Wt

By splitting the value A computation and rescheduling it to different computa-
tional cycles, the critical path of the SHA-1 algorithm is significantly reduced.
Since the calculation of the function f(B, C, D) and the partial addition are no
longer in the critical path, the critical path of the algorithm is reduced to a 3
input adder and some additional selection logic, as depicted in Figure 3. With
this rescheduling an additional clock cycles is required since in the first clock
cycle the value A is not calculated, (A−1 is not used) and in the last additional
cycle the values B81, C81, D81, E81 are also not used. This extra additional cycle
however, will be masked in the calculation of the value of the hash of each data
block, as explained below.

After the 80 rounds of the SHA-1 algorithm for each data block, the final value
of the internal variables (A to E) is added to the current hash value H, which
remains unchanged until the end of each data block calculation, as depicted in

430 R. Chaves et al.

Figure 2. This final addition is performed by one adder for each 32 bits of the
160-bit hash value. However, the addition of the value H0 is performed directly
in the round calculation, in the CSA adder. With this option, an extra full adder
is saved and the H0 value calculation, that depends on the value A, is performed
with less one clock cycle. Thus the calculation of all the hash value is concluded
in the same cycle and the additional clock cycle caused by the value A calculation
rescheduling is masked.

Hash value initialization: For the first data block, the internal hash value
has to be initialized. This is performed by adding the Initialization Vector (IV)
with zero, with this zero value being generated by resetting the internal values
registers. This value is afterwards loaded to the internal values (B to E), through
a multiplexer. Once more the value A initialization is performed in a distinct
form in order to maintain the critical path as small as possible. In this case the
value of H0 is not set to the register A, instead the value A is set to zero and the
value of H0 directly introduced into the calculation of A, as described in (5).

S0+β0 =f(BH1 , CH2 , DH3)+EH4+K0+W0+RotL5(H0)

A1 = RotL5(A0) + (S0 + β0) = RotL5 (0) + (S0 + β0) (5)

The IV can be the constant value defined in [6] or application dependent, e.g.
the HMAC or in hashing fragmented messages. In the first case the multiplexer
that performs the selection between the IV and the current hash value can be
removed and the constant value set with the set/reset signals of the hash value
registers.

In order to minimize the power consumption of the this SHA-1 core the in-
ternal registers are disabled when the core is not being used, thus reducing the
amount of internal switching.

Data block expansion: As previously mentioned, the 512 bits of each data
block has to be expanded in order for the 80 32-bit words (Wt) to exist. Since
this expansion has to be performed for each data block,(1), it becomes more
efficient to perform this operation in hardware. The implementation of the data
block expansion described in (1), is composed by: delays, implemented by reg-
isters, and XOR operators. Finally the output value Wt is selected between

Mt

MUX

Wt

LoadWi

...

Wt-1

Wt-6

Wt-12

Wt-14

RotL1

Fig. 4. Register based SHA-1 block expansion

the original data block,
for the first 16 words,
and the computed val-
ues, for the remaining val-
ues. Figure 4 depicts the
implemented structure. It
should be noticed that
part of the delay registers
have been placed after
the calculation, in order
to eliminate this compu-
tation from the critical

Rescheduling for Optimized SHA-1 Calculation 431

path, since the value Wt is connected directly to the the SHA-1 core. The 4-
bit XOR computation is a well suited operation for the 4-bit LUT, present in
most CLBs of the Xilinx FPGAs. The one bit left rotate operation can be im-
plemented directly in the routing process, not requiring additional hardware.

SHA-1 polymorphic processor: To create a practical platform to use and
test the developed SHA-1 core, a wrapping interface has been added in order
to integrate this units in the MOLEN polymorphic processor. The MOLEN

Power

PC

Main Data

Memory

XREG
Address

Data

64

Data Bus

Start

Stop

Address

64

Control

Unit

Arbiter

Instruction
Memory

SHA-1 CCU Molen

SHA-1
core

Data Block
Expansion

LoadWi

Wi

160

64

160

32

StartCore

Write IV

IV

finish

Hash

64

Control
signals

64

Fig. 5. SHA-1 polymorphic implementation

paradigm [5] is
based on the co-
processor architec-
tural paradigm, al-
lowing the usage
of reconfigurable
custom designed
hardware units.
In this computa-
tional approach,
the non critical
part of the
software code is
executed on a
General Purpose
Processor (GPP)
while the critical
part, in this case
the SHA-1 com-
putation, is exe-

cuted on the Custom Computing Unit (CCU). Since the hardware implemented
function is called as a standard software function, the software development costs
are minimal. Like in a software function, the code for the parameters passing
though the XREG is included by the compiler [5].

4 Performance Analysis and Related Work

In order to compare the architectural gain of this operation rescheduling with the
current related art, the resulting core has been implemented in a Xilinx VIRTEX
II Pro (XC2VP30-7) using the ISE (6.3) Xilinx tools. A CCU using this SHA-1
core has also been designed for the MOLEN polymorphic processor [5]. This
polymorphic architecture uses the FPGAs embedded PowerPC running at 300
MHz, with a main data memory running at 100 MHz.

SHA-1 core: The SHA-1 core has also been implemented on a VIRTEX-E
(XCV400e-8) device (Our -Exp.), in order evaluate the proposed core and com-
pare it with the folded and the unfolded design proposed in [3]. The presented
results in Table 2 for the VIRTEX-E device are for the SHA-1 core with a con-
stant initialization vector and without the data block expansion module. When

432 R. Chaves et al.

Table 2. SHA-1 core performance comparisons

Design Lien [3] Lien [3] Our-Exp. CAST [8] Helion [9] Our–Cst. Our +IV

Device Virtex-E Virtex-E Virtex-E XCV2P2-7 XCV2P-7 XCV2P30-7 XCV2P30-7
Expansion no no no yes yes yes yes
IV cst. cst. cst. cst. cst. cst. yes
Slices 484 1484 388 568 564 533 596
Freq. (MHz) 103 73 135 127 194 230 227
TrPut.(Mbps) 659 1160 840 802 1211 1435 1420
TrPut/Slice 1.4 0.8 2.2 1.4 2.1 2.7 2.4

compared with the folded SHA-1 core proposed in [3], a clear advantage can be
observed both in terms of area and throughput. Experimentations suggest 20%
less reconfigurable hardware occupation and 27% higher throughput, resulting
in a 57% improvement on the throughput/slice metric, by adopting the proposed
SHA-1 core. When compared with the unfolded architecture, the proposed core
has a 28% lower throughput, however the unrolled core proposed in [3] requires
280% more hardware, resulting in a low throughput/slice, 2.75 times smaller
than the core proposed in this paper.

Table 2 also presents the SHA-1 core characteristics for the VIRTEX II Pro
FPGA implementation. Both the core with a constant initialization vector (Our–
Cst.) and the one a variable IV initialization (Our+IV) are presented. These
results also include the data block expansion block. The results are compared in
Table 2 with the related art, including the most recent and efficient commercial
SHA-1 cores known by the authors.

When compared with the leading market SHA-1 core from Helion [9], the
proposed architecture requires 6% less slices while achieving throughput 18%
higher. These two results originate a gain on the throughput/slice metric of
about 29%.

For the SHA-1 core capable of receiving a IV other than the constant speci-
fied in [6], a slight increase in the required hardware occurs. This is due to the
fact that the IV can no longer be set by the set/reset signals of the registers.
This however has a minimal effect in the cores performance, since this loading
mechanism is not located in the critical path. The decrease of the through-
put/slice metric to 2.4 caused by the additional hardware for the IV loading is
counterbalanced by the capability of this SHA-1 core (Our+IV) to be used in
Message Authentication applications, like the HMAC, and in the processing of
fragmented messages.

Polymorphic SHA-1 implementation: For this Polymorphic implementa-
tion of the SHA-1 hash function, the core (Our +IV) with Initial Vector load-
ing has been used. Implementations results of the SHA-1 CCU indicate a de-
vice occupation of 813 slices (see Table 4). After receiving the start signal,
the SHA-1 CCU starts by reading from the exchange register the location in
the main data memory of the IV and after this, the value of IV itself is
read from the memory. While reading the IV from the memory, the control
units also reads from the exchange register the begin and end addresses of the
data to be hashed. Once the SHA-1 CCU has been initialized, it goes into

Rescheduling for Optimized SHA-1 Calculation 433

Table 3. SHA-1 polymorphic performances

Hardware Software
(Mbps) (Mbps) Kernel

Bits Cycles ThrPut Cycles ThrPut SpeedUp
512 396 389 38280 4.01 97
1024 642 479 76308 4.03 119
128k 63126 623 9766128 4.03 155

a loop where it reads a
512 bit block from the main
memory and computes the
hash function. This loop is
repeated until the current
data address becomes equal
to the data end address
read from the exchange reg-
ister. Upon conclusion, the

160 bits of the digest message are written to memory. The SHA-
1 CCU is working at the main data memory maximum frequency,
which is approximately half of the SHA-1 maximum frequency. Ta-
ble 3 presents the comparison between the purely software implementa-
tion of the SHA-1 hash function and the MOLEN polymorphic approach.

Table 4. Hybrid SHA-1

Design Lu [10] Our+IV
Device XCV2P100 XCV2P30-7
Slices 34411 813
Freq. (MHz) 145 100
TrPut.(Mbps) 304 624
TrPut/Slice 0.1 0.77

Even though the SHA-1 algorithm
can be efficiently implemented in soft-
ware, achieving a throughput above 4
Mbit/s, the usage of this hybrid ap-
proach allows for a speedup up to 150
times. Note that for data streams with
only a few data blocks, a lower speedup
is obtained, due to the initial overhead
required for the SHA-1 CCU initializa-
tion. Even so, a speedup of approxi-

mately 100 times is still achieved in the worst case. For data streams with several
data blocks, the achieved speedup tends to 150 times. If throughputs above 623
Mbit/s are required, the SHA-1 core can operate at a different frequency than
the main data memory. Since the SHA-1 only reads from the memory 20% of
the time, a buffer can be used in order to compensate the lower bandwidth of
the memory. This technique requires a more complex hardware structure and
additional hardware resources.

This hybrid computational approach is compared with the related art in [10].
As depicted in Table 4, the proposed implementation is able to achieve a 100%
higher throughput with significantly less hardware resources, thus a 670% better
throughput/slice metric is obtained.

5 Conclusion

The proposed rescheduling in the SHA-1 function operations allows the computa-
tion of each round of the algorithm in two distinct clock cycles. This reschedul-
ing permits the exploration of parallelization technics, without increasing the
required hardware. With the merging of the calculation of the final value of the
lower bits of the digest message (H0) with the round computation of the value
1 Synthesis results for the SHA-1 core only. An estimated value for the slice utilization

has been used, for a ratio of 0.58 Slices per LUT, obtained in our SHA-1 core.

434 R. Chaves et al.

A, the extra cycle created by the reschedule is concealed, thus not affecting the
average throughput. Two SHA-1 cores have been developed, one that uses a
constant IV and a second one that allows for different initialization vectors, in
order to be used in HMAC and in the processing of fragmented messages. Even
though, core with the IV loading requires some additional hardware for the reg-
isters initializations, this however does not influence the throughput, since it is
not located in the critical path. A polymorphic SHA-1 processor has also been
proposed, capable of speeding up the hash function computation by 150%, when
compared to a fully software implementation running on a PowerPC at 300MHz,
at a cost of 5% occupation of a VIRTEX II Pro 30 (833 slices). When compared
to the four loop unfolded architectures, the proposed core is only 28% slower,
however, it requires 280% more logic, thus our core has a throughput/slice met-
ric 172% higher. To our best knowledge the proposed core is 18% faster that any
commercial SHA-1 core and academia folded art, while achieving a reduction
on the required hardware. These two factors result in an improvement of the
throughput/slice metric of 29% when compared with commercial products and
59% to the current academia art. The proposed core achieves a throughput of
1.4Gbits/s with 4% occupation of the used device (533 slices).

Evaluation prototype: An evaluation prototype of the hybrid SHA-1 processor
is available for download at: http://ce.et.tudelft.nl/MOLEN/applications/SHA/

References

1. Klima, V.: Finding MD5 collisions a toy for a notebook. Cryptology ePrint
Archive, Report 2005/075 (2005)

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In Shoup, V., ed.:
CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer (2005)
17–36

3. Lien, R., Grembowski, T., Gaj, K.: A 1 Gbit/s partially unrolled architecture of
hash functions SHA-1 and SHA-512. In: CT-RSA. (2004) 324–338

4. Sklavos, N., Alexopoulos, E., Koufopavlou, O.G.: Networking data integrity: High
speed architectures and hardware implementations. Int. Arab J. Inf. Technol. 1
(2003)

5. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The Molen Polymorphic Processor. IEEE Transactions on Computers 53
(2004) 1363–1375

6. NIST: Announcing the standard for secure hash standard, FIPS 180-1. Technical
report, National Institute of Standards and Technology (1995)

7. NIST: The keyed-hash message authentication code (HMAC), FIPS 198. Technical
report, National Institute of Standards and Technology (2002)

8. CAST: SHA-1 Secure Hash Algorithm Cryptoprocessor Core.
http://http://www.cast-inc.com/ (2005)

9. HELION: Fast SHA-1 Hash Core for Xilinx FPGA. http://www.heliontech.com/
(2005)

10. Lu, J., Lockwood, J.: IPSec Implementation on Xilinx Virtex-II Pro FPGA and
Its Application. In: Proceedings. 19th IEEE International Parallel and Distributed
Processing Symposium. (2005) 158b – 158b

Software Implementation of WiMAX on the Sandbridge
SandBlaster Platform

Daniel Iancu1, Hua Ye1, Emanoil Surducan1, Murugappan Senthilvelan1,
John Glossner1,2, Vasile Surducan1, Vladimir Kotlyar1, Andrei Iancu1,

Gary Nacer1, and Jarmo Takala3

1 Sandbridge Technologies, One North Lexington Ave., White Plains, NY 10601, USA
{diancu, huaye, esurducan, msenthilvelan, jglossner, vsurducan, vkoltyar,

aiancu, gnacer}@sandbridgetech.com
2 Delft University of Technology, Computer Engineering, EE, Delft, The Netherlands

3 Tampere University of Technology, Tampere, Finland
jarmo.takala@tut.fi

Abstract. This paper describes a Sandbridge Sandblaster system implementa-
tion including both hardware and software elements for a WiMAX 802.16e
system. The system is implemented on the fully functional multithreaded Sand-
blaster multiprocessor SB3010 SoC chip. The entire communication protocol,
physical layer and MAC, has been implemented in software using pure ANSI C
programming language and it executes in real time. In this paper, we also present
a radio propagation analysis specific to the Samos island at the workshop loca-
tion, and the DSP execution performance.

1 Introduction

WiMAX [1] is a long range, fixed, portable, or mobile wireless technology specified in
the IEEE 802.16 standard. It provides high-throughput broadband connections similar
to 802.11 wireless LAN systems but with much larger range. Possible applications for
WiMAX include: ”last mile” broadband connections, hotspot and cellular backhaul, and
high-speed enterprise connectivity for businesses. Since the IEEE 802.16 standard de-
fines a Media Access Control (MAC) layer that supports different physical layers and also
defines the same Logical Layer Control (LLC) level l for different Local and Wide Area
Networks (LAN and WAN), it opens up the possibility of bridging different communi-
cation networks together. A common MAC allows multi-mode and multi-radios easier
implementations and at the same time it also simplifies system management and roaming
issues. A multi-mode multi-radio system has historically been implemented using either
multiple separate chip sets or specific System on Chip (SoC) solutions with replicated
internal hardware. Recently, a more cost effective approach has gained in popularity. A
Software Defined Radio (SDR) implements the entire physical layer in software and is
capable of dynamically switching waveform execution and thus reusing existing silicon
resources. Our WiMAX implementation described in this paper, is an SDR solution.

2 WiMAX System Background

The WiMAX 802.16 standard specifies a high throughput non-line-of-site (NLOS)
communications link along with connectivity between network endpoints. It specifies

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 435–446, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

436 D. Iancu et al.

Table 1. Frequency bands, maximum power at the antenna and EIRP, NA: Not available

Parameters / Country CE CE US US

Frequency band [MHz] 2400–2483.5 5470–5725 2400–2483.5 5725–5850
Maximal power to antenna [mW] NA NA 200 1000
EIRP [dBm] 20 [100 mW] 30 [1 W] 23 [200 mW] 53 [200 W]

an RF spectrum in the 2 to 66 GHz range, including both licensed and unlicensed bands.
The maximum bit rate as currently defined is 70 Mbps. The spectrum allocation and the
maximum power at the antenna input, for both licensed and unlicensed bands are also
specified in [1]. Table 1 lists the maximum power allowed by the standard at the antenna
input and the Effective Radiated Power (ERPC) compared to an isotropic radiator, for
different geographic areas.

Receiver Sensitivity Calculation. The receiver sensitivity is the measure of the signal
strength for a specified modulation mode and bit-error rate (BER) that must be present
at the receiver input in order to be able to detect the radio frequency signal and to
demodulate correctly the transmitted data. The receiver sensitivity (Prx) is a function of
the Receiver Noise Floor (NF) and the Signal to Noise Ratio (SNR). The theoretical
receiver sensitivity can be expressed as

Prx = SNR + NF (1)

where SNR = (Eb/N0)(R/B), Eb is the energy required per bit of information, N0 is
the thermal noise in 1Hz of bandwidth, R is the system data rate, and B is the system
bandwidth.

The BER for a BPSK modulation system, with Additive White Gaussian Noise
(AWGN) is given by

BER =
1
2

erfc(Eb/N0)1/2 (2)

where erfc(·) is the complimentary error function. The theoretical values of the BER as
a function of Eb/N0 are presented in Table 2.

The receiver Noise Floor (NF) is the sum of thermal noise (N0) and the noise figure
(N) of the receiver as follows

NF = N + N0 (3)

where N0 = kT B, is the thermal noise power measured in Watts, N is the noise figure of
the receiver, k is the Boltzman constant, T is the system absolute temperature usually

Table 2. Theoretical values of BER as a function of Eb/N0

BER 10−2 10−3 10−4 10−5 10−6 10−7

Eb/N0 [dB] 4.3 6.8 8.4 9.6 10.6 11.3

Software Implementation of WiMAX on the Sandbridge SandBlaster Platform 437

Table 3. Receiver sensitivity for BPSK modulation at BER = 10−6

Modulation R/B Eb/N0 N0 [dBm] N [dB] SNR Prx [dBm]

BPSK 1/2 10.6 -113 7.5 7.6 -85.4

assumed to be 290 K, and B the channel bandwidth measured in Hz. All these entries are
summarized in Table 3 and they are in accordance with the standard recommendations.

Link Budget Calculation. The link analysis provides the estimation of the required
transmitted power level in order to cover for a desired range [2]. The sum of EIRP
(transmitted power plus antenna gain) and receiver absolute sensitivity |Prx| must be
equal to the sum of link loss (LL) and Fade Margin (FM) [3,4]. The link loss includes
the Path Loss (PL), at frequency F over the range D, and the external Microwave Circuit
Loss (MCL) (switch, antenna cables, and connectors) and is shown in the following:

EIRP+ |Prx| = PL(D,F)+ FM + MCL. (4)

To estimate the maximum range with a given EIRP and receiver sensibility Prx it is nec-
essary to estimate the fading loss, the RF front-end external circuit loss and to calculate
PL. Table 4 illustrates the path loss versus distance D for the most popular propagation
models. In Table 4, the columns refer to the following:

– CCIR: [4] Empirical model for the combined effect of free-space path loss and
terrain-induced path loss published by CCIR-Committee Consultative International
des radio Communication, now ITU-R.

– Hata: [4] Based on Okamura et al. (Empirical curves).
– Hata-l.city: Large City model (building height greater than 15m).
– Hata-s.city: Medium to Small City model.
– Hata-suburb: Suburban model.
– Hata-open: Free space model.
– ITU: Line of sight (LOS), experimentally tested for D larger than 3 km as follows

Table 4. Link budget for different channel models, path loss (PL) given in dB at 2.45 GHz

D [km] CCIR Hata-l Hata-s Hata Hata ITU WI-LOS WI-NLOS SPLM
city city suburb open

2 120.4 142.4 125.4 112.4 91.7 105.3 118.3 129.7 141.6
2.5 123.9 146.0 128.9 116.0 95.2 106.2 120.8 133.4 146.6
3 126.8 148.8 131.8 118.9 98.1 107.0 122.8 136.4 150.6

3.5 129.2 151.3 134.2 121.3 100.5 107.9 124.6 139.0 154.0
4 131.3 153.4 136.3 123.4 102.6 108.6 126.1 141.2 157.0

5.5 136.4 158.4 141.4 128.4 107.6 110.4 129.7 146.4 164.0
6.5 139.0 161.1 144.0 131.1 110.3 111.4 131.6 149.2 167.7
11 147.3 169.4 152.3 139.4 118.6 115.0 137.5 157.9 179.3
12 148.7 170.7 153.7 140.8 120.0 115.6 138.5 159.3 181.2

438 D. Iancu et al.

Table 5. Maximum range for the unlicensed frequency bands: ∗ calculated with Hata Open model,
0 dB antenna gain and 12 dB loss and ∗∗ calculated with Hata Suburban model, 0 dB antenna gain
and 12 dB loss

Frequency band 2400–2483.5 5470–5725 2400–2483.5 5725–5850 5725–5795
[MHz] 5815–5850

EIRP [dBm] 20 (100 mW) 30 (1 W) 23 (200 mW) 53 (200 W) 36 (4W)
30 dBm in the

antenna
∗Max LOS [km] 3 5.5 3.58 23.8 8
∗∗Max NLOS
range [km] 0.8 1.23 1 5.3 1.8

PL(dB) = 92.45 + 20log(D+ F) (5)

where D is measured in km and F in GHz.
– WI: ”Walfish-Ikegami” is an empirical and semi deterministic model for mobile

radio propagation (COST-231 project). WI has a good fit for the frequencies in the
range of 800 to 2000 MHz and the range of 0.02 to 5 km.

– WI-LOS: [4] No obstruction in direct path (LOS) (base station antenna height 30
m)

– WI-NLOS: [4] No-line-of-sight (NLOS). For the path loss calculation the following
values have been used:
• Base station antenna height (hb) : 4–50 m,
• Terminal antenna height (hm): 1–3 m,
• Building separation (b): 20–50 m,
• Width of street (if not specified, b/2 is recommended), and
• Angle of the incident wave to streets (assumed 90 degrees).

– SPLM: [5] Suburban Path Loss Model it is a modified Hata-Okamura model.

For the Samos island case, we have chosen the values for Hata-open and Hata-suburban
models. The maximal distance possible to be covered within the maximum range of
the allowable EIRP values, specified in the standard, are presented in Table 5. For the
theoretical analysis we have considered a 0 dB gain antenna, FM = 10 dB fading loss
and MCL = 2 dB loss.

3 System Description

Figure 1 shows a satellite map of Samos Island. Our goal is to connect Agios Konstanti-
nos to Kokkari through a WiMAX link. There is 5.5 km between Agios Konstantinos
and Kokkari but there is no direct LOS path. In order to meet the link budget for the
unlicensed band a repeater is required. Based on the receiver sensitivity calculations
and availability, for our demonstrations we used a standard off-the-shelf 802.11 WiFi
transceiver which supports 7 MHz bandwidth operation mode and meets our estimated

Software Implementation of WiMAX on the Sandbridge SandBlaster Platform 439

Manolates, h=330m

Kokkari, h=10m

Workshop site, h=10m

d=2200m

100

d=3800m

200

300
400

500

Fig. 1. Map of the demo place

sensitivity requirements. Using the 802.11 front-end also gives us the option of execut-
ing IEEE 802.11 a/b/g standard on the same platform.

A repeater must be able to support the Full Duplex Mode (FDD) mode on two
different bands, for instance we can receive on the 2.4 GHz band and transmit on the
5.6 GHz band or vice-versa. Since the WiFi front-end supports only a TDD mode, there
is need for two transceiver chips for each system. We note that we can also make use of
the additional WiFi transceiver for Multi Input Multi Output (MIMO) communication
modes. To summarize, the end to end system consists of: (a) TDD mode platforms at
both ends on either 2.4 or 5.6 GHz and (b) a repeater in between, in FDD mode with
LOS to both ends.

A hardware block diagram is illustrated in Fig. 2. The hardware components of both
the end unit and repeater are identical. The RF front-end consists of two RF transceiver
chips and one high rate sampling AD/DA (Analog-to-Digital/Digital-to-Analog con-
verter) directly connected to the SB3010 Sandblaster evaluation board through a high
speed parallel interface. Power amplifiers are connected to each transmitter and band-
pass filters are placed between the antennas and the receivers. The system can operate

Fig. 2. Hardware block diagram of the WiMAX system

440 D. Iancu et al.

with a single antenna employing Rx/Tx switches or two separate Tx and Rx antennas.
We describe results for the second case. All serial controls for the various chips are
generated by software executing on the SB3010.

4 Sandblaster Platform

The SB3010 chip [6] consists of four Sandblaster DSP cores connected by a unidi-
rectional deterministic and opportunistic ring network. The SB3010 chip is fabricated
in 90 nm and each DSP core runs at 600 MHz. Each DSP core has a branch unit, a
scalar Arithmetic Logic Unit (ALU), a Single Instruction Multiple Data (SIMD) vec-
tor unit and a load/store unit. These execution resources are time multiplexed equally
among 8 threads per core. Each thread has its own set of scalar and SIMD vector
registers.

Instruction Set Architecture. Each thread executes 64-bit compound instructions. A
compound instruction can contain up to three concurrently executed compound op-
erations. For example a load can be issued in parallel with an arithmetic operation
and a branch. The following instruction computes the inner product of a vector with
itself:

Label:
vmulred %ac3, %vr7, %vr7, %ac3 ||
lvu %vr7, %r8, 8 ||
loop 0, %lc0, Label

The ”vmulred” operation multiplies each of four 16-bit elements contained in the
vector register %vr7 with itself and accumulates the products into an accumulator regis-
ter %ac3. At the same time, the lvu operation increments the scalar register %r8 by eight
and loads the next four values from the resulting address. The loop instruction decre-
ments the loop count register %lc0 and repeats the instruction if the register is non-zero.
Each Sandblaster core is capable of completing an instruction from a thread on every
600 MHz cycle provided there are no stalls due to memory access. In particular, each
core is capable of completing a 4-way multiply-accumulate (MAC) instruction at every
600 MHz cycle. Across four cores this adds up to 4×600×4=9600 million MACs per
second. Since core execution resources (ALU, branch, etc.) are shared equally among
the eight threads - we can view a core as an 8-way multiprocessor with each processor
running at 600 MHz / 8 = 75 MHz. We denote this performance as a ”thread cycle”.
In the rest of the paper, we report memory latencies and algorithm complexity using
thread cycles.

Memory Structure. Each core has a 32 kB instruction cache. Data memory is not cached
and is divided between a 64 kB Level 1 (L1) and 256 kB Level 2 (L2) memory. A load
from L2 memory incurs a pipeline stall. Stores into L2 are issued through a FIFO and do
not block unless the FIFO is full. In practice up to four threads can simultaneously store
into L2 without blocking. The L1 memory is divided into eight banks of 8 kB each. A
particular implementation detail is that there is no penalty if the parity (odd/even) of
the thread is the same as the parity of the bank. There is a single cycle penalty both

Software Implementation of WiMAX on the Sandbridge SandBlaster Platform 441

for loads and for stores if the parities of the thread and the bank do not match. The
instruction in the inner product example will complete within a single thread cycle, if
it is executed on an even thread and %r8 points into an even bank. The compiler tries
to ensure memory affinities and the processor tools can automatically generate linker
scripts that optimize memory access.

Programming Environment. The Sandblaster programming tools include: a supercom-
puter-class vectorizing compiler, a fast simulator, and real-time operating system
(RTOS) that implements POSIX threads standard [7]. Our WiMAX implementation is
written entirely in ANSI C using POSIX API for thread management. We rely on the
optimizing compiler to produce highly efficient machine code from straight-forward
C source. The compiler automatically vectorizes most of the loops that occur in sig-
nal processing and media applications. It performs semantic analysis of input programs
and automatically recognizes saturating arithmetic in ANSI C [8]. For example the
single-instruction loop for an inner product is generated automatically from the follow-
ing source:

int i, s;
for (I = 0, s = 0; I < N; i++) {

s += A[k]*A[k];
}

The Sandblaster simulator is capable of executing over 100 million instructions per sec-
ond on a 3 GHz x86 computer [9]. The Sandblaster RTOS is capable of multiplexing
an arbitrary number of software threads onto hardware threads. Software threads can
be designated as pinned or non-pinned. Pinned threads are removed from the general
thread scheduler and by convention, their stacks are allocated to L1 memory. Non-
pinned threads can be rescheduled any time the operating system chooses and can be
allocated based on the scheduling policy implemented in pthreads.

5 WiMAX Algorithms

The physical layer transmitter pipeline for the OFDM PHY as specified in IEEE 802.16
[1] is shown in Fig. 3(a). The OFDM signaling format was selected in preference to
competing formats such as single-carrier (SC) CDMA due to its superior multipath
performance, permitting significant equalizer design simplification to support operation
in NLOS fading environments. Figure 3(b) shows the 802.16 OFDM PHY receiver
block diagram. The back-end signal processing block is the reverse of the transmitter
pipeline shown in Fig. 3(a). Note that a Reed-Solomon (RS) decoder is not required for
the 2.9 Mbps BPSK mode.

Figure 4 shows the 802.16 OFDM PHY front-end signal processing block diagram.
The inputs to the A/D converter are the I and Q baseband signals coming from the RF
chip. The I/Q signals are first 2:1 decimated and filtered to the FFT sampling frequency
Fs. The FFT sampling frequency is proportional to the channel bandwidth (B) as shown
in the following:

Fs = �nB/8000�8000 (6)

where �·� is floor function. In our implementation, B = 7 MHz, n = 8/7, Fs = 8 MHz,
and, therefore, the ADC sampling frequency will be at 2Fs = 16 MHz.

442 D. Iancu et al.

(a)

Scrambler
FEC

Shorting
Puncturing

PSDU Interleaver

BPSK
QPSK

16 QAM
64 QAM
Mapper

OFDM
Modulation
IFFT 256 pt

Cyclic Prefix
Insertion

Filtering
Upsampling DAC

Preamble

Pilots

(b)

Rx RF
Front-End

Deinterleaver Depuncturer

Descrambler

Viterbi
Decoder

Depuncturing
/ Erasure

Generation

Erasure
RS Decoder
(255,239,8)

802.16 OFDM PHY Receiver Back-End Signal Processing Block

OFDM Demodulator
(Receiver Front-End Signal Processing Block)

Fig. 3. Block diagrams of 802.16 OFDM PHY (a) transmitter and (b) receiver

The Automatic Gain Control (AGC) block calculates the new value required to es-
tablish the appropriate control bits used to set the gain level for the two gain stages in
the RF chip based on the signal energy measurements as follows

E =
N−1

∑
i=0

[
rI(i)2 + rQ(i)2] (7)

where rI(i) and rQ(i) are the decimated I/Q signals and N is the number of samples in
a symbol including the guard period.

The AGC algorithm runs under coarse setting and fine setting. In the coarse set-
ting mode, the AGC monitors the input energy E and once the incoming signal is de-
tected, an initial AGC setting is calculated by comparing the measured energy level
E with a preset target energy level. The AGC coarse setting will allow the Voltage
controlled Gain Amplifier VGA to pull the input signal within the ADC’s dynamic
range. Once the coarse setting is complete, the AGC gain will be kept constant while
the receiver goes through a training process to achieve synchronization with the
transmitter.

The AGC then enters a fine setting mode where the energy E measured during the
preamble symbol duration will be compared with the preset energy target. Based on this
measurement the LSB of the VGA control bits are adjusted accordingly.

Software Implementation of WiMAX on the Sandbridge SandBlaster Platform 443

IQ
A/D

DL RSSI Measure

Decimation
Filtering
Sampling

Rate
Correction

Derotation
Cyclic Prefix

Removal

OFDM
Demodulation
256 PT FFT

Preamble
Detection

Initial Coarse

Cyclic Prefix
Detection /

Initial Coarse
Freq Offset
Estimation

Pilot Detection /
Int. Freq. Offset

Det.

Channel
Correction

QAM
Demapper

Viterbi
Decoding

Channel
Estimation

To back-end
processing

DL CINR
Estimation

Post-FFT Carrier
Freq. Offset

Tracking

Post-FFT
Sampling Rate

Offset

Post-FFT
Symbol Sync.

Offset

Fig. 4. 802.16 OFDM PHY front-end signal processing block diagram

The derotation operation is performed in time domain as follows

r′I(i)+ jr′Q(i) = (rI(i)+ jrQ(i))e
− j2πΔ f

Fs , i = 0 . . .N −1 (8)

where j is the imaginary unit. The purpose of the derotation is to correct for the fre-
quency offset Δ f that is detected by the initial coarse estimation and fine tracking. The
cyclic prefix is then removed and the remaining I and Q samples are further used in the
OFDM demodulation.

Both short and long preambles are defined to assist in channel estimation, timing,
and carrier frequency estimation. The time domain periodicity properties of the pream-
ble can be exploited to detect the preamble sequence and symbol boundary. The follow-
ing equations are used to detect the preamble sequences:

c(j + n) =
127

∑
i=0

r(i+ n)r(i+ j + n); (9)

nmax = arg

(
max

n

L−1

∑
j=0

√
(ℜ [c(j + n)])2 +(ℑ [c(j + n)])2

)
(10)

where r(k) is a complex signal sample after decimation and L is the number of samples
in the guard period. The autocorrelation peak at position nmax indicates the presence of
preamble sequence and its starting sampling position.

444 D. Iancu et al.

The coarse fractional carrier frequency offset can be estimated as

Δ f =
Fs

2π
tan−1

(
ℑ [c(nmax)]
ℜ [c(nmax)]

)
. (11)

After the initial coarse symbol timing and frequency offset estimation, fine estima-
tion and adjusting algorithms are required in the frequency domain. There are eight
pilot signals inserted in each data-bearing OFDM symbol. These are used to perform
post FFT carrier frequency offset tracking, symbol synchronization tracking, and sam-
pling rate offset tracking.

Channel estimation is performed when receiving the long preamble symbol that has
100 pilots spaced two subcarriers apart (excluding the DC subcarrier). The transmitted
pilots can be represented as Xs, s = 0,1, . . . ,99. The corresponding received subcarri-
ers at the pilot locations can be represented as Ys. The channel frequency response at
the pilot subcarrier locations can be represented as Hs. The least-square estimate of
the channel frequency response at the pilot subcarrier location s, H̃s, is given by the
following equation:

H̃s =
Ys

Xs
, s = 0,1, . . . ,99. (12)

The channel frequency response at the remaining 100 non-pilot subcarriers can be read-
ily estimated using linear interpolation.

It is mandatory that the Down Link (DL) receiver measures and reports the mean
and standard deviation of the ratio of the Received Signal Strength Information and
the Carrier to Interference and Noise Ratio (RSSI / CINR) to the Base-Station (BS)
within a strict time requirement. Both RSSI and CINR measurements are performed
using preamble sequences. The QAM demapping is Gray coded and the implementation
supports up to four soft bit demapping.

6 Multithreaded Multiprocessor Implementation

The WiMAX transmit and receive algorithms are implemented as concurrent multi-
threaded pipelines. The pipelines consist of all the processing steps such as FFT, fil-
tering, scrambling, etc. To implement a pipeline on Sandblaster processor we have (a)
aggregate steps into stages, and (b) decided how to assign threads to the computations
within a stage.

The WiMAX transmitter is a simpler algorithm and we use it to illustrate our par-
titioning methodology. There are four steps: (a) OFDM data symbol/preamble genera-
tion, (b) FFT, (c) filtering, and (d) data copy to D/A converter. Based on profiling of the
sequential ANSI C implementation, we allocate 2 processor threads for symbol gener-
ation, three threads for FFT, two threads for filtering and one thread for copying data
to the D/A. The total number of threads is eight and thus the WiMAX transmitter may
be implemented in a single Sandblaster processor core. The pipeline implementation is
shown in Fig. 5(a). Symbol generation and filtering are partitioned naturally across two
threads. Each thread works on either the I channel or the Q channel. To avoid the over-
head of partitioning the FFT, we replicate FFT processing across three threads. Each
thread works on a different symbol.

Software Implementation of WiMAX on the Sandbridge SandBlaster Platform 445

(a)
Transmit (1)Symbol/Preamble

Generation (2) FFT(3) FIR(2)

(b)

Demapper
Deinterleaver

Viterbi (4)

Demapper
Deinterleaver

Viterbi (4)

Demapper
Deinterleaver

Viterbi (4)

Descrambler (1)FFT (4)

FIR
Derotation

State Machine
(4)

I,Q (1)

AGC (1)

Fig. 5. (a) Transmitter and (b) receiver pipeline; each box is a team, the size of each team is in
parenthesis

Our implementation illustrates two methods for partitioning work to threads: either
we partition a unit of work (an OFDM symbol in this case) across multiple threads,
or we process multiple units of work concurrently. In general, we might have multiple
units processed concurrently, with each unit being partitioned across a team of threads.
Therefore, for each stage we have to specify (a) the number of concurrent teams and
(b) the number of threads in each team. The partitioning of work within each team is
dependent on particular computation.

Using this strategy, the FFT stage is assigned to three teams. Each of the teams
has a single thread. Symbol generation is assigned to one team of two threads, same
as filtering. The D/A copy is assigned to a single team of one thread. We use double
buffering to communicate between stages. When data is communicated between a stage
with one team and a stage with multiple teams (e.g., symbol generation to FFT, FFT
to filtering), round-robin scheduling is used to decide which team is communicated
with.

The WiMAX receiver has two major modes of operation: startup and steady-state.
During the startup process the receiver goes through several states of a state machine
until reaches the steady state. The receiver runs through a startup process to achieve syn-
chronization with the transmitter as follows: State 1: Initial energy detection and initial
AGC setting, State 2: Coarse carrier frequency offset estimation and correction, State
3: OFDM symbol synchronization via preamble sequence, State 4: Integer frequency
offset detection and correction, and State 5: Steady-state processing.

In the steady-state mode, the following functions are performed: (a) I/Q signal
decimation and filtering, (b) energy monitoring and AGC fine tuning, (c) I/Q signal
derotation, (d) OFDM demodulation via 256 point FFT per OFDM symbol, (e) post-
FFT 4*64 preamble detection, (f) symbol timing offset tracking via 4*64 preambles,
(g) carrier frequency offset tracking via data symbol pilots, (h) channel estimation
via 2*128 preambles, and (i) data symbol processing: channel correction, demapping,
deinterleaving, Viterbi decoding, and descrambling. In the implementation, we view
steady-state processing as a pipeline. We combine the initial state machine onto one
of the stages. The assignment of stages to threads is shown in Fig. 5(b). Overall, the
receiver uses 24 threads (3 cores). The state machine is run within one of the threads
along with the FIR/derotation team. Depending on the state transition, data is either

446 D. Iancu et al.

passed to the FFT stage (in State 5) or to the thread responsible for the four initial
states.

The receiver performance for 2.9 Mbps has been tested according to IEEE802.16
specifications. The targeted receiver SNR was 3.0 dB when using BPSK modulation
with 1/2-rate convolutional coding. The measured receiver SNR was 1.59 dB when
using 4-bit soft decoding. The simulation has been performed in the Sandblaster simu-
lator. The Sandblaster SB3010 chip is sufficient for a complete ANSI C implementation
of the entire physical layer processing. All results have been validated on the hardware
development board including complete RF and baseband processing.

7 Conclusion

We have presented a real-time implementation of 2.9 Mbps WiMAX on the Sandblaster
SDR platform. Our work demonstrates that a software implementation of WiMAX,
suitable for mobile applications can be achieved on the same platform along with other
communication protocols [10,11].

References

1. IEEE: IEEE standard for local and metropolitan area networks Part 16: Air interface for fixed
broadband wireless access systems. Std. 802.16, IEEE (2004)

2. Zyren, J., Petrick, A.: Tutorial on basic link budget analysis. AN9804.1, Intersil (1998)
3. Miller, L.E.: LinkCalc: NIST Link Budget Calculator. NIST, Gaithersburg, MA. (2005) v.

1.23.
4. Miller, L.E.: General Purpose Propagation Loss Calculator Propagation Models: CCIR-Hata

Walfisch-Ikegami (WIM). NIST, Gaithersburg, MA. (2005)
5. Erceg, V., Hari, K.V.S., Smith, M.S., Baum, D.S., Sheikh, K.P., Tappenden, C., Costa, J.M.,

Bushue, C., Sarajedini, A., Schwartz, R., Branlund, D., Kaitz, S., Trinkwon, D.: Channel
models for fixed wireless applications. IEEE 802.16a WG document 802.16.3c-01/29r4,
IEEE (2001)

6. Glossner, J., Mougdill, M., Iancu, D., Nacer, G., Jintukar, S., Stanley, S., Samori,
M., Raja, T., Schulte, M.: The Sandbridge Sandblaster convergence platform.
White paper, Sandbridge Technologies (2005) http://www.sandbridgetech.com/documents/
sandbridge white paper 2005.pdf.

7. Nichols, B., Buttlar, D., Proulx-Farrell, J.: Pthreads Programming: A POSIX Standard for
Better Multiprocessing. 1st edn. O’Reilly & Associates, Sebastopol, CA (1996)

8. Kotlyar, V., Moudgill, M.: Detecting overflow detection. In: Proc. IEEE/ACM/IFIP Int. Conf.
Hardware/Software Codesign and System Synthesis, Stockholm, Sweden (2004) 36–41

9. Glossner, J., Dorward, S., Jinturkar, S., Moudgill, M., Hokenek, E., Schulte, M., Vassiliadis,
S.: Sandbridge software tools. In: Proc. Int. Workshop Systems, Architectures, Modeling,
and Simulation, Samos, Greece (2003) 142–148

10. Glossner, J., Iancu, D., Lu, J., Hokenek, E., Moudgill, M.: Software-defined communications
baseband design. IEEE Communications Magazine 41 (2003) 120–128

11. Glossner, J., Iancu, D., Nacer, G., Stanley, S., Hokenek, E., Moudgill, M.: Multiple com-
munication protocols for software defined radio. In: Proc. IEE Colloquium on DSP Enable
Radio, Livingston, Scotland (2003) 227–236

High-Radix Addition and Multiplication in the Electron
Counting Paradigm Using Single Electron Tunneling

Technology

Cor Meenderinck and Sorin Cotofana

Delft University of Technology, Computer Engineering Lab
Postbus 5031, 2600 GA, Delft, The Netherlands

{cor, sorin}@ce.et.tudeft.nl

Abstract. The Electron Counting (EC) paradigm was proved to be an efficient
methodology for computing arithmetic operations in Single Electron Tunneling
(SET) technology. In previous research EC based addition and multiplication
have been implemented. However, the effective performance of these schemes
is diminished by fabrication technology imposed practical limitations. To allevi-
ate this problem high radix computation was suggested. In this paper we present
a high radix EC addition scheme and a high radix EC multiplication scheme. For
both arithmetic operations, we first briefly present the normal (non high radix) EC
schemes. Second, we present the high radix schemes and explain their function-
ality. Third, we explain the implementation of the high radix schemes in details.
Finally, we present simulation results and evaluate the schemes in terms of delay
and area cost.

1 Introduction

It is generally expected that current semiconductor technologies, i.e., CMOS, cannot be
pushed beyond a certain limit because of problems arising in the area of power con-
sumption and scalability. A promising alternative is Single Electron Tunneling (SET)
technology [1], which has the potential of performing computation with lower power
consumption than CMOS and is scalable to the nanometer region and beyond [2].

Several proposals have been made to implement computational operations using SET
technology and these implementations are mainly categorized in two types (see for
example [1,3]). The first type of implementation represents logic values by voltage (see
[3] for an overview) while the second type of implementation represents bits by single
electrons. Single Electron Encoded Logic (SEEL) [4] is an example of the latter.

Using the second type of implementation, arithmetic units can be designed in con-
ventional logic design styles, e.g., using Boolean and/or threshold gates (see for exam-
ple [4]). The Electron Counting (EC) paradigm [5], on the other hand, uses a novel de-
sign style and appears promising as an efficient computational paradigm for the imple-
mentation of SET based arithmetic operations, e.g., addition and multiplication. Previ-
ous EC based adder and multiplier implementations assumed that an unlimited amount
of electrons could be transported within the EC building blocks, which does not hold
true in practice. Therefore, a limit to the operand size of the previous proposed schemes

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 447–456, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

448 C. Meenderinck and S. Cotofana

is implied by the available SET fabrication technology. One way to alleviate this prob-
lem is to do high-radix computation [6]. In this paper we propose a high-radix EC
addition scheme and a high radix EC multiplication scheme.

The remainder of this paper is organized as follows. Section 2 briefly describes the
single electron tunnel phenomenon and introduces the EC paradigm. Section 3 intro-
duces the proposed high radix addition scheme, explains the implementation details
and presents simulation results. In Section 4 the high radix multiplication scheme is
proposed and explained in details. The scheme is verified by means of simulation. Sec-
tion 5 concludes the paper.

2 Background

SET circuits are based on tunnel junctions which consist of an ultra-thin insulating
layer in a conducting material (see Figure 1). In classical physics no charge transport
is possible through an insulator. However, when the insulating layer is thin enough the
transport or tunneling of charge can be controlled in a discrete and accurate manner,
i.e., one electron at a time. Tunneling through a junction becomes possible when the
junction’s current voltage Vj exceeds the junction’s critical voltage [7] Vc = qe

2(Ce+Cj)
,

where qe = 1.602 ·10−19C, Cj is the capacitance of the junction, and Ce is the capacitive
value of the remainder of the circuit as seen from the junction. In other words, tunneling
can occur if and only if |Vj| ≥Vc.

Embedding Circuit

insulator metalmetal

 symbol

Fig. 1. Schematic representation of the tunnel
junction

Electron tunneling is stochastic in
nature and as such the delay cannot be
analyzed in the traditional sense. In-
stead, for each transported electron one
can describe the switching delay as td =
−ln(Perror)qeRt

|Vj|−Vc
, where Rt is the junction’s

resistance and Perror is the chance that
the desired charge transport has not oc-
curred after td seconds. In this paper we
assume Rt = 105Ω and Perror = 10−8.

Note that the implementations dis-
cussed in here are technology independent. SET tunnel junctions can for example be
implemented by classical semiconductor lithography or by carbon nanotubes [8]. There-
fore, circuit area is evaluated in terms the total number of circuit elements (capacitors
and junctions).

As mentioned in the introduction, there are many ways to do computation using SET
technology of which the Electron Counting paradigm seems to exploit the potential of
SET most of all. In the EC paradigm, the ability to control the transport of individual
electrons is utilized to encode integer values X directly as a charge Xqe. Once binary
values have been encoded as a number of electrons, one can perform arithmetic opera-
tions directly in electron charges, which reveals a broad range of novel computational
schemes.

High-Radix Addition and Multiplication in the Electron Counting Paradigm 449

3 High-Radix EC Adder

A basic (non high radix) EC based addition scheme was first proposed in [5]. Figure 2
depicts a 2-bit instance of this addition scheme, which functions as follows. Each bit
of the inputs A and B is connected to the V input of an MVke building block. This
block, once enabled, adds Vkqe charge to the charge reservoir, where V is the magnitude
of the input, k is a build in constant, and qe is the absolute charge of one electron
(1.602∗10−19 C). In other words, the MVke block removes Vk electron from the charge
reservoir. The build in constant k is adjusted to the weight of the corresponding input
bit of the MVke block. Thus, the total amount of electrons removed from the charge
reservoir is ∑1

i=0(ai2i +bi2i), which is equal to the sum of the inputs. The results of the
addition is converted back to the digital domain using three PSF building blocks, which
each implementing a Periodic Symmetric Function (PSF).

 MV2 e
1

MV2 e
00a

a1

Charge
Reservoir PSF

PSF

 MV2 e
1

MV2 e
0b0

b1

PSF

RE

1

0s

s

s2

Fig. 2. 2-bit EC addition scheme

A possible implementation of the
MVke building block (Figure 3.1) was
proposed in [6] and operates as follows.
While R (reset) and V are zero and in-
put E (enable) is set to ’1’, the volt-
age over junction 1 (C1) approaches
it’s critical voltage. If now V is set to
’1’ the critical voltage is exceeded and
one electron tunnels from node M to
node N. As a result of this event a posi-
tive charge is present on node M, which
causes the voltage over junction 2 (C2)
to exceed it’s critical voltage and so one
electron tunnels from node P to node
M. This process of two tunnel events
continues until the voltage over junc-
tion 1 has dropped below the critical voltage again. The number of electrons k that
is removed from the charge reservoir is proportional to the magnitude of both V and Cv.

V

Electron
Reservoir

C e

C v

C r

C iC t

1 2

++
N M P

C C
R

E

Fig. 3.1. MV ke block implementation

1

0
a b b+T a+2Ta+T b+2T

Period

Fig. 3.2. Periodic Symmetric Function

A PSF block implements a Periodic Symmetric Function (PSF) Fs whose output is
logic ’1’ within an interval from a to b, and with a period T (see Figure 3.2). Each bit si

of a digital representation of a value X can be described as a PSF of X as si = Fs,i(X),

450 C. Meenderinck and S. Cotofana

where the period is 2i+1. Thus, utilizing a PSF block for each bit an analog to digital
conversion can be performed.

An implementation of the PSF block is depicted in Figure 4.1 and was also proposed
in [6]. The capacitor Cc and the tunnel junction Ct form an electron trap, which has a
periodic transfer function. If the input voltage rises, the output voltage follows, due
to capacitance division. At some point, though, the voltage over the tunnel junction
exceeds the critical voltage and an electron tunnels to node T . The voltage of node T
drops therefore. As the input voltage continues to rise, the voltage of node T rises again
until it reaches the critical voltage. To obtain a PSF implementation a SET inverter [4]
was added, which functions as a literal gate. As long as the input is below the threshold
value, the output is ’0’, if the input exceeds the threshold, the output value becomes ’1’.

V

V

V

C 1

C 4

3C

C 2

C

C b2

b1

sC

C

C

C g

g

g

g
C

C

t

c C o

Fs

s

Fig. 4.1. PSF block implementa-
tion

b0

0a

A B1 1

1a

b1

MC1e

PSF

PSF

PSF

PSF

s

s

3

4

s5

outC

PSF

PSF

PSF

1

0s

s

s2

C
1

CR1

MV2 e

MV2 e

MV2 e

0

0

MV2 e
1

MV2 e
1

MV2 e
a

b

2

2

2

2

MV2 e

MV2 e

MV2 e

0

0

MV2 e
1

MV2 e
1

MV2 e

A B2 2

a

a

a

b

b

b

3

4

5

3

4

5

2

2

CR
2

Fig. 4.2. Organization of the 6-bit radix-8 adder

3.1 High Radix Strategy

In order to create a high radix EC addition scheme only small adjustments to the normal
EC addition scheme are required. Figure 4.2 depicts a 6-bit radix-8 adder which oper-
ates as follows. Each 6-bit input is split into parts of three bits. The lower bits are added
and stored in CR1 using a normal 3-bit EC adder, while the higher bits are added and
stored in CR2. Consequently, charge reservoirs CR1 and CR2 contain the intermediate
sums IS1 = Σ2

i=0(ai2i + bi2i)qe and IS2 = Σ5
i=3(ai2i−3 + bi2i−3)qe, respectively. If the

intermediate sum IS1 > 7qe, a carry signal is generated by the MC1e block, adding 1qe

charge to CR2, thus conditionally moving 1qe charge. Finally, the charge values present
in CR1 and CR2 are each converted to a binary representation by means of three and
four PSF blocks, respectively.

High-Radix Addition and Multiplication in the Electron Counting Paradigm 451

3.2 Implementation

While the implementations of the MV ke and the PSF block were proposed in [6] no
implementation of the MC1e building block was previously introduced. This section
presents a possible implementation of a generalized version of the MC1e block, i.e., the
MCke block, that moves kqe charge into a charge reservoir if its input value exceeds a
certain value. Such a block constitutes a generalization of the MC1e block and it is also
useful for a wider range of EC based arithmetic operations.

The MCke block has two Boolean inputs (enableVe and reset Vr), one analog inputVv,
and one output connected to a charge reservoir (see Figure 5). Note that the voltage Vv

can be either a voltage source or the value of a charge reservoir. If Ve =’1’, Vr =’0’, and
Vv exceeds a threshold ψ, then the block removes k electrons from the charge reservoir
connected to the output. If Vr =’1’ (reset) and Ve =’0’ all the electrons which were
previously removed from the reservoir are returned.

+

+

+

+
Vr

+

+ +

P

Ccr

V
0

+
+

Y

+
C

w
Vv

Ve

+

1C
eC

2C

rC

C b

C p

N M

C j

X

Threshold gate MMVke block

C t
J J2

C v
1

Vy

Fig. 5. MCke block implementation

The functionality imple-
mented by an MCke block can
be thought of as consisting of
two stages. The first stage de-
tects whether Vv exceeds the
threshold value ψ. If Vv > ψ,
the Boolean output Y of the
first stage is set to ’1’, oth-
erwise it is set to ’0’. Con-
sequently, the operation per-
formed by the first stage of the
MCke block can be described
as an 1-input threshold function. The SET threshold gate proposed in [9] can be utilized
to realize the first stage of the MCke block.

The second stage of the MCke block removes k electrons from a charge reservoir
when Vr =’0’ and Ve = Vy =’1’. The MVke block proposed in [6] performs a simi-
lar function and can be adjusted to operate as specified above. The resulting Modified
Move k electrons (MMV ke) block functions slightly different than the MV ke block.
The enable signal Ve is used to set a positive voltage over junction 2 (J2) and junction 1
(J1). Capacitance values are such that the voltage over junction 2 is close to its critical
voltage while the voltage over junction 1 stays below its critical voltage. The driving
input Vy is connected through a capacitor to the central node M. If Vy =’0’ no tunnel
event can take place, but if Vy =’1’ the voltage over J2 exceeds its critical voltage and
k electrons tunnel from node P to node N. For an extensive overview of the MMV ke
block the reader is referred to [10].

3.3 Simulation

We have verified the MCke implementation by means of simulation using the SET sim-
ulation package SIMON [11]. Simulation results were obtained using the following cir-
cuit parameters: logic ’0’= 0mV , logic ’1’= 16mV , and the capacitance of the charge
reservoir is 10−14F , in correspondence with previously designed EC building blocks
[6]. Assuming a threshold voltage of 12.2mV , as needed for the 6-bit radix 8 adder, we

452 C. Meenderinck and S. Cotofana

calculated the following parameters for the threshold gate: Cw = 10aF , Cj = 0.5aF,
Cp = 5aF and Cb = 7.4aF. The voltage swing on the output of the threshold gate was
calculated as 15mV . For k = 1 the following parameters were derived for the MMV ke
block: Cp = 5aF , Cb = 5.25aF, Cj = 0.5aF, Cw = 50aF, Cv = 2aF , C1 = 7.43aF,
C2 = 0.5aF , Ce = 200aF, Ct = 100aF and C′

r = 5aF. All simulations indicate that this
building block functions correctly.

1.6
0

1.6
0

1.6
0

1.6
0

1.6
0

1.6
0

1.6
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

 0 0.2 0.4 0.6 0.8 1

Time (s)

Fig. 6. Simulation results for the 6-bit radix-8 adder.
From top to bottom (LSB first): reset(1), enable(1), in-
put A(6), input B(6), sum(7)

We also simulated the 6-bit
radix 8 addition scheme as de-
picted in Figure 4.2. The para-
meters of the utilized MV ke and
PSF building blocks are those
used in the EC adder presented
in [6]. As stated earlier, a carry
of one electron must be genera-
ted by the MCke block when the
CR1 reservoir contains eight or
more electrons. Thus the thres-
hold voltage of the MCke block
should be the voltage correspond-
ing with a charge of 7.5 electrons
on the capacitance of the CR1

reservoir. Therefore, the threshold
voltage Vvth was set to 12.2mV ,
which corresponds with the thres-
hold voltage used for the MCke
block in the simulation mentioned
above.

The simulation results are de-
picted in Figure 6. The top block
of two signals represent the reset
and the enable, respectively. The second two blocks, each containing six signals, repre-
sent the input vectors A and B, respectively. The bottom block, containing seven signals
represents the output vector of the adder. For each vector displayed in the graph, the top
bar represents the least significant bit while the bottom bar represents the most signif-
icant bit. The test vectors A and B were chosen such that the MCke block was tested
for correct functionality under some extreme operating conditions. The simulation in-
dicates that the high radix adder functions correctly. The adder requires 187 circuit
elements and has a delay of 13.7 ns.

4 High-Radix EC Multiplier

Figure 7 depicts a basic (non high radix) multiplication scheme (first proposed in [5]),
which operates as follows. Each bit of operand B is connected to an MVke block, which
adds 2iqe charge to the bottom charge reservoir if input bi is logic ’1’. Consequently, the
charge reservoir contains the intermediate sum IS = Σ1

i=0bi2iqe. This intermediate sum

High-Radix Addition and Multiplication in the Electron Counting Paradigm 453

is fed into the V inputs of a next set of MV ke blocks. Therefore, these blocks add IS∗ai∗
2iqe charge to the top charge reservoir. Consequently, that reservoir contains the product
of inputs A and B. The value in the top reservoir is analog and can be converted to the
digital domain using PSF blocks as it was done in the EC addition scheme (Figure 2).
The multiplication scheme contains an OpAmp which has not been designed yet, but
which can potentially be implemented using a hybrid FET-SET technology [12].

4.1 High Radix Strategy

MV2 e

MV2 e

MV2 e

MV2 e

CR

CR

1

0

1

0

product

+
−

100x

R

E

1b

b0

1a

0a

Fig. 7. 2-bit EC multiplication scheme

The high-radix EC multiplication scheme we
propose is based on the full-tree multiplica-
tion strategy [13] often used in fast multipli-
ers, which comprises three steps. In the first
step all partial products are produced at once
in parallel. When assuming binary operands this
can be done by simple AND-gates and for n-
bit operands, this first step produces n rows of
bits. In the second step, the number of rows is
reduced using one or more stages of counters.
With each stage of counters, the number of rows
is reduced until only two rows are left over. In
the last step these two bit rows are added, often
by using a fast addition scheme like carry look-
ahead.

The strategy of the high-radix EC multiplication we propose, which is depicted in
Figure 9.1 for the case of 8-bit radix 4 multiplication, comprises the same three steps
with some adjustments. In the next section each step is explained in more detail.

4.2 Implementation

In the first step, the partial products are formed. Since we work in radix r, the operands
are split into digits of log2r bits. Assuming an operand size of n bits, this results in
� n

log2r � digits for each operand. The multiplication of these digits is performed by nor-
mal EC multipliers, of which a 2-bit instance is depicted in Figure 7.

The direct application of the EC multiplication scheme for step one requires (n
log2r)

2

such multipliers. However, we can reduce the number of elements if we observe that
each digit of B can be converted to analog once, after which this analog value is used
by all multipliers in the same row (see Figure 8).

In the second step the number of rows is reduced by EC counters, which functionality
is similar to normal population counters [14] used for binary operands. However, an
EC counter assumes a number (k) of analog high-radix (r) inputs, all having the same
weight, i.e., the inputs are all in the same column. The EC counter produces a number
of outputs (s) in the same radix as the inputs, representing the sum of the inputs values,
i.e., it produces a row. In the remainder of this paper we denote a specific instance of
such an EC counter as EC (k,r;s) counter.

An EC counter implementation is depicted in Figure 9.2 for the case of four radix
16 inputs and operates as follows. Each analog input is buffered and amplified before

454 C. Meenderinck and S. Cotofana

a0

CR

100x
+
−

MV2 e

MV2 e
1

0

MV2 e

MV2 e
1

0
CR

MV2 e

MV2 e
1

0
CR

b2

b3

CR

100x
+
−

MV2 e

MV2 e
1

0

MV2 e

MV2 e
1

0
CR

MV2 e

MV2 e
1

0
CR

a2 a3

b

b1

0

E
1a

Fig. 8. Step one of high-radix EC multiplication

x

+

A

B

Fig. 9.1. 8-bit radix 4 EC
multiplication strategy

CR
2

MPSF

MPSF

MPSF

MPSF

MPSF

MPSF

CR1

MV2 e

MV2 e
0

MV2 e
1

MV2 e

MV2 e
2

3

0

1

RE

100x

1x

1x

1x

1x

1x

1x

a a a a
3210

MV2 e

Fig. 9.2. EC (4,16;2) counter

it is fed into the MPSF blocks [15] in order to eliminate feedback effects. The MPSF
blocks, which are multiple input versions of the PSF block depicted in Figure 4.1,
perform both the addition of the inputs and the conversion of the intermediate sum to
the digital domain. Once the intermediate sum is converted to the digital domain, it is
split into digits of log2r bits, in order to guaranty that the output is in the correct radix.
These digits are each converted back to the analog domain by sets of MVke blocks and
the final result is stored in charge reservoirs.

Since in our case the maximum intermediate sum is 64, six MPSF blocks are re-
quired each one producing one bit. The first four of these bits are used to produce the
analog sum output, which is done by four MVke blocks. The last two bits are used to
produce the carry signal, which is done by two more MV ke blocks.

We note here that the partial products produced by the first step do not all have the
same weight. In Figure 9.1 this is graphically represented, as the partialproducts in the

High-Radix Addition and Multiplication in the Electron Counting Paradigm 455

bottom four rows have a different alignment as the ones in the top four rows. In order
to end up with equal aligned intermediate sums, an adjusted counter can be used for the
partial products in the bottom rows.

In counter based binary full-tree multiplication, the number of rows is reduced to
two, which subsequently is reduced to one row using a fast adder. However, as opposed
to standard adders, EC adders can perform k:1 reduction (within certain limits for k) in
almost the same delay as 2:1 reduction [15]. Therefore, in the high-radix EC multipli-
cation scheme the number of rows does not have to be reduced to two, and the reduction
process can be stopped earlier than in binary multiplication schemes. For example, in
the 8-bit radix 4 EC multiplication in Figure 9.1 only one stage of five counters is
required.

The third step of the high-radix EC multiplication is the final addition of a number
of rows of intermediate sums. In general, this step of the multiplication is performed by
some fast addition scheme like carry look-ahead, carry-skip, etc. For the EC paradigm,
such a fast addition scheme is not designed yet, thus in this paper we use a ripple carry
structured adder.

The addition scheme we use in here, consists of several EC addition blocks, which
functions as a high radix, multiple input full adder. The addition block is implemented
by an EC counter, but omitting CR1 and the corresponding MVke blocks. Thus the out-
puts of the first set of MPSF blocks are producing the output bits. Charge reservoir
CR2 remains and contains the carry signal. To create an adder, the addition blocks
are cascaded in parallel with the carry-out of block i connected to the carry-in of
block i+ 1.

4.3 Simulation

To verify the high-radix multiplication scheme we simulated the 8-bit radix 4 multi-
plier. We used an approach of partitioning to simulate the whole multiplier, for the
following reason. Although SIMON contains the OpAmp as circuit element, using it
in SET circuitry causes some random effects to occur. Partitioning the circuit in parts
ending with an OpAmp resolves this problem. To simulate the entire circuit, the output
of each OpAmp was stored and used as an input in the next part. The simulation results
indicated that the multiplier functions correctly. The multiplier requires 2372 circuit
elements and has a total delay of 63.6 ns.

5 Conclusions

In this paper we presented a high radix EC addition scheme and a high radix EC multi-
plication scheme. For both arithmetic operations, first we briefly discussed the normal
(non high radix) EC scheme. Second, we presented the high radix addition scheme and
explained its functionality. Third, we explained the implementation of the high radix
multiplication scheme in details. Finally, we presented simulation results and evaluate
the schemes in terms of delay and area cost. The 6-bit radix 8 addition scheme requires
187 circuit elements and has a delay of 13.7 ns. The 8-bit radix 4 multiplication scheme
requires 2372 circuit elements and has a total delay of 63.6 ns.

456 C. Meenderinck and S. Cotofana

References

1. Waser, R., ed.: Nanoelectronics and Information Technology - Advanced Electronic Materi-
als and Novel Devices. 1st edn. Wiley-VCH, Berlin (2003)

2. : International Technology Roadmap for Semiconductors, 2003 Edition, Executive Summary.
Downloadable from website http://public.itrs.net/Home.htm (2003)

3. Likharev, K.: Single-Electron Devices and Their Applications. Proceeding of the IEEE 87
(1999) 606–632

4. Lageweg, C., Cotofana, S., Vassiliadis, S.: Static buffered set based logic gates. In: 2nd IEEE
Conference on Nanotechnology (NANO). (2002) 491–494

5. Cotofana, S., Lageweg, C., Vassiliadis, S.: On computing addition related arithmetic op-
erations via controlled transport of charge. In: proceedings of 16th IEEE Symposium on
Computer Arithmetic. (2003) 245–252

6. Cotofana, S., Lageweg, C., Vassiliadis, S.: Addition Related Arithmetic Operations via Con-
trolled Transport of Charge. IEEE Transactions of Computers 54 (2005) 243–256

7. Wasshuber, C.: About Single-Electron Devices and Circuits. PhD thesis, TU Vienna (1998)
8. Ishibashi, K., Tsuya, D., Suzuki, M., Aoyagi, Y.: Fabrication of a Single-Electron Inverter in

Multiwall Carbon Nanotubes. Applied Physics Letters 82 (2001) 3307–3309
9. Lageweg, C., Cotofana, S., Vassiliadis, S.: A Linear Threshold Gate Implementation in

Single Electron Technology. In: IEEE Computer Society Workshop on VLSI. (2001) 93–98
10. Meenderinck, C.: Single electron tunneling based arithmetic operations. Master’s thesis,

Delft University of Technology (2005)
11. (http://www.lybrary.com/simon/)
12. Likharev, K., Korotkov, A.: Ultradense Hybrid SET/FET Dynamic RAM: Feasibility

of Background Charge Independent Room Temperature Single Electron Digital Circuits.
In: Proceedings of the International Semiconductor Device Research Symposium, Char-
lottesville, Virginia (1995) 355–359

13. Parhami, B.: Computer Arithmetic. Oxford University Press (2000)
14. Dadda, L.: Some schemes for parallel multipliers. Alta Frequenza 34 (1965) 349–356
15. Meenderinck, C., Cotofana, S.D.: Computing periodic symmetric functions in single electron

tunneling technology. In: Proceedings of International Semiconductor Conference (CAS).
(2005) 47–50

Area, Delay, and Power Characteristics
of Standard-Cell Implementations of the

AES S-Box

Stefan Tillich, Martin Feldhofer, and Johann Großschädl

Graz University of Technology,
Institute for Applied Information Processing and Communications,

Inffeldgasse 16a, A–8010 Graz, Austria
{stillich,mfeldhof,jgrosz}@iaik.tugraz.at

Abstract. Cryptographic substitution boxes (S-boxes) are an integral
part of modern block ciphers like the Advanced Encryption Standard
(AES). There exists a rich literature devoted to the efficient implemen-
tation of cryptographic S-boxes, whereby hardware designs for FPGAs
and standard cells received particular attention. In this paper we present
a comprehensive study of different standard-cell implementations of the
AES S-box with respect to timing (i.e. critical path), silicon area, power
consumption, and combinations of these cost metrics. We examined im-
plementations which exploit the mathematical properties of the AES
S-box, constructions based on hardware look-up tables, and dedicated
low-power solutions. Our results show that the timing, area, and power
properties of the different S-box realizations can vary by more than an
order of magnitude. In terms of area and area-delay product, the best
choice are implementations which calculate the S-box output. On the
other hand, the hardware look-up solutions are characterized by the
shortest critical path. The dedicated low-power implementations do not
only reduce power consumption by a large degree, but they also show
good timing properties and offer the best power-delay and power-area
product, respectively.

1 Introduction

The Internet of the 21st century will consist of billions of non-traditional com-
puting systems like cell phones, PDAs, sensor nodes, and other mobile devices
(“gadgets”) with wireless networking capability. Wireless networking, along with
the fact that many of these devices (e.g. sensor nodes) are easily accessible, have
raised a number of security concerns. Sophisticated security protocols, in com-
bination with well-established cryptographic primitives, can ensure privacy and
integrity of communication over insecure networks. Consequently, there is an
increasing demand to implement cryptographic algorithms on resource-limited
embedded devices like sensor nodes, smart cards, or mobile phones. Even some
extremely constrained systems like radio frequency identification (RFID) tags
may require cryptographic processing.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 457–466, 2006.
© Springer-Verlag Berlin Heidelberg 2006

458 S. Tillich, M. Feldhofer, and J. Großschädl

The Advanced Encryption Standard (AES), which has been announced by
the NIST in 2001, defines one of the most important symmetric ciphers for the
next decades [11]. The AES algorithm is a variant of the Rijndael cipher [4]
and can be implemented efficiently in both software and hardware. Common
AES hardware implementations take the form of cryptographic ASICs and co-
processors. In addition, hardware/software co-design techniques like instruction
set extensions have also been proposed in recent years [14]. Due to the high per-
formance of modern microprocessors, AES software implementations can reach
throughput rates which are sufficient for most applications. Therefore, hard-
ware implementations of the AES algorithm are mainly important for high-end
server systems with extreme performance requirements and for low-power and
low-energy environments.

Most of the published AES hardware designs focus on high speed and high
throughput for implementation on FPGAs [3,12]. In addition, some ASIC im-
plementations have been reported in the recent literature. For instance, Hodjat
et al. developed a 3.84 Gbits/s coprocessor based on a 0.18-μm CMOS technol-
ogy with intended usage in high-end server applications [6]. Another high-speed
implementation can be found in [16]. A completely different approach is neces-
sary for low-power and low-energy devices. Feldhofer et al. published an AES
implementation suited for passively-powered devices like RFID tags [5]. It is the
smallest and most power-saving implementation known so far.

Modern symmetric ciphers require non-linear functions in order to defend
against linear cryptanalysis. Substitution is a popular function for introducing
non-linearity. A substitution function is commonly referred to as S-box and can
be defined on basis of arithmetic operations or as an arbitrary mapping. Different
cipher algorithms also use different numbers of S-boxes, e.g. DES uses eight
S-boxes which map six to four bits, while AES uses a single S-box which is a
bijective mapping from eight to eight bits.

The AES algorithm makes use of its S-box in the SubBytes round transfor-
mation as well as in the key expansion. From a mathematical point of view, the
AES S-box is defined as an inversion in the finite field GF(28) with a specific
reduction polynomial [7], followed by an affine transformation [4]. The inverse
S-box, which is required for the InvSubBytes round transformation for decryp-
tion, is simply the inverse of the affine transformation, followed by an inversion
in GF(28). The finite field inversion is the only non-linear operation of the AES
algorithm. Since there exist many design options for the S-box in hardware, it is
challenging to find an optimal implementation for a particular purpose. On the
one hand, the main criterion for high-speed implementations is a short critical
path, which allows to reach high clock frequencies1. On the other hand, S-box
implementations for embedded devices call for small silicon area and low power
consumption. In this paper we analyze and compare silicon area, critical path
delay, and power consumption characteristics of the most common standard-cell
implementations of the AES S-box. We hope that our results will help system
designers to find the optimal S-box for their application.

1 The S-box normally lies on the critical path of AES hardware implementations.

Area, Delay, and Power Characteristics of AES S-Box Implementations 459

The remainder of this paper is organized as follows. In Section 2 the different
implementation strategies for the AES S-box are discussed. In Section 3 we
describe the particular implementations which we have examined. In Section 4
we discuss our experimental results and we conclude in Section 5.

2 Implementation Strategies for the AES S-Box

The AES is based on rounds consisting of linear and non-linear transformations
[4]. All transformations operate on a two-dimensional array of 4×4 bytes (128
bits), called the State. One of the strengths of the AES algorithm is its simplic-
ity, which facilitates the implementation on a wide range of different platforms
under different constraints. Various hardware designs have been reported in the
literature, whereby the efficient implementation of the S-box received particular
attention [1,2,8,9,10,13,15].

The SubBytes transformation substitutes all 16 bytes of the State indepen-
dently using the S-box. Furthermore, the S-box is also used in the AES key
expansion. In software, the S-box is typically realized in form of a look-up table
since the inversion in the finite field GF(28) can not be calculated efficiently on
general-purpose processors. In hardware, on the other hand, the implementation
of the S-box is directed by the desired trade-off between area, delay, and power
consumption. The most obvious implementation approach for the S-box takes
the form of hardware look-up tables. However, since encryption and decryption
require different tables, and each table contains 2048 bits, the overall hardware
cost of this approach is relatively high.

An implementation option related to standard cells is the usage of ROM
compilers to produce hardware macros. For the standard-cell technology that we
have used, a ROM macro of sufficient size would require a considerable amount
of silicon area. The critical path delay is very similar to a hardware look-up
approach, but the power consumption of generated ROMs is about 2–3 orders
of magnitude higher. Therefore, we do not consider the implementation of the
S-box as ROM macro in this paper

More advanced approaches calculate the S-box function in hardware using its
arithmetic properties. The focus of such implementations is the efficient realiza-
tion of the inversion in GF(28), which can be achieved by decomposing the finite
field into the sub-fields GF(24) and GF(22). An inversion in a finite field of char-
acteristic 2 can be carried out in different ways, depending on the basis which
is used to represent the field elements [7]. The two most common types of bases
for GF(2m) are the polynomial basis and the normal basis. A polynomial basis
is a basis of the form {1, α, α2, . . . , αm−1} where α is a root of an irreducible
polynomial p(t) of degree m with coefficients from GF(2). On the other hand,
a normal basis can be found by selecting a field element β ∈ GF(2m) such that
the elements of the set {β, β2, β4, . . . , β2m−1} are linearly independent.

A third approach for implementing the AES S-box was proposed by Bertoni
et al. in [1]. By using an intermediate one-hot encoding of the input, arbitrary
logic functions (including cryptographic S-boxes) can be realized with minimal

460 S. Tillich, M. Feldhofer, and J. Großschädl

power consumption. The main drawback of this approach is that it results in
relatively large silicon area.

3 Examined Implementations

All surveyed AES S-box implementations can perform forward and inverse byte
substitution for encryption and decryption respectively. We have implemented
all analyzed solutions either by ourselves or have obtained them from the authors
of the respective publications2. All implementations just consist of combinatorial
logic, i.e. no pipelining stages have been inserted.

The simplest design in our comparison is a straight-forward implementa-
tion of a hardware look-up table. The synthesizer transforms the behavioral
description of the look-up table into a mass of unstructured standard cells. This
approach will be denoted as hw-lut. A modification of that approach is to
use sub-tables in order to minimize switching activity in the look-up tables to
reduce power consumption. We have examined such solutions with sub-tables
of size 16, 32, 64, 128, and 256 bytes, but in this paper we only cite results for
size 16 (sub16-lut).

Implementations which calculate the S-box transformation in hardware have
been first proposed by Wolkerstorfer et al. [15] and Satoh et al. [13]. The first
approach decomposes the elements of GF(28) into polynomials over the sub-
field GF(24) and performs inversion there. Our implementation of this solution
is denoted as wolkerstorfer. Satoh’s solution decomposes the field elements
further into polynomials over the sub-field GF(22), where inversion is a trivial
swap of the lower and higher bit of the representation. This implementation
is called satoh in the following. Both of these approaches represent the field
elements by using a polynomial basis. Canright improved the calculation of the
S-box by switching the representation to a normal basis [2]. Like in Satoh’s
solution, the finite field element’s representation is mapped to a polynomial over
the sub-field GF(22). This approach will be denoted as canright.

A compromise between hardware look-up and calculation has also been ex-
amined. In this implementation (denoted as hybrid-lut) only the inversion in
GF(28) is implemented as look-up table. As this inversion is used for both en-
cryption and decryption, the size of the look-up table is halved in relation to
the hw-lut approach. The affine and inverse affine transformations are done in
logic just as in the calculating implementations of wolkerstorfer, satoh, and
canright.

The low-power approach of Bertoni et al. [1] uses a decode stage to represent
the 8 bits of the input byte and the control bit which selects encryption or
decryption into a one-hot encoding on 512 lines. The substitution itself is just
a simple rewiring of these lines. As two of the lines always map to the same
8-bit result (one for encryption and one for decryption), these line pairs are
combined with a logical OR to result in a one-hot encoding of the result on 256
2 We would like to thank Johannes Wolkerstorfer and David Canright for providing

their HDL source code.

Area, Delay, and Power Characteristics of AES S-Box Implementations 461

lines. A subsequent encoder stage transforms this result back to an 8-bit binary
value. Due to this decoder-permute-encoder structure, there is only very little
signal activity within the circuit at a change of the input, resulting in low power
consumption. Note that the structure of Bertoni’s approach makes it in principle
easily possible to introduce pipeline stages. However, it may be necessary to add
a large number of additional flip-flops when the pipeline stage is placed between
the decoder and encoder, i.e. on the one-hot encoded signal lines. These flip-
flops will increase power consumption considerably and can easily mitigate the
low-power advantages of this solution. For design scenarios where both power
consumption and silicon area are of minor importance, Bertoni’s approach can
offer the best opportunity for reaching very high clock frequencies.

We have tested two implementations of Bertoni’s approach: One implemen-
tation used a decoder with four stages as proposed in the original publication
for minimal power consumption (bertoni). The second realization, denoted as
bertoni-2stg, used a different decoder structure with only two stages in order
to reduce the critical path of the circuit.

In the remainder of this paper we will refer to wolkerstorfer, satoh, and
canright as calculating implementations. We will denote hw-lut and hybrid-
lut as look-up implementations, and sub16-lut, bertoni, and bertoni-2stg as
low-power implementations.

4 Experimental Results

For our experiments we have used a 0.35 μm CMOS standard cell library from
austriamicrosystems. We synthesized all implementations described in Section 3
using the Physically Knowledgeable Synthesis (PKS) tool from Cadence. For
each implementation numerous synthesis runs with different target values for
maximal critical path delay have been performed. Each synthesis run provided
the actual critical path delay, the area of the synthesized design, and the total
power consumption. However, for our evaluation we only used results where the
timing constraints were met by the synthesizer.

Most of the following figures use a logarithmic scale on the Y-axis, as otherwise
it would not be possible to display the results for all implementations within a
single figure. Each legend cites the functions in the same top-down order as they
are contained in the respective figure.

In Figure 1 the area of synthesized designs with a specific critical path delay
are shown. The area is given in gate equivalents (GE), calculated as total area
divided by the size of a 2-input NAND with the lowest driving strength, which
is the NAND20 standard cell of the library we used.

Amongst the three calculating implementations (at the bottom of the figure),
canright is clearly the best. It has the smallest size, but suffers from a longer
critical path than the hardware look-up implementations and the low-power
implementations. The calculating implementations are smaller than the other
two approaches because they make use of the algebraic structure of the S-box to
implement the substitution. On the other hand, this structure has a relatively

462 S. Tillich, M. Feldhofer, and J. Großschädl

100

1000

10000

2 4 6 8 10 12 14 16 18 20

Critical path delay (ns)

A
re

a
(G

E
)

sub16-lut
bertoni
bertoni-2stg
hw-lut
hybrid-lut
satoh
wolkerstorfer
canright

Fig. 1. Area vs. critical path delay

long critical path. The shortest critical path can be achieved with hw-lut but
its size is 2–3 times that of canright. Look-up implementations neglect the
algebraic structure of the S-box and just aim at a straightforward realization
of the boolean equations constituted by the input-output relation. Hence, the
synthesizer has a much higher degree of freedom for optimizing the circuit, which
allows for a much shorter critical path at the expense of silicon area. Also good
speed can be achieved with bertoni and bertoni-2stg, but they require even
more silicon area.

The low-power implementations also neglect the arithmetic properties of the
substitution and just implement the boolean equations of the input-output rela-
tion. However, they use a specific structure (decode-permute-encode) to reduce
signal activity. Although the critical path is similarly short as for look-up im-
plementations, the one-hot encoding requires more silicon area than the look-up
implementations. The sub16-lut approach also has a significant area overhead
introduced by the address decoding of the sub-tables, which makes it the solution
requiring the most silicon area. Moreover, the address decoding logic leads to
a longer critical path. As expected, the compromise between hardware look-up
and calculation (hybrid-lut) lies roughly between hw-lut and the calculating
implementations in regard of both critical path delay and area.

Figure 2 shows the total power consumption in relation to the critical path
delay. All power figures have been normalized to the power consumption of hw-
lut for 5.0 ns delay. The low-power implementations based on the approach
by Bertoni (bertoni, bertoni-2stg) show the lowest power consumption. The
original implementation bertoni has the best characteristics while the modified
version bertoni-2stg is slightly worse. Bertoni’s approach is solely directed
towards low power consumption with a minimal level of signal activity in the
circuit. Therefore, it is better than the sub16-lut approach, which tries to im-
prove a straightforward look-up table implementation (hw-lut) with low-power

Area, Delay, and Power Characteristics of AES S-Box Implementations 463

0.1

1

10

100

2 4 6 8 10 12 14 16 18 20

Critical path delay (ns)

T
o

ta
l p

o
w

er
 (

n
o

rm
al

iz
ed

)

satoh
wolkerstorfer
canright
hybrid-lut
hw-lut
sub16-lut
bertoni-2stg
bertoni

Fig. 2. Total power consumption vs. critical path delay

measures. The sub16-lut implementation requires almost twice as much power
as bertoni, while hw-lut consumes 2–3 times more power. The hybrid-lut
approach requires even considerable more power than hw-lut.

The power consumption of the calculating implementations is much higher
than that of the low-power and look-up versions. The algebraic evaluation of the
S-box function in calculating implementations requires re-computation of all
intermediate values even if only a few number of input bits toggle. This behavior
entails very high signal activity. In look-up implementations a change of a few
input bits affects the calculation of all output bits separately. As some output
bits will be left unchanged, the signal activity within this particular path is
low and hence limits the power consumption. The most power-efficient variant
among the calculating implementations is canright, which has 6–10 times the
power consumption of hw-lut. The power consumption of wolkerstorfer is
about 9–20 times higher and those of satoh is even 17–34 times higher.

Figure 3 shows our results in terms of the power-area product. This metric is
particularly relevant for applications which require both small silicon area and
low power consumption, e.g. cryptographically enhanced RFID tags or sensor
nodes. Due to their high power consumption, the calculating implementations
have the worst power-area products.

For relaxed critical path conditions, hybrid-lut, sub16-lut, and hw-lut have
similar characteristics, with slight advantages for hybrid-lut if a longer critical
path is tolerable. When further reducing the critical path, hybrid-lut shows
rather bad properties compared to sub16-lut. Finally, if an extremely short
critical path is desired, hw-lut and bertoni have the best power-area product,
followed by bertoni-2stg. Among these three designs, bertoni and bertoni-
2stg should be preferred over hw-lut if a critical path delay of more than 4 ns
is acceptable. Our results show slight advantages for bertoni-2stg compared to
bertoni for some critical path targets (5–7 ns).

464 S. Tillich, M. Feldhofer, and J. Großschädl

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

Critical path delay (ns)

(P
o

w
er

 x
 A

re
a)

 n
o

rm
al

iz
ed

satoh wolkerstorfer canright hybrid-lut

sub16-lut hw-lut bertoni bertoni-2stg

Fig. 3. Power-area product vs. critical path delay

0

5

10

15

20

25

30

35

0 900 1800 2700 3600

Area (GE)

T
o

ta
l p

o
w

er
 (

n
o

rm
al

iz
ed

)

satoh
wolkerstorfer
canright
hybrid-lut
hw-lut
bertoni-2stg
bertoni
sub16-lutdecreasing

critical path
delay

Fig. 4. Total power consumption vs. area

Figure 4 displays total power consumption in relation to required silicon area.
Generally, the points farther away from the point of origin belong to synthe-
sis results for shorter critical path delays. The figure shows that calculating
implementations tend to sacrifice power efficiency to achieve higher speed. On
the other hand, look-up and low-power implementations trade silicon area for a
shorter critical path. To minimize the critical path delay, the synthesizer uses
optimization techniques like the utilization of standard cells with higher driving

Area, Delay, and Power Characteristics of AES S-Box Implementations 465

strengths and duplication of logic paths, which results in a considerable higher
power consumption for signal switches. Calculating implementations have an in-
herently high number of signal switches and therefore incur an over-proportional
increase in power consumption for reduced critical path delays. Look-up and
low-power implementations, on the other hand, have much lower levels of signal
activity which only leads to moderate increases in power consumption for shorter
critical paths.

5 Conclusions

In this paper we have examined eight AES S-box implementations which follow
three different design strategies. We have analyzed and compared various cost
metrics like critical path delay, silicon area, and power consumption of these
implementations based on synthesis runs with a 0.35 μm CMOS standard cell
library. To our knowledge this is the first comprehensive survey of all possible
standard cell implementations of the AES S-box published so far. While the
results for the calculating implementations only apply to the AES S-box, the
insights from the other two implementation strategies (look-up except hybrid-
lut and low-power) are also useful for other cryptographic S-boxes.

Acknowledgements

The research described in this paper has been supported by the Austrian Science
Fund under grant P16952–N04 and by the FIT-IT initiative of the Austrian
Federal Ministry of Transport, Innovation, and Technology (project SNAP).

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the author’s views, is
provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk
and liability.

References

1. G. Bertoni, M. Macchetti, L. Negri, and P. Fragneto. Power-efficient ASIC Syn-
thesis of Cryptographic Sboxes. In Proceedings of the 14th ACM Great Lakes
Symposium on VLSI (GLSVLSI 2004), pp. 277–281. ACM Press, 2004.

2. D. Canright. A very compact S-Box for AES. In Cryptographic Hardware and
Embedded Systems — CHES 2005, vol. 3659 of Lecture Notes in Computer Science,
pp. 441–455. Springer Verlag, 2005.

3. P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES al-
gorithm. In Cryptographic Hardware and Embedded Systems — CHES 2003, vol.
2779 of Lecture Notes in Computer Science, pp. 319–333. Springer Verlag, 2003.

4. J. Daemen and V. Rijmen. The Design of Rijndael. Springer Verlag, 2002.

466 S. Tillich, M. Feldhofer, and J. Großschädl

5. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES implementation on a grain of
sand. IEE Proceedings Information Security, 152(1):13–20, Oct. 2005.

6. A. Hodjat, D. D. Hwang, B.-C. Lai, K. Tiri, and I. M. Verbauwhede. A 3.84 Gbits/s
AES crypto coprocessor with modes of operation in a 0.18-μm CMOS technology.
In Proceedings of the 15th ACM Great Lakes Symposium on VLSI (GLSVLSI 2005),
pp. 351–356. ACM Press, 2005.

7. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, second
edition, 1996.

8. M. Macchetti and G. Bertoni. Hardware implementation of the Rijndael SBOX:
A case study. ST Journal of System Research, 0(0):84–91, July 2003.

9. N. Mentens, L. Batina, B. Preneel, and I. M. Verbauwhede. Systematic evalua-
tion of compact hardware implementations for the Rijndael S-box. In Topics in
Cryptology — CT-RSA 2005, vol. 3376 of Lecture Notes in Computer Science, pp.
323–333. Springer Verlag, 2005.

10. S. Morioka and A. Satoh. An optimized S-Box circuit architecture for low power
AES design. In Cryptographic Hardware and Embedded Systems — CHES 2002,
vol. 2523 of Lecture Notes in Computer Science, pp. 172–186. Springer Verlag,
2002.

11. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES). Federal Information Processing Standards (FIPS) Publication
197, Nov. 2001.

12. N. Pramstaller and J. Wolkerstorfer. A universal and efficient AES co-processor for
field programmable logic arrays. In Field Programmable Logic and Application —
FPL 2004, vol. 3203 of Lecture Notes in Computer Science, pp. 565–574. Springer
Verlag, 2004.

13. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A compact Rijndael hardware
architecture with S-Box optimization. In Advances in Cryptology — ASIACRYPT
2001, vol. 2248 of Lecture Notes in Computer Science, pp. 239–254. Springer Verlag,
2001.

14. S. Tillich, J. Großschädl, and A. Szekely. An Instruction Set Extension for Fast
and Memory-Efficient AES Implementation. In Communications and Multimedia
Security — CMS 2005, vol. 3677 of Lecture Notes in Computer Science, pp. 11–21.
Springer Verlag, 2005.

15. J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC implementation of the
AES SBoxes. In Topics in Cryptology — CT-RSA 2002, vol. 2271 of Lecture Notes
in Computer Science, pp. 67–78. Springer Verlag, 2002.

16. X. Zhang and K. K. Parhi. High-speed VLSI architectures for the AES algorithm.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(9):957–
967, Sept. 2004.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 467 – 476, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Integrated Microsystems in Industrial Applications

Paddy J. French

EI/EWI-DIMES, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands
Tel.: +31-15-2784729

P.J.French@tudelft.nl

Abstract. Since the 1960s etching of silicon has been used to make three-
dimensional structures. The first devices were pressure sensors using a thin
silicon membrane. More recently accelerometers and gyroscopes have been
developed. All of these devices can be integrated with electronics enabling the
introduction of extra functions such as self-test and self-calibration. A broader
look at sensors shows a wealth of integrated devices. The critical issues are
reliability and packaging if these devices are to find the applications. A number
of silicon sensors have shown great commercial success. This paper will give a
brief overview of the technologies and some examples of applications.

Keywords: integrated sensors, packaging.

1 Introduction

Silicon is brittle, but has a high Young’s modulus, which makes it an excellent
mechanical material for micromechanical devices. The mechanical properties are well
documented in the paper from Petersen [1]. The first examples of micromachined
structures go back to the early 1960s with a membrane based pressure sensor. The
mid 1960s also saw the first surface micromachined structures using a resonating gate
device, although this did not perhaps receive the attention it deserved [2]. Instead the
attention was concentrated on anisotropic etching using etchants such as KOH, EDP
and hydrazine and later TMAH [3-4], yielding structures as shown in Fig. 1. In
addition to wet etching, dry etching {reactive ion etching (RIE) and also Deep RIE
(DRIE)} has become a major player in the Microsystems industry. Surface
micromachining only became prominent with the publication of a number of papers
using polysilicon as the mechanical layer [5-6].

Surface micromachining involves the deposition of thin films and the selective
removal of one or more layers to produce free-standing structures. This is illustrated
in Fig. 2.

A clear difference between the two technologies is the dimensions. With bulk
micromachining the dimensions are often the full wafer thickness (about 500μm) and
lateral dimensions in the mm range, whereas with surface micromachining are usually
less than 5μm, with lateral in the order of 200μm-500μm.

Further issues are packaging and reliability, which in some case has prevented
devices reaching the market. Furthermore, Microsystems are being applied to an

468 P.J. French

increasing number of harsh environments. Wafer-level packaging is able to offer
protection of delicate structures during wafer handling and also simplified and more
flexible packaging. For the future development of Microsystems, a number of issues
are important, although their relative importance depends on the applications. These
factors include, amongst others, low power, increased functionality, reduced size. The
issue of whether or not to integrate depends on application and process complexity.
The following sections will briefly give a description of the technology and the
potential problems followed by a look into industrial applications.

Fig. 1. Three etch structures (a) isotropic, (b) wet anisotropic and (c) deactive ion etching

Fig. 2. Example of surface micromachined cantilevers [7]

2 Bulk Micromachining

Most of the early micromachined devices were produced using anisotropic wet
etching in, for example, KOH. The advantage of this technique is that the lateral
dimension are well defined in (100) wafers due to the stop on the (111) plane. The
simplicity of the process lead to a number of commercial devices, such as pressure
sensors and accelerometers. An important issue in fabricating devices is to define an
etch-stop. The simplest is the time stop, but this is rather inaccurate. A more accurate
technique is the p++ etch stop, where the etching slows down with high p-doping.
This technique is simple and accurate but requires high doping which may not be
desirable in terms of stress [8]. An accurate method, without high stress is the
electrochemical etch-stop. Initially the p-type substrate is etched until the n-type epi is
reached. At this point a current is able to flow, and the surface is passivated. The main

 Integrated Microsystems in Industrial Applications 469

problems with this technique is that it is difficult for batch processing and also the
holder can create stress in the wafer [9-10]. An alternative to this technique is the
galvanic etch-stop [11-13]. This uses a gold layer on the front side of the wafer
creating a galvanic cell to achieve the same etchstop.

A further wet etching technique, which has received attention in recent years is
macro-porous silicon, which is formed by electrochemical etching in HF. This simple
process enables the fabrication of high aspect-ratio holes and trenches, and the nature of
the process allows three-dimensional structures to be fabricated in a single step [14]. An
example of a free-standing structure fabricated in this process is given in Fig. 3.

Fig. 3. Free-standing structure fabricated using a single etch step for macro-porous processing

Dry etching techniques were developed in the IC industry to improve profiles and
reduce under-etching. The introduction of deep RIE using processes such as the Bosch
and cryogenic processes opened many opportunities for the micromachining community.

2.1 Devices

As mentioned above, bulk micromachining has been successfully applied to pressure
sensors, accelerometers and more recently gyroscopes [15-21]. Silicon pressure
sensors were amongst the first micromachined sensors to find industrial applications.
In many medical applications size and bio-compatibility are the critical issues. An
example of a catheter pressure sensor from Lucas NovaSensor is given in Fig. 4 (left).
An example of a sensor for higher pressures is also given in Fig. 4. In this case the
pressure is exerted on a steel membrane, who thickness determines the pressure range.
This device does not make use of micromachining, like many pressure sensors, it uses
simple mechanical system to transfer the bending of the membrane to a stress on the
surface of the chip. The size of the chip is in this case is 10x1 mm2.

The market for accelerometers and gyroscopes as been greatly boosted by the
automotive industry. In these applications reliability are critical and the ability to
insert a self-test gave further confidence to the user. For the accelerometer the first

470 P.J. French

Fig. 4. (left Intercardial catheter-tip sensors for monitoring blood pressure. (Lucas NovaSensor,
Fremont, CA), (right) Pressure sensor for high-pressure range using a steel membrane. This
figure represents a sensor from Bell and Howell Corporation.

application was the airbag, to detect a crash and generate a signal to inflate the airbag.
More recently lower range accelerometers have been applied to active suspension.
Having this large market helped to bring down the price and stimulate further
development and new markets. Gyroscopes, have been a more recent addition to the
silicon based sensor field, for measuring rotation. Examples of a bulk micromachined
accelerometer and a gyroscope can be seen in Fig. 5.

Fig. 5. (left) and example of a bulk micromachined accelerometer [17], (right) a bulk
micromachined gyroscope [22]

3 Surface Micromachining

Although also a product of the 1960s, surface micromachining did not come to
prominence until the 1980s. This period showed the potential of materials such as
polysilicon for both sensors and actuators. Surface micromachining uses layers
deposited on top of the substrate and one or more layer (sacrificial layer) is then
selectively removed to yield structures such as shown in Fig. 2. A wide range of
materials are available for both mechanical and sacrificial layers, as shown in table 1,

 Integrated Microsystems in Industrial Applications 471

where for each combination a sacrificial etchant is chosen which etches the sacrificial
layer without serious damage to the mechanical layer. It should be noted that table 1
gives a few examples and is by no means a complete list.

Table 1. Examples of sacrificial and mechanical layers with the appropriate etchant

Sacrificial layer Mechanical layer Sacrificial etchant
Oxide (PSG, LTO etc) Polysilicon, silicon nitride,

silicon carbide
HF

Oxide (PSG, LTO etc) Aluminium Pad etch, HF (73%)
Polysilicon Silicon nitride KOH, TMAH
Polysilicon Silicon dioxide TMAH
Resist Aluminium Acetone/oxygen plasma

3.1 Devices

As with bulk micromachining a range of devices can be found. Pressure sensors can
be fabricated with membrane in the range of 100μm, which can be useful for

Fig. 6. Catheter pressure sensors using epi-poly [23]

Fig. 7. The Analog Devices 2-D surface micromachined accelerometer. Reproduced with kind
permission Kevin Chau, Analog Devices and (right) a polysilicon gyroscope [25].

472 P.J. French

applications such as catheters. Fig. 6 shows an example of a pressure sensor for
catheter applications using epi-poly and piezoresistive output.

A surface micromachined accelerometer and a gyroscope are given in Fig. 7. The
Analog Devices accelerometer is an example of a complete system, with sensor, read-
out electronics, controlled power supply and self-test. With surface micro-machined
accelerometers, electrostatic activation is an effective way to test the device.

4 Packaging and Reliability

Packaging and reliability are major issues in bring devices to the market, although it
should not be forgotten that testing can also result in a major part of the final cost.
Reliability can be divided into two categories (1) process yield and (2) reliability in
operation. One of the issues of yield is related to packaging. Once etched the
micromachined devices are extremely delicate until they are packaged. In many cases
the devices are encapsulated in additional wafers prior to packaging using wafer-to-
wafer bonding [26]. In the example given in Fig. 8, the lower glass wafer was bonded
before the mass was released. This figure is a cross-sectional view of the device
shown in Fig. 5 (left).

Fig. 8. Cross sectional view of an accelerometer with glass capping layers

Fig. 9. Two through wafer interconnect options, using KOH and DRIE

 Integrated Microsystems in Industrial Applications 473

An additional packaging option is to take the contact through the wafer. This can
be done using KOH etching or DRIE. These two options are shown in Fig. 9. In both
cases the metallisation was fabricated using electroplating of copper. In the case of
the KOH option it is necessary to define metal lines from the backside to the wafer
through the wafer to the frontside. This can be achieved either using a spray resist or
electroplated resist. This technique can be extremely useful in cases where the bond
wires on the frontside represent a problem. Although this complicates the processing,
it is performed at wafer scale and thus when the wafers are diced, the packaging is
simplified.

5 Microsystems in Standard IC Technologies

The devices described above have all required additional micromachining steps.
However, many sensing devices can be integrated with standard electronics without
use of additional steps. Simple Hall plates are a good example, since this can use
diffusions already used in the transistor. A further example is given in Fig. 10. This is
a thermal wind sensor. The basic principle is to heat part of the chip and measure the
transfer of the heat down wind. The advantage of this system is that there are no
moving parts.

Fig. 10. (left) Thermal flow sensor and, (right) an integrated thermal flow sensor [27-28]

The new generation flow sensor (Fig. 10-right) is the same size but contains all the
read-out electronics and thermal management. Furthermore, the whole device can be
fabricated using standard electronics. In this case the sensor chip is more expensive
but the total system is cheaper and less complicated.

The issue of testing, mentioned above, can also be tackled through electronics
design. Fig. 11 shows an example of this approach. The problem in this case was

474 P.J. French

Fig. 11. Smart temperature sensor, designed for low calibration costs [29]

the lengthy calibration process, leading to high costs. Using electronic design, the
calibration time could be greatly reduced, while maintaining accuracy, although the
chip is more complicated. The end result was a reduction in the cost of the end
product.

6 Conclusions

Silicon based sensors date back to the 1960s. In the early days they were simple
membrane structures using piezoresistive output. Micromachining technologies have
developed to an extend that complicated 3-D structures can be fabricated. The
technologies can be divided into bulk and surface micromachining. Bulk micro-
machining, generally uses the full wafer thickness, whereas surface micromachining
uses thin film on the surface of the wafer. The critical issues which were largely
ignored in the early development are packaging and reliability. In sensor fabrication
testing and packaging can easily represent more that 50% of the cost of the device.
Packaging of delicate structures or structures that have to be exposed to the
environment represent a number of challenges and if these are not considered at an
early stage there is the risk that the device will not have commercial success.

References

1. K.E. Petersen, Silicon as a mechanical material, Proc. IEEE, 70, (1982), pp 420-457.
2. H.C. Nathanson and R.A. Wickstrom, A resonant-gate silicon surface transistor with high-

Q band pass properties, Appl. Phys. Lett., 7, (1965), p 84.

 Integrated Microsystems in Industrial Applications 475

3. K.E. Bean, "Anisotropic etching of silicon", IEEE Trans Electron Devices, ED-25, (1978),
pp 1185-1193

4. A. Merlos, M.Acero, M.H.Bao, J.Bauselles, J.Esteve, TMAH/IPA anisotropic etching
characteristics, Sensors & Actuators A 37-38 (1993) 737-743.

5. R.T. Howe and R.S. Muller, "Polycrystalline and amorphous silicon micromechanical
beams: annealing and mechanical properties", Sensors and Actuators, 4, (1983), pp
447-454.

6. L-S. Fan, Y-C. Tai and R.S. Muller, "Pin joints, gears, springs, cranks and other novel
micromechanical structures", Proceedings Transducers 87, Tokyo, (1987), pp 849-852.

7. M. Bartek, P.J. French and R.F. Wolffenbuttel, Planarization in surface micromachining
using selective epitaxial growth. Proceedings Eurosensors 94, Toulouse, France, 26-28
September 1994, p 210.

8. E.D.Palik et al., Study of the etch-stop mechanism in silicon, J. Electrochem. Soc. 137
(1982) 2051-2059

9. B.Kloek, S.D.Colllins, N.F.de Rooij, R.L.Smith, Study of electrochemical etch-stop for
high precision thickness control of silicon membranes, IEEE Electron Dev., 36 (1989)
663-669.

10. P.M.Sarro, A.W.van Herwaarden, Silicon cantilever beams fabricated by
electrochemically controlled etching for sensor applications, J. Electrochem. Soc. 133
(1986) 1724-1729.

11. P.J.French, M.Nagao, M.Esashi, Electrochemical etch-stop in TMAH without externally
applied bias, Sensors & Actuators A, 56 (1996) 279-280.

12. C.M.A. Ashruf, P.J.French, P.M.M.C.Bressers, P.M.Sarro, J.J.Kelly, A new contactless
electrochemical etch-stop based on gold/silicon/TMAH galvanic cell, Sensors & Actuators
A, 66 (1998) 284-291.

13. E.J. Connolly, S. Sakarya, P.J. French, X.H. Xia and J.J. Kelly, “A pratical galvanic etch-
stop in KOH using sodium hypochlorite”, Proceedings IEEE MEMS 2003, Kyoto, Japan,
January 2003, pp 566-569.

14. H. Ohji, P.J. Trimp and P.J. French, “Fabrication of free standing structures using a single
step electrochemical etching in hydrofluoric acid”, Sensors and Actuators, A73 (1999)
pp. 95-100.

15. H.V. Allen, S.C. Terry and D.W. de Bruin, “Accelerometer systems with self-testable
features”, Sensors and Actuators, 20, (1989), pp 153-161.

16. F. Rudolf, A. Jornod, J. Bergqvist and H. Leuthold, “Precision accelerometers with μg
resolution” Sensors and Actuators, A21-23, (1990), pp 297-302

17. R.P. van Kampen, M.J. Vellekoop, P.M. Sarro and R.F. Wolffenbuttel, “Application of
electrostatic feedback to critical damping of an integrated silicon capacitive
accelerometer”, Sensors and Actuators, A43, (1994), pp 100-106

18. Chr. Burrer and J. Esteve, “A novel resonant silicon accelerometer in bulk-
micromachining technology”, Sensors and Actuators, A46-47 (1995), pp 185-189.

19. O. Lüdtke, V. Biefeld, A. Buhrdorf and J. Binder, “Laterally driven accelerometer
fabricated in single crystalline silicon” Sensors and Actuators, A82, (2000), pp 149-54.

20. H. Li, M. Bao, H. Yang, S. Shen and D. Lu, “A micromachined piezoresistive angular rate
sensors with a composite beam structure” Sensors and Actuators, A 72, (1999), pp
217-223.

21. T. Fujita, K. Maenaka, T. Mizuno, T. Matusoka, T. Kojima, T. Oshima and M. Maeda,
“Disk-shaped bulk micromachined gyroscope with vacuum sealing”, Sensors and
Actuators, A82, (2000), pp 198-204.

476 P.J. French

22. G. Craciun, H. Yang, M.A. Blauw, E. van der Drift and P.J. French, “Single step
cryogenic SF6/O2 plasma etching process for the development of a novel quad beam
gyroscope”, Proceeding MME 02, Sinaia, Romania, October 2002, pp 55-28.

23. D. Tanase, J.F.L. Goosen, P.J. Trimp, P.J. French, “Multi-parameter sensor system with
intravascular navigation for catheter/guide wire application”, Sensors and Actuators A 97-
98 (2002) pp116-124.

24. E. Kälvesten, L. Smith, L. Tenerz and G. Stemme, “The first micromachined pressure
sensor for cardiovasular pressure measurements”, Proceedings MEMS 98, Heidelberg,
Germany, 25-29 January 1998, pp 574-579

25. T. Tsuchiya, Y. Kageyama, H. Funabashi and J. Sakata, “Vibrating gyroscope consisting
of three layers of polysilicon thin films”, Proceedings Transducers 99, Sendai, Japan, June
1999, pp 976-979.

26. R.P. van Kampen, M.J. Vellekoop, P.M. Sarro and R.F. Wolffenbuttel, “Application of
electrostatic feedback to critical damping of an integrated silicon capacitive
accelerometer”, Sensors and Actuators, 43. (19944), pp 100-106.

27. B. van Oudheusden and J.H. Huijsing, An electronic wind meter based on a silicon flow
sensor. Sens. Actuators A 21–23 (1990), pp. 420–424

28. K.A.A. Makinwa and J.H. Huijsing, “A smart wind sensor using thermal sigma-delta
modulation techniques”, Sensors and Actuators, 97-98, pp 15-20.

29. A. Bakker, High-accuracy CMOS smart temperature sensors”, PhD thesis, TU Delft, The
Netherlands, (2000), ISBN 90-901-3643-6.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 477 – 484, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Solid-State 2-D Wind Sensor

K.A.A. Makinwa, Johan H. Huijsing, and Arend Hagedoorn

EI/EWI-DIMES, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands
Tel.:+31-15-2786466

k.a.a.makinwa@tudelft.nl

Abstract. This paper describes the industrial realization of a solid-state wind
sensor, that is, one without moving parts. The key component of the sensor is a
heated silicon chip that is packaged in such a way that it is non-uniformly
cooled by the wind. The resulting flow-induced temperature gradient is
measured by on-chip temperature sensors. Their output is then digitized and
processed by a microprocessor in order to determine both wind speed and
direction. For wind speeds between 0.1 and 25m/s, the errors in the computed
wind speed and direction are less than 0.5m/s (or ±3%) and ±3° respectively.

Keywords: thermal flow sensor, sensor systems.

1 Introduction

Over the centuries, many techniques have been devised to measure wind speed and
direction. Probably the most well known involves the use of a cup anemometer to
measure wind speed, and a wind vane to measure wind direction. While capable of
giving excellent results, these instruments are mechanical devices, with moving parts
which require regular maintenance, and which will eventually wear out. More
elaborate techniques, such as laser and acoustic anemometry, are commercially
available but are, at this moment, prohibitively expensive. This paper describes the
realization of a solid-state wind sensor, i.e. a single instrument that measures both
wind speed and direction, and which has no moving parts [1][2].

2 Operating Principle

The solid-state wind sensor described here makes use of the fact that airflow over a
heated plate will cool it non-uniformly, as shown in Fig. 1. As a result, the heat
distribution in the plate will no longer be symmetrically distributed, giving rise to a
temperature gradient δT between two points straddling the centre of the plate (A and
B in Fig. 1). In previous work [3], it has been shown that the magnitude of this flow-
induced temperature gradient is a function of flow speed, and its direction is aligned
with that of the flow. Thus, by accurately measuring this temperature gradient, both
wind speed and direction may be determined.

The magnitude of the flow-induced gradient is also proportional to the temperature
difference between the sensor and the airflow. To compensate for slow changes in

478 K.A.A. Makinwa, J.H. Huijsing, and A. Hagedoorn

ambient temperature, the sensor is operated in a so-called constant-temperature-
difference mode, in which it heated to a constant temperature (typically 15°C) above
that of the airflow [4]. Operating in this mode also improves the speed at which the
sensor responds to changes in flow velocity, since only the, much smaller,
temperature gradient in the sensor changes. However, it complicates the sensor
system, since it requires a separate ambient temperature sensor, which must be
thermally isolated from the heated sensor, and as such cannot be co-integrated.

temperature

x

flow

heater

no flow

with flow

plate

A B

δT

Fig. 1. Operating principle of the wind sensor

flow

ceramic disk

wind-sensor chip
bond-wire

flex-foil

encapsulant

Fig. 2. Schematic cross-section of the packaged wind sensor chip

3 Sensor Packaging

The wind sensor consists of a thin ceramic disc, which is heated by resistors
implemented on a square silicon chip glued to the disc, as shown in Fig. 2. The
ceramic disc protects the chip from direct contact with the environment. Due to its
thinness (0.25mm) and moderate thermal conductivity (20W/m•K) relative to that of
silicon (150W/m•K), temperature sensors on the chip can measure the flow-induced
temperature gradient in the disc.

Electrical contacts between the chip and the outside world are made via wire-
bonded leads and a flex-foil. The fragile leads and the chip are then sealed by an
opaque encapsulant. This method of packaging employs standard chip-on-board
techniques and thus results in a robust, low-cost sensor.

 A Solid-State 2-D Wind Sensor 479

4 Sensor Chip

A schematic layout of the sensor chip is shown in Fig. 3. It consists of a square silicon
chip on which four heating resistors, four thermopiles and a central diode have been
realized. The chip is fabricated in a standard (non-micromachined) low-cost
(2 micron) bipolar process. The heaters are p+-diffusion resistors, while the
thermopiles each consist of 12 thermocouples made from p+-diffusion resistors
connected by strips of aluminium. Each thermopile has a temperature coefficient of
about 6mV/K.

flo
w

thermopile_ew

therm
opile_ns

heater_n

heater_s

heater_w

heater_e

thermopile_ew

therm
opile_ns

diode

N

Fig. 3. Schematic layout of the sensor chip

The thermopiles measure north-south and east-west components (δTns and δTew) of
the flow-induced temperature gradient. Thermopiles are ideally suited for this task
because, being passive devices, they are inherently offset free. The flow-induced
temperature differences are however quite small (in the milli-Kelvin range). As a
result, the output of the thermopiles is quite small (in the millivolt range). Since
thermopiles on opposite sides of the chip measure similar temperature differences,
they are connected in series, thus doubling the sensor’s output. The central diode is
used to measure the chip’s average temperature. When forward biased, the voltage
drop across the diode has a sensitivity of approximately −2.1mV/K.

5 Interface Electronics

A block diagram of the sensor’s interface electronics is shown in Fig. 4. It consists of
three parts, a temperature control loop, circuitry that digitizes the thermopile outputs,
and a low-cost microprocessor (PIC16C711) that uses this information to compute
wind speed and direction.

480 K.A.A. Makinwa, J.H. Huijsing, and A. Hagedoorn

 PWM
control

Amp

Amp

Diodes

Thermopiles

Heaters

δTns

δTew

Tchip

Tamb

ΔT

+

−

−
Heaters

N

E

S

W
Thermal coupling

μP
A
D
C

EEPROM

Trim_N

Trim_S

RS-422

Fig. 4. Block diagram of the wind sensor’s interface electronics\

The temperature control loop is a negative feedback circuit that maintains the
sensor’s average temperature Tchip at a constant temperature difference ΔT above that
of the flow Tamb. The latter is measured by an external diode, which is thermally
isolated from the heated chip. A pulse-width modulator drives the heaters with a
constant-amplitude pulse train. The frequency of the resulting heat pulses (10kHz) is
fixed and is chosen such that their harmonics are filtered out by the sensor’s intrinsic
thermal capacitance. Driven by the error signal of the feedback loop, the modulator
varies the duty-cycle of the pulses, and thus the average heating power, such that ΔT
is kept constant.

To compensate for thermal asymmetry, which may occur during the sensor’s
packaging, the heat distribution in the chip is centred by adjusting two potentiometers
connected to the north-south and east-west heater pairs. These potentiometers are
adjusted such that at zero flow, the temperature differences δTns and δTew measured by
the thermopiles are nulled.

The millivolt-level output of the thermopiles is boosted by low-offset amplifiers to
the 0-5V input range of the microprocessor’s 8-bit ADC. To avoid degrading the
sensor’s performance, the effective resolution of the ADC is increased to
approximately 9.5 bits by averaging eight successive 8-bit samples. Using the
digitized thermopile outputs, the microprocessor computes wind speed and direction.

6 Aerodynamic Housing

As shown in Fig. 5, the packaged wind sensor chip is mounted in an aerodynamic
housing, which guides horizontal wind components over the sensor in a well-defined

 A Solid-State 2-D Wind Sensor 481

Fig. 5. Cross-sectional view of the wind sensor

Fig. 6. External view of the wind sensor

manner. The ceramic disc bearing the chip is mounted flush with the surface of a
small inner disc, which in turn is located between two larger guide discs. The housing
dramatically reduces the influence of vertical wind components, or sensor tilt, on the

482 K.A.A. Makinwa, J.H. Huijsing, and A. Hagedoorn

sensor’s output. It also protects the sensor against direct sunshine or precipitation and
houses the interface electronics.

The outer discs are joined together by struts, as shown in Fig. 6. These act as local
obstructions to the wind and cause the airflow over the sensor to become turbulent.
Without the struts, a discontinuity in the sensor’s characteristic will be observed at
high Reynolds numbers (which correspond to wind speeds of a few meters per
second) at the natural transition between laminar and turbulent flow [4].

0 50 100 150 200 250 300 350
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Flow angle (degrees)

N
or

m
al

iz
ed

 th
er

m
op

ile
 o

ut
pu

t

Fig. 7. Sensor output δTns (o) and δTew (+) as a function of wind speed

7 Sensor Calibration

Each sensor is calibrated in a wind tunnel at three wind speeds. At each speed, the
sensor is rotated through 360 degrees to simulate variations in wind direction. As
shown in Fig. 6, the north-south and east-west temperature differences δTns and δTew
may be well approximated by sine and cosine functions of wind direction φ, which
may be expressed as,

nsnsnsns aAT ++=)sin(εφδ , (1)

ewewewew aAT ++=)cos(εφδ . (2)

Where the amplitude A is a monotonic function of wind speed U, a is an offset due to
residual thermal asymmetry in the sensor, and ε is a constant phase shift. The latter
reflects the fact that the sensor’s reference axis may not be exactly aligned with that
of the measurement system.

The dependence of the amplitude and offset of the thermopile outputs on wind
speed is shown in Fig. 8 for a typical sensor. By curve fitting, the amplitude is found
to be proportional to Un, where n = 0.47. This is very close to the value of 0.5
predicted by a theoretical analysis [5]. The temperature differences may now be
expressed as,

 A Solid-State 2-D Wind Sensor 483

nsnsns
n

ns aCUT ++=)sin(εφδ , (3)

ewewew
n

ew aCUT ++=)cos(εφδ , (4)

where C is a constant sensitivity factor. Equations (3) and (4) may be inverted to
obtain expressions for wind speed and direction in terms of the measured temperature
differences and the offsets, [6]. Since the offsets are actually functions of wind speed,
a recursive algorithm is employed in which the previously computed wind speed is
used to determine the offset values used. The various constants determined during
calibration are stored in a non-volatile memory (EEPROM). These are then used by
the microprocessor in computing wind speed and direction.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

U, U in m/s, and n=0.47376
n

N
or

m
al

iz
ed

 a
m

pl
itu

de

1.5 2 2.5 3 3.5 4 4.5
-0.015

-0.010

-0.005

0

0.005

0.010

0.015

0.020

U, U in m/s, and n=0.47376
n

N
or

m
al

iz
ed

 o
ffs

et

Fig. 8. Amplitude and offset of δTns (o) and δTew (+) as a function of wind speed

0 50 100 150 200 250 300 350
-2

-1

0

1

2

3

Flow angle (degrees)

A
ng

le
 e

rr
or

 (
de

gr
ee

s)

21
15
3

0 50 100 150 200 250 300 350
97

98

99

100

101

102

103

Flow angle (degrees)

N
or

m
. f

lo
w

 s
pe

ed
 (

%
)

21
15
3

Fig. 9. Error in wind sensor output as a function of wind direction

484 K.A.A. Makinwa, J.H. Huijsing, and A. Hagedoorn

8 Sensor Performance

The performance of a typical sensor is shown in Fig. 9. It may be seen that at the three
calibration speeds, the sensor’s accuracy is better than 0.5m/s (or ±3%) in wind speed
and 3º in wind speed and direction respectively over the range 0.1 to 25m/s. At wind
speeds below 0.2m/s, air currents generated by natural convection ultimately limit the
sensor’s accuracy. The sensor’s response time to step changes in wind velocity is less
than one second, which is fast enough for meteorological applications.

9 Conclusion

A solid-state wind sensor, i.e. one without moving parts has been successfully
developed. The absence of moving parts makes for low maintenance and long life.
The accuracy of the sensor is better than 0.5m/s (or ±3%) and 3º in wind speed and
direction respectively over the range 0.1 to 25m/s. The sensor’s small size and robust
construction makes it suitable for a wide range of wind sensing applications.

References

1. Mierij Meteo B.V., “Solid state wind sensor MMW 005,” http://www.mierijmeteo.nl.
2. J.H. Huijsing, A. Hagedoorn, B. W. van Oudheusden and H.J. Verhoeven, “Device for

determining the direction and speed of an air flow,” U.S. patent 6035711, March 2000.
3. B.W. van Oudheusden, “Integrated silicon flow sensors,” Ph.D. thesis, Delft University of

Technology (1989).
4. B.W. van Oudheusden and J. H. Huijsing, “An electronic wind meter based on a silicon flow

sensor,” Sensors and Actuators A, 21-23 (1990) pp. 420-424.
5. B. W. van Oudheusden, “The thermal modeling of a flow sensor based on differential

convective heat transfer,” Sensors and Actuators A, vol. 29, 1991, pp. 565-575.
6. K.A.A. Makinwa and J.H. Huijsing, “A wind sensor interface using thermal sigma-delta

modulation techniques,” Sensors and Actuators A, 92 (2001) pp. 280-285.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 485 – 489, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Fault-Tolerant Bus System for Airbag
Sensors and Actuators

Klaas-Jan de Langen

 Philips Semiconductors, Nijmegen, The Netherlands
klaas-jan.de.langen@philips.com

Abstract. In order to satisfy the increasing safety requirements for airbag
deployment systems in cars, the number of airbag actuators and sensors increases
steadily. It is important to keep the complexity of the system manageable, for
example by replacing the current point-to-point systems by a networked system.
This paper gives an overview of such a system and discusses some of the
interesting implementation details.

Keywords: integrated circuits, in-vehicle networks.

1 Introduction

The older airbag systems consist of just a single crash sensor and two airbags and
were relatively easy to wire. Modern airbag systems, however, are becoming more
and more complex. The use of more than one airbag per passenger and the application
of dual-stage airbags can bring the number of airbag actuators, also known as squibs,
in a typical car to over ten. In addition, the sensing system comprises several devices
such as a front crash sensor, several side-impact sensors and a roll-over sensor.
Therefore, the Safe-by-Wire consortium has created a network specification for airbag
sensors and actuators [1].

A brief overview of the bus specification will be given in Section 2. Subsequently,
in Section 3 the implementation details are presented. Finally, conclusions are drawn.

2 Bus Specification Overview

An example of a typical Safe-by-Wire (SbW) network is shown in Figure 1. Several
slaves are connected using a two-wire bus to the SbW master. The master
communicates to the micro controller via an SPI interface. Although the specification
allows mixing of sensor slaves and deployable squib slaves, the sensor slaves and
squib slaves are preferably grouped together in a separate sensor bus and a deploy-
ment bus.

For EMC reasons, data is transmitted as a differential signal via a twisted pair. To
keep costs down, no other wires are allowed and therefore the distribution of power
and data has to be combined. The bus signal therefore consists of a sequence of power
phases and data phases as depicted in Figure 2. During the power phase, the slaves

486 K.-J. de Langen

extract power from the bus and charge a local energy reserve capacitor that is used as
a local supply for the slave. The process of switching between power and data level
also results in a clock signal for the slaves, while the use of two different data levels
implements a ‘0’ or a ‘1’. An additional data level, S0, is used for special purposes
such as interrupts and during firing commands.

C SPI SbW
Master

Sensor
Slave

Sensor
Slave

Sensor
Slave

Sensor
Slave

Firing
Slave

Firing
Slave

Firing
Slave

Firing
Slave

Firing
Slave

Fig. 1. Example of a SbW bus topology with a separate sensor bus and a deployment bus

Power
Phase

Power
Phase

Data
Phase

Data
Phase

Data
Phase

1 0 S0

P 11V

L0 6V

L1 3V

S0 0V

Fig. 2. Bus signal showing all voltage levels

The master creates the basic bus signal, but the ‘0’ level is recessive and can be
changed into a ‘1’ by a slave. This way, slaves can fill in the required data. An
example layout of data communication on the bus is the D-frame used for deployment
devices as shown in Figure 3. The master starts with a start of frame (SOF), a power
level followed by a data level at a lower frequency than the normal bus frequency.

Then, a reserved R bit is sent follow by a 4-bit command and an 8-bit slave
address. Thereafter, 8 bits of data are sent by the master or the slave followed by an 8
bit CRC. The last bit, the E bit, can be set by the master in case an error was
encountered during the frame transmission.

 Fault-Tolerant Bus System for Airbag Sensors and Actuators 487

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

transmitted by master transmitted by master or slave

SOF R 4-bit
command

6-bit slave address 8-bit data 8-bit CRC E

Fig. 3. Example layout of bus communication

3 Implementation Details

A block diagram of a master with two SbW channels is depicted in Figure 4. The
master consists of digital circuits such as the SPI interface and the SbW protocol
controller while the circuits that implement the SbW physical layer, the floating
supply and the transceiver are mainly analog.

Floating
Supply Rx/Tx

SbW
protocol

controller
Level shift

BusA1

BusB1

Floating
Supply Rx/Tx

BusA2

BusB2

SPI
Interface

SPI

Fig. 4. Block diagram of a SbW master with two channels

A very important feature of the bus is that operation should continue even if one of
the wires is shorted to ground or to the battery voltage. Shorts to ground (chassis) can
easily occur, especially during a crash. This feature is implemented by the floating
supply. A simplified schematic of the floating supply is presented in Figure 5. The
supply voltage of the bus system is isolated from the ground-based battery voltage by
using a capacitor C1 that is charged during the data phase by closing switches S1 and
S2 and then used to power the bus during the power phase by closing switches S3 and
S4. This way, the bus voltages are completely floating with respect to the ground
connection and shorting of one of the bus wires to any voltage is possible without
impeding the bus communication. Note that the circuits are implemented in an SOI
process so that handling of negative voltages is not a problem.

488 K.-J. de Langen

S1 S3

S2 S4

C1 CL Vbat

BusA

BusB

Fig. 5. Simplified schematic of floating supply

An interesting problem that remains to be solved is how to communicate between
the ground-based system and the floating bus system. Shorting BusA to ground forces
BusB more than 10V below ground while a short to battery forces the BusB voltage
above ground. Therefore, the digital signals for the transceiver can be at any level. A
very simple technique can solve this problem of level shifting between the ground-
based circuit and the circuits connected to the bus [2]. As shown in Figure 6, diodes
D1 and D2 are used to select the higher of the two supply voltage Vsup1 and Vsup2. The
selected voltage is then used to supply current mirror M1, M2 that can always mirror
current I1 into load resistor RL. By modifying the current I1 the voltage across RL can
be changed. This technique can be used to transfer digital as well as analog signals.

D1

Vsup1

D2

RL I1

BusB

Vsup2

M1 M2

Fig. 6. Level shifting principle

As an example of a slave, the block diagram of a deployment slave is presented in
Figure 7. Using the diode the voltage of the power level is stored on capacitor C1. A
charge pump creates a higher voltage of the order of 20V. This voltage is stored on C2

and can be used to fire the squib by closing the switches. To avoid inadvertent firing
of the airbag, two switches are used. Furthermore, capacitor C2 is only charged when a
number of diagnostics have been performed and the firing command should use the
special data level ‘S0’ for the whole firing message.

 Fault-Tolerant Bus System for Airbag Sensors and Actuators 489

Rx/Tx

Charge pump

Control

BusA

BusB

C1

squib

C2

Fig. 7. Block diagram of a deployment slave

4 Conclusion

In order to reduce the complexity of modern airbag networks, the Safe-by-Wire bus
standard has been created. This standard has briefly been discussed and some of the
most important implementation details have been shown, these include the use of a
floating power supply and the level shifting of signals between ground and the
floating bus system.

References

1. “Safe-by-Wire Plus, Automotive Safety Restraints Bus Specification”, Version 2.0,
September 24, 2004.

2. K.J. de Langen, B. Singh, E. Toy, “Level shifting circuit between isolated systems,” U.S.
patent application 20060001447, January 5, 2006.

Author Index

Agarwal, Nainesh 79
Agis, Rodrigo 385
Alho, Timo 167
Antonopoulos, Alexandros 359
Arpinen, Tero 27
Auguin, Michel 196

Baniasadi, Amirali 299
Beck, Antonio Carlos S. 321
Becker, Daniel 216
Belleudy, Cécile 196
Ben Fradj, Hanene 196
Benini, Luca 279
Berbers, Yolande 39, 49
Bereković, Mladen 289
Bhattacharyya, Shuvra S. 142
Blume, Holger 216
Botteck, Martin 216
Bountas, Dimitrios 331
Bradac, Zdenek 178
Brakensiek, Jörg 216
Brinkschulte, Uwe 339

Carro, Luigi 321
Chaves, Ricardo 425
Cho, Kyoung-Rok 395
Choi, Eun-Ju 395
Choi, Jinsung 1
Chung, Ki-Dong 415
Corporaal, Henk 206
Cotofana, Sorin 447

da Cunha, Adriano B. 99, 132
da Silva Jr., Diógenes C. 99, 132
Dai, Rui 69
de Hoon, Menno 206
de Langen, Klaas-Jan 485
Dı́az, Javier 385
Dimopoulos, Nikitas J. 79
Dutt, Nikil 59

Feldhofer, Martin 457
Fettweis, Gerhard 89
Fiedler, Petr 178

Florescu, Oana 206
French, Paddy J. 467

Gaydadjiev, Georgi N. 248
Glossner, John 435
Goldsman, Neil 142
Goratti, Leonardo 155
Großschädl, Johann 457

Haapola, Jussi 155
Hagedoorn, Arend 477
Hama, Kotaro 349
Hämäläinen, Panu 167
Hämäläinen, Timo D. 27, 109, 167
Haneda, Masayo 186
Hännikäinen, Marko 27, 109, 167
Heikkinen, Jari 227, 259
Holsmark, Rickard 373
Homayoun, Houman 299
Horikoshi, Yuji 349
Hovsepyan, Aram 39, 49
Huijsing, Johan H. 477
Hyncica, Ondrej 178

Iancu, Andrei 435
Iancu, Daniel 435
Icart, Sébastien 196
Iranpour, Ali 309

Jääskeläinen, Pekka 237
Jacobs, Jan W.M. 69
Järvinen, Tuomas 237
Joosen, Wouter 39, 49

Kacz, Peter 178
Kaxiras, Stefanos 359
Keramidas, Georgios 359
Kim, Dae-Hwan 269
Kim, Dae-Won 122
Kim, Sung-Woon 122
Kim, Sun-Wook 122
Knijnenburg, Peter M.W. 186
Ko, Dong-Ik 142
Kohvakka, Mikko 109
Kotlyar, Vladimir 435

492 Author Index

Kucera, Pavel 178
Kuchcinski, Krzysztof 309
Kukkala, Petri 27
Kumar, Shashi 373
Kuorilehto, Mauri 167
Kuzmanov, Georgi 425

Lee, Hyuk-Jae 269
Lee, Je-Hoon 395
Lee, Tae-Hoon 415

Madl, Gabor 59
Mäkinen, Risto 227
Makinwa, Kofi A.A. 477
Marwedel, Peter 279
Meenderinck, Cor 447
Mori, Kinji 349
Mota, Sonia 385

Nacer, Gary 435
Niggemeier, Tim 289
Noll, Tobias G. 216

Oh, Soo-Cheol 122
Oliver, Ian 15

Pacher, Mathias 339
Palesi, Maurizio 373
Park, Kyoung 122
Park, Song-Hwa 415
Partanen, Tero 227
Petoumenos, Pavlos 359
Pitkänen, Teemu 227
Pyka, Robert 279

Rabbachin, Alberto 155
Raekallio, Juuso 5
Rintaluoma, Tero 5
Ristau, Bastian 89

Ros, Eduardo 385
Rutzig, Mateus B. 321

Salmela, Perttu 237
Sandström, Kim 15
Senthilvelan, Murugappan 435
Serpanos, Dimitrios 359
Setälä, Mikko 27
Shen, Chung-Ching 142
Shin, Chi-Hoon 122
Silven, Olli 5
Smit, Gerard J.M. 69
Sousa, Leonel 425
Stamoulis, Georgios I. 331
Sugiyama, Yosuke 349
Suhonen, Jukka 109
Suliman, Isameldin 155
Surducan, Emanoil 435
Surducan, Vasile 435

Takala, Jarmo 227, 237, 259, 435
Tillich, Stefan 457
Tsarchopoulos, Panagiotis 2

Van Baelen, Stefan 39, 49
Vanhooff, Bert 39, 49
Vassiliadis, Stamatis 248, 425
Verma, Manish 279
Vieira, Marcos A.M. 99
Voeten, Jeroen 206
von Renteln, Alexander 339
Vrba, Radimir 178

Wehmeyer, Lars 279
Wijshoff, Harry A.G. 186

Ye, Hua 435
Yun, SangKyun 406

	Frontmatter
	Keynotes
	Reconfigurable Platform for Digital Convergence Terminals
	European Research in Embedded Systems

	System Design and Modeling
	Interface Overheads in Embedded Multimedia Software
	A UML Profile for Asynchronous Hardware Design
	Automated Distribution of UML 2.0 Designed Applications to a Configurable Multiprocessor Platform
	Towards a Transformation Chain Modeling Language
	Key Research Challenges for Successfully Applying MDD Within Real-Time Embedded Software Development
	Domain-Specific Modeling of Power Aware Distributed Real-Time Embedded Systems
	Mining Dynamic Document Spaces with Massively Parallel Embedded Processors
	Efficient Automated Clock Gating Using CoDeL
	An Optimization Methodology for Memory Allocation and Task Scheduling in SoCs Via Linear Programming

	Wireless Sensor Networks
	Designing Wireless Sensor Nodes
	Design, Implementation, and Experiments on Outdoor Deployment of Wireless Sensor Network for Environmental Monitoring
	LATONA: An Advanced Server Architecture for Ubiquitous Sensor Network
	An Approach for the Reduction of Power Consumption in Sensor Nodes of Wireless Sensor Networks: Case Analysis of Mica2
	Energy-Driven Partitioning of Signal Processing Algorithms in Sensor Networks
	Preamble Sense Multiple Access (PSMA) for Impulse Radio Ultra Wideband Sensor Networks
	Security in Wireless Sensor Networks: Considerations and Experiments
	On Security of PAN Wireless Systems

	Processor Design
	Code Size Reduction by Compiler Tuning
	Energy Optimization of a Multi-bank Main Memory
	Probabilistic Modelling and Evaluation of Soft Real-Time Embedded Systems
	Hybrid Functional and Instruction Level Power Modeling for Embedded Processors
	Low-Power, High-Performance TTA Processor for 1024-Point Fast Fourier Transform
	Software Pipelining Support for Transport Triggered Architecture Processors
	SAD Prefetching for MPEG4 Using Flux Caches
	Effects of Program Compression
	Integrated Instruction Scheduling and Fine-Grain Register Allocation for Embedded Processors
	Compilation and Simulation Tool Chain for Memory Aware Energy Optimizations
	A Scalable, Multi-thread, Multi-issue Array Processor Architecture for DSP Applications Based on Extended Tomasulo Scheme
	Reducing Execution Unit Leakage Power in Embedded Processors
	Memory Architecture Evaluation for Video Encoding on Enhanced Embedded Processors
	Advantages of Java Processors in Cache Performance and Power for Embedded Applications

	Dependable Computing
	CARROT -- A Tool for Fast and Accurate Soft Error Rate Estimation
	A Scheduling Strategy for a Real-Time Dependable Organic Middleware
	Autonomous Construction Technology of Community for Achieving High Assurance Service
	Preventing Denial-of-Service Attacks in Shared CMP Caches

	Architectures and Implementations
	A Method for Router Table Compression for Application Specific Routing in Mesh Topology NoC Architectures
	Real-Time Embedded System for Rear-View Mirror Overtaking Car Monitoring
	Design of Asynchronous Embedded Processor with New Ternary Data Encoding Scheme
	Hardware-Based IP Lookup Using {\itshape n}-Way Set Associative Memory and LPM Comparator
	A Flash File System to Support Fast Mounting for NAND Flash Memory Based Embedded Systems
	Rescheduling for Optimized SHA-1 Calculation
	Software Implementation of WiMAX on the Sandbridge SandBlaster Platform
	High-Radix Addition and Multiplication in the Electron Counting Paradigm Using Single Electron Tunneling Technology
	Area, Delay, and Power Characteristics of Standard-Cell Implementations of the AES S-Box

	Embedded Sensor Systems
	Integrated Microsystems in Industrial Applications
	A Solid-State 2-D Wind Sensor
	Fault-Tolerant Bus System for Airbag Sensors and Actuators

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

